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Abstract—The methods and results of the mathematical simulation of nonlinear waves generated by
hydrodynamic instability in traveling capillary films of a viscous liquid are discussed. Two model sys-
tems of differential equations for the local values of the layer thickness h and the f luid f low rate q are
considered. The single-parameter (h–q) Kapitsa–Shkadov model that ensures the effective simula-
tion of low-viscosity liquid film flows has received wide acceptance in world literature devoted to film
hydrodynamics. The two-parameter (h–q)1 model extends the possibilities for direct calculation of
nonlinear waves in the higher viscosity liquid films. A succession of the systems of model equations is
given, the scenarios of instability and bifurcation are discussed, and the results of calculations of wave
structures in comparison with the experimental data are given.
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In the present study, the wave regimes of film flows of viscous liquids in which the viscosity coefficients
vary within wide limits are considered. An approximate model system of differential equations with two
external governing parameters for the layer thickness and the local f luid f low rate [1] is used. This system
takes more precisely into account viscous dissipation in the layer as compared with the well-known single-
parameter Shkadov model [2]. New properties of linear and nonlinear waves generated by hydrodynamic
instability of f lows of highly viscous liquids under the action of the gravity force and the surface tension
are discussed.

The basic property of the two-parameter system consists in existence of a curve in the plane of govern-
ing parameters which separates the set of regular wave solutions in two subsets. In the first case a series of
bifurcations of slow waves from the neutral curve takes place and only thereafter transition to the family
of fast waves occurs. In the second case there is a single bifurcation of the family of fast waves from the
basis state on the neutral curve and the fast waves are immediately formed.

1. MODEL EQUATIONS OF WAVE FILM FLOWS
Flow of thin layers of viscous liquid along a solid surface under the action of the gravity, viscosity, and

surface tension forces can be described by the boundary value problem [2] which includes the Navier–
Stokes equations

(1.1)
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540 BELOGLAZKIN, SHKADOV
and the boundary conditions

(1.2)

Equations (1.1) and (1.2) are written in dimensionless form. The subscript denotes the partial derivative

with respect to the corresponding variables. The length scales h0 and  are used for the variables y and x,

the velocity scales  and  are used for the velocities u and , and the dynamic pressure  is used
for the pressures p and p1. The characteristic values of the layer thickness h0 and the liquid velocity U0, as
well as the coefficient  of extension along the streamwise variable x must be additionally specified.

The boundary-value problem (1.1), (1.2) contains following dimensionless parameters: the Reynolds

number , the Weber number , and the Froude number . We will consider

only the gravity-capillary f lows of viscous incompressible liquids in which the viscosity, gravity, and sur-
face tension forces are of the same order given by the quantity δ in accordance with the relations [2, 3]

(1.3)

Hence we can find the dimensionless criteria and the scaling factors h0 and U0 characteristic of the f low
class considered:

(1.4)

Now, the problem (1.1), (1.2) is completely determined by the pair of external governing parameters of
the mathematical model δ and κ.

In [4, 5] the significance of scaling (1.3) and introduction of the parameter  for successful solution of
the problem of nonlinear waves in films was noted.

In [1] derivation of the following model system of equations was given

(1.5)

The terms on the right-hand side of (1.5) with the multiplier κ2 reflect more exact account of the effect
of viscosity in the initial boundary-value problem (1.1), (1.2). For small κ, neglecting the terms with the
multiplier κ2, from (1.5) we can obtain the model  system derived in [2]. For large γ (low viscosity)
this system is controlled by a single parameter δ and can be reduced to the form:

(1.6)

The system (1.6) was the base of the integral method for calculating nonlinear waves in films of low-
viscosity liquid in the long series of studies cited in [4, 6]. The complete  system (1.5) contains two
external parameters δ and κ and is destined for investigation of waves in liquids with an arbitrary viscosity.
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Table 1. Values of γ and κ for 
3750 1323 102.9 23.25 8.1 3.572

0.15 0.2 0.4 0.6 0.8 1.0

δ = .0 15
γ
κ

In [7, 8] the history of constructing the system of Shkadov evolutionary equations (1.6) was outlined
starting from the instant of its creation in 1967 [2], and it was given its partial asymptotic case, namely, the
weakly nonlinear equation of the integral method of theory of wave films, first derived in [2] and investi-
gated in [7]

(1.7)

The investigation of this equation was continued and first published in form (1.7) in [9] with the fol-
lowing remark: “note that the equation of form (1.7) can be also obtained from equations derived in [2],
if only the principal terms in km are conserved in these equations.” A fairly detailed investigation of wave
solutions of the weakly nonlinear equation (1.7) was carried out in [10].

Equation (1.7) represents asymptotic form of the model system (1.6), as the f low rate tends to zero. For
finite values of  the system (1.6) describes the physical waves which can be compared with experiments.
Asymptotic equation (1.7) corresponds to the mathematical waves of infinite length and infinitely small
amplitude and it does not contain any parameters that can be related to the experimental conditions. Note
that the mathematical model of unsteady nonlinear waves in films can be reduced to a single equation only
under as . For finite values of δ unsteady wave film flows can be described by the system of two
equations (1.6).

The useful application of the weakly nonlinear equation of theory of falling wave films (1.7), which is
limiting as , is connected with the possibility of using its solutions for calculation of the initial data
in iterative computations at . This approach was used in [11] for numerical solution of system (1.6)
and in [1] for calculation of the solutions of system (1.5).

We note that some attempts to supplement the  model with terms quadratic in the wavenumber
α were undertaken in [12, 13], while in [14] modifications of the  system (1.6) by introducing the
weight coefficients in integrating the first of the equations (1.1) with respect to y were considered.

The problem (1.5) is determined by the pair of external governing parameters of the mathematical

model: δ and κ. In the experimental studies the parameters  and  are frequently

used. According to (1.4), these parameters are connected with δ and  by the relations:

(1.8)

In Fig. 1 we have reproduced the domains of governing parameters in the  and  planes at
which the experiments on wave films were carried out. Curves 1 and 2 bound the domain A of large values
of  that correspond to low-viscosity liquids. This includes the classic experiments of [15] and many other
successive studies whose results were collected in [16]. Curve  passes through the central part of
this domain; therefore, in solving the problem (1.1), (1.2) we can adopt the assumption . In [2, 3]
the corresponding theory including derivation of the approximate model  problem with a single
external governing parameter  and investigation of solutions for periodic and solitary waves was con-
structed. This theory made it possible to interpret the experimental results, it obtained the further devel-
opment and generalization by taking the processes of heat- and mass-exchange in films into account and
is successively used to present time [6].

Curves 3 and 4 bound the vast domain  of new experiments [12, 13] with wave film f lows at large and
small values of γ. It can be seen that the inequalities  hold for the indicated set of experimental
points, the values of  increasing with decrease in γ. In Table 1, as an example, we have given the values
of γ and  for . As the viscosity increases, γ decreases and  grows, reaching the value 
(  for  and κ = 1 for ). The domain of small γ is of particular interest for the
higher viscosity liquids. In this domain the waves are not sufficiently studied and it is necessary both to
develop theory and to carry out new detailed calculations.
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542 BELOGLAZKIN, SHKADOV

Fig. 1. Domains of existence of the wave film flow regimes in the ( ) and ( ) planes: curves 1 and 2 correspond to
curves bounded the domain A that corresponds to low-viscosity liquids; curves 3 and 4 correspond to curves bounded the
domain B of wave film flows at large and small ; curve 5 corresponds to bifurcation saddle-point that separates the
domains C and D.
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2. BIFURCATION BARRIER

The basic state of system (1.5) corresponds to dynamically possible f low of film of constant thickness
and constant f low rate h = 1 and q = 1. We will consider the conditions under which, as a result of hydro-
dynamic instability, soft bifurcation from the basic state of the wave f low regime with the wavenumber α
takes place

Linearizing system (1.5) with respect to low amplitudes  and , we obtain the following dispersion
relation for determining the eigenvalue  in the instability domain 

(2.1)

Setting  in (2.1), we can derive the equations for αn and cr on the neutral curve

(2.2)

We will calculate   for the dispersion relation (2.1) at points of the neutral curve. From the condition

 we obtain

(2.3)

In Fig. 1 curve 5 represents the set of points in the  plane at which the relations (2.2) and (2.3) are

simultaneously fulfilled. At each point of the domain C (above curve 5) the condition  is fulfilled
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Table 2. Bifurcation saddle-points
1.588 2.479 4.437 10.37 41.41 354.9 4141

328.9 95.88 30.34 11.27 5.769 4.671 4.552
3.107 2.037 1.300 0.7854 0.4267 0.1989 0.0873

22.71 4.340 0.8757 0.1966 0.0547 0.0207 0.0088

γ
R
κ
δ

on the neutral curve and the condition  is fulfilled at each point in the domain D. Change in sign

of   leads to a modification of the character of soft bifurcation of the wave regime. The soft bifurcation

takes place in the neighborhood of neutral curve when  is displaced to the instability domain
, . Consequently, slow waves with the phase velocity lower than the phase velocity of

neutral waves  softly branch off in the domain C on the neutral curve. Correspondingly, fast waves
with the phase velocity  softly branch off in the domain C on the neutral curve. Curve 5 represents
a bifurcation saddle-point curve which separates the film flows of type I in the domain C and of type II in
the domain .

The family of slow waves γ1 branches off on the neutral curve  in f lows of type I at fairly large γ.
As the wavenumber decreases, a critical value of  is reached. At such an α rigid bifurcation of the
family of fast waves γ2 takes place. This continues with variation in the inner parameter α to the point α = 0.

Bifurcations of the first family  disappear in transition across the bifurcation saddle-point curve into
the domain D to f lows of the type II. The family of fast waves  branches off at once on the neutral curve.
This family continues with variation in the inner parameter α to the point α = 0.

In [11] the concept of slow and fast waves with inner parameter α at small  was first introduced.
In [11] the basic principal properties of regular waves at finite  were also formulated. Thereafter, it was
shown [17] that for  rigid bifurcations of intermediate families of slow waves develop. Their num-
ber increases with . Accordingly, the point of rigid bifurcation of the family  is displaced towards
small α.

In Fig. 1 bifurcation saddle-point curve 5 divides the set of experimental points [13] into two large
groups in the  plane. For them the properties of nonlinear waves initiated by hydrodynamic instability
are significantly different, but the wave solutions of the  system correspond to those and that one.
In Table 2 we have represented certain values of the governing parameters for the points located on the
bifurcation saddle-point curve.

3. REGULAR PERIODIC WAVES
In the case of spatially-periodic waves, for each pair of external independent parameters  and  (or 

and ) there also exists an inner parameter, namely, a wavenumber α such that for  small per-
turbations are unstable and develop into nonlinear regular waves, and  is a point on the neutral curve.
As α varies from the point  to the point , the character of wave solutions (1.5) changes from
harmonic waves (slow or fast) to fast solitary waves—solitons. In [1] the fundamental property of sys-
tem (1.5) was established. In the plane of governing parameters there exists a curve (curve 5 in Fig. 1) that
separates the set of regular wave solutions into two subsets, namely, in the domain A slow waves (the phase
velocity cr is lower than the phase velocity of neutral waves) branch off from steady-state f low at each point
of any neutral curve, while in the domain B fast waves branch off. In Fig. 1b straight lines  inter-
sect the bifurcation saddle-point curve 5 [1], the point of intersection depending on γ. With decrease in 
the structure of wave solutions is modified in transition through the point of intersection, in particular,
fine-scale ripples disappear on the leading wave front. In what follows, we will give the results of direct
numerical solution of the two-parameter model for periodic and solitary waves.

In the general case, for an arbitrary shape of the liquid film surface the solutions were found numerically by
the method of establishing in time with the use of the Fourier representations in the spatial variable :

(3.1)
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544 BELOGLAZKIN, SHKADOV

Fig. 2. Dependence of the growth rate coefficient  and the phase velocity  in the domain of linear instability for
 and various values of : 6.5 (curve 1), 12.6 (curve 2), 19 (curve 3), 150 (curve 4), 3370 (curve 5), and  (curve 6).
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Substituting (3.1) in (1.5), we obtain the corresponding dynamical system of nonlinear ordinary differ-
ential equations for the expansion coefficients  and  which can be numerically integrated in time
using the direct and inverse Fourier transforms. As the initial conditions for the coefficients  and , we
specified the values for undisturbed stream and small values for  and  were used as the initial perturba-
tions.

For periodic waves with the wavelength  we used the following boundary conditions:

(3.2)

For each calculation we specified values of the governing parameters δ, , and α (or , , and α).

In Fig. 2a and 2b we have reproduced the growth rate coefficient  and the phase velocity  as func-
tions of the wavenumber α obtained from an analysis of the linearized problem. The results are represented
for various  in the case of α from the instability interval. For large values of  = 3370 and 150 bifurcation
occurs from the neutral curve initially to slow waves and only thereafter transition to fast waves takes place.
For smaller  = 12.6 and 6.5 fast waves are formed at once. In Fig. 2c we have plotted the graphs of the

growth rate coefficient  as a function of the phase velocity  for various . The condition 

is fulfilled for . For the greater values of  the dependence of the growth rate coefficient  on the

phase velocity  is not single-valued: the value of  at which the condition   is fulfilled is located

inside the instability interval and for a single phase velocity  there exist two different values of the growth
rate coefficient  in the interval , where αmax is the wavenumber for the maximum growth
rate coefficient  and  is the wavenumber of neutral oscillations. As , . Then we
obtain the case (6) in which each point of the curve corresponds to two different values of α from the inter-
val of linear instability.

As , when  is fixed, the limiting solutions of the system of evolutionary equations rep-
resent dominating waves. For each given  the set of dominating waves from the instability interval
( ) forms a global attractor [6].

In Fig. 3, in which the results of direct numerical solution of system (1.5) for limiting waves of the
global attractor are shown for the domains C and D for  (curves 1 and 2 correspond to  and

, respectively), we can see the differences between the scenarios of bifurcations in f lows of types I
and II. In the first case there is a series of bifurcations of slow waves before transition to the family of fast
waves , the local maxima on curves  and  correspond to them; in the second case
there is a single bifurcation of the family of fast waves  from the basis state on neutral curve at .

In Fig. 4 we have illustrated the range of variation in the phase velocity cr for a highly viscous liquid.
Here, we have shown the dependence of cr on the reduced maximum film thickness  in the case of
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Fig. 3. Global attractor at : (a) projection to the  plane; (b) projection to the ( ) plane; curves 1 corre-
spond to  and curves 2 correspond to .
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For  the wave solutions of the model  system of study [2] are characterized by the presence
of capillary ripples on the leading front of fast high-amplitude waves. As shown above, inclusion of the
terms of the order of κ2 into the  model creates the effect of smoothing the leading fronts, which is
most noticeable for highly viscous liquids.

In Fig. 5 we have compared the wave profiles for  and  and various wavenumbers α.
From the calculations it can be seen the formation of fine-scale ripples as a result of a sequence of bifur-
cations ahead of the wave front of maximum amplitude. In Fig. 5 we have compared the wave profiles at

 and  for liquids with various Kapitsa numbers. There are no ripples for small .

4. FROM PERIODIC SOLITARY WAVES TO SOLITONS
As the wavenumber α tends to zero, the periodic solutions of the system of evolutionary equations go

over into solitons, i.e., regular solitary waves. In the steady-state regime of the wave traveling at the veloc-
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Fig. 5. Shapes of the wave profile for various wavenumbers  and Kapitsa numbers .
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ity c we have . Eliminating the f low rate q from the system of equations, we can obtain the follow-
ing third-order equation for the film thickness h:

(4.1)

In this case the boundary conditions will be as follows:

For small perturbations of the shape of film surface  we have the linearized equation

We will consider the perturbations of the form , where  is the perturbation ampli-
tude and . Then we obtain the following dispersion relation:

The solution of this equation is three roots, one of them is real and two roots are conjugate complex.
In the case of positive solitons (when ) we have

In this case the asymptotic behavior of the rear and leading fronts of a traveling solitary wave (soliton)
as  is given by the formulas

(4.2)

For  the wave solutions of the model  system of study [2] are characterized by the presence
of capillary ripples on the leading front of fast high-amplitude waves of the type of solitary waves and soli-
tons. Inclusion of the terms of the order of κ2 into the  model creates the effect of smoothing of the
leading fronts which is in agreement with the experimental observations of waves, in particular, in highly
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Fig. 6. Domains of existence of positive solitons for the model  system.
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viscous liquids. As the pair of regime parameters  and  approaches the bifurcation saddle-point curve,
on the leading wave front the capillary ripple amplitude decreases rapidly. For example, for  and
c = 4, as the Kapitsa number decreases from  to  (Table 1), the exponent factor ,
that ensures damping of the ripple wave amplitude as , increases in absolute value in 11–16 times.
At the same time, the ripple wave length increases twice and the shape of the rear front remains almost the
same.

For the single-parameter  model system the domain of existence of positive solitons represents
a denumerable set of intervals outside which there are no solutions. In the case of using the two-parameter

 model system the number of these intervals becomes finite for given bounded values of the Kapitsa
number . For example (see Fig. 6), for  and  their number is equal to five, while for

 and  we have two intervals. For  and  there exist no finite intervals inside
which there are no bounded solutions of the problem.

In Fig. 7 we have reproduced the shapes and the phase portraits of a positive double-humped soliton  for
 and the Kapitsa numbers  and . As in the case of regular periodic waves, decrease

in the Kapitsa number for highly viscous liquids and the corresponding increase in the parameter  leads
to smoothing the oscillations on the leading front of soliton, while the shape of the rear part varies only
slightly.

In Figs. 8 and 9 we have compared the results of the present calculations and the experimental data for
various liquid film flow regimes.

In Fig. 8 we have reproduced the data of a series of experiments [13] in the case of highly viscous liquids
(domain B in Fig. 1) over the range of Kapitsa numbers  from 2 to 130. The calculations carried out for

 and in the optimum regime (maximum mean flow rate ) showed that good agreement of the
dependence of the maximum wave amplitude hmax on the dimensionless Weber number We can be
observed in the domain .

In [18] a comparative analysis of the methods of calculations of nonlinear waves formed in film during
the spatial and temporal development of perturbations of the main steady-state f low was carried out on
the base of using the similarity transforms. The use of invariant properties of evolutionary equations made
it possible to compare the properties of wave regimes and the obtained characteristics of regular waves with
the data of numerical solution of the corresponding spatial boundary-value problem [19], including the
shape of the wave of appearing film flow.

In [20] the extended boundary element method was used to solve the system of Navier–Stokes equa-
tions numerically. In that study good agreement between the obtained characteristics of limiting wave
regimes and the data [18] for the optimum regime of the set of dominating waves, namely, the global
attractor, was demonstrated.

Next numerical investigations of film flows were carried out in the regimes of constant flow rate  [18].
In Fig. 9a we have reproduced the results of calculations for a thin film of highly viscous liquid for  =

0.0202 and  = 5.9. In [21] the experimental data were given for liquid film flow at Re = 0.5. The calcu-
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Fig. 7. Shapes and phase portraits of the positive two-humped soliton  for .
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Fig. 8. Comparison of the calculation results ( ) with the experimental data [13]: curve 1 corresponds to the depen-
dence of  on  for the maximum phase velocity ; curve 2 corresponds to the dependence of  on

 for the maximum mean f low rate  (optimum regime [2]); dots note the data of a series of experiments [13] over
the Kapitsa number range .
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lations carried out in the present study are given for a thin layer of highly viscous liquid (  = 0.0202 and
= 5.9) in the ( ), ( ) plane. In the neighborhood of neutral curve the calculation data demon-

strate good agreement of the values of the maximum and minimum film thicknesses hmax and hmin at a
given wavenumber α.

In Fig. 9b we have plotted the projections of the global attractor in the ( ), ( ) plane for the
case of a film of large thickness (  = 2.75 and  = 200). In this case the differences of hmax with the exper-
imental data [13] are not greater than 7–10%.

5. BIFURCATION OF THE WAVE STRUCTURES OF A HIGHLY VISCOUS LIQUID AT SMALL 
WAVENUMBERS (INVERSE BIFURCATION)

In the limit, as the wavenumber decreases, regular periodic wave goes over in a solitary wave. In this
case, oscillations on the leading front arise and strengthen for fast solutions of equations and the number
of local maxima increases. Increase in viscosity leads to smoothing these oscillations and reducing the

δ
γ , αmaxh , αminh

,αmaxh , αminh
δ γ
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Fig. 9. Comparison of the calculation results and the experimental data: (a) projections of the global attractor for a thin
layer of highly viscous liquid (  = 0.0202 and  = 5.9) to the ( ), ( ) plane, 1 correspond to the experimental
data [21]; (b) projections of the global attractor to the ( ), ( ) plane for  = 2.75 and , 1 correspond
to the experimental data [13].
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number of local maxima up to their disappearance. The direct numerical calculations of Eq. (1.5) and the
boundary conditions (3.2) showed that at small Kapitsa numbers ( ) decrease in the wavenumber
and successive bifurcation of the solution does not lead to an increase in the number of local maxima but
leads to disintegration of wave with formation of the corresponding amount of single-humped structures.
Their characteristics coincide completely with the wave parameters with the corresponding multiple
increase in the wavenumber. For example, in the case of  and  ( ) the “sin-
gle-humped” solutions exist to . At the smaller wavenumbers we can observe the formation of two
wave solutions identical each other which exist, respectively, to . Further, to , we can
observe three wave solutions identical each other, etc. This result can be obtained by solving evolutionary
equations (1.5) or (1.6), but with the boundary conditions that generalize the conditions (3.2)

where  takes integer values 1, 2, 3, etc.
An analysis of the properties of global attractor shows (Fig. 10) that transition from the solution n = 1

to the solution n = 2 in the domain  is connected with the fact that the local f low rate of the solu-
tion n = 2 at the point  takes the maximum value , while for the solutions n = 1 the local
f low rate . Further, as the wavenumber decreases to , the situation is repeated and
transition to the solution n = 3 takes place.

As shown in [18], the frequency with the maximum growth rate which is close to the frequency of the
optimum regime can affect the formation of wave together with the forced oscillation frequency. As a
result, f low is restructured and the oscillation frequency changes. Then, as a result of some features of
excitation of the frequency in the initial time interval, in carrying out the experiments it is possible that
waves with multiple increase in the wave length are formed together with the wave structure at the “basic
frequency.” The observed “primary” and “secondary” wave f lows developed as a result of multiple
increase in the wavelength are represented by a united curve in the projection of the global attractor in the
( ) plane (Fig. 10d). The possible solutions with multiple increase in the wavelength, represented as
the solutions with the smaller wavenumbers , , etc., will have the lower phase velocity

 and the smaller maximum film thickness hmax (Figs. 10a, 10b, and 10c). The limiting wavenumber at
which inverse bifurcation occurs is equal to  for  and is equal to approximately 
for γ = 40. These quantities are close to the limiting wavenumber  at which regular waves are
observed in the experiments [16]. Note that at  the growth rate coefficient  for n = 2 is greater
than  for n = 1 by approximately 3.5 times and at this wavenumber the quantity  for n = 3 takes its
maximum value. Thus, when , the solutions n = 2 and n = 3 begin to affect the formation of the
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Fig. 10. Global attractor at  and  ( ): (a) projection to the ( ) plane; (b) projections to
the ( ) and ( ) planes; (c) projection to the ( ) plane; and (d) projection to the ( ) plane. 
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“limiting solution” of the evolutionary system of equation. This leads to the development of “inverse
bifurcation.”

6. SUMMARY

The model  system with two external parameters  and  that generalizes the classical 
model [2] with a single parameter  to viscous liquid f lows over a wide range of the Kapitsa number γ is
investigated. The main dissipative terms entering into the initial boundary-value problem for the Navier-
Stokes equations are conserved in the model system (1.5) of [1]. New properties of the wave solutions
manifest themselves in increase in the liquid viscosity and the corresponding decrease in γ. The mecha-
nism of suppression of fine-scale ripples and smoothing of wave fronts with decrease in γ is established.
It is shown that the nature of bifurcations of nonlinear waves from the equilibrium state on neutral curve
changes with decrease in γ. In the space of the regimes parameters  and  the curve that separates bifur-
cations towards slow and fast nonlinear waves is constructed. A comparison with the experimental data is
carried out. It is shown that for a given  the characteristics of regular waves formed in the spatial devel-
opment can be described on the base of using the calculations of the global attractor. The phenomenon of
inverse bifurcation in transition of solitary periodic waves into solitons is investigated.
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