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Abstract—In this work, we have effectively used the numerical inversion of the Laplace transform to
study the time-dependent thin heated film flow of a viscoelastic f luid f lowing on an infinitely long f lat
substrate. Exact and analytical solutions are obtained in some limiting cases. The model describing
this problem is a system of equations, coupling the linearized Navier–Stokes equation of the viscoelas-
tic f luid with regard for gravity as an external force and the temperature relation for the energy profile.
By assuming that the f luids are incompressible, we first derive a new system of equations, by taking
into account additional terms, due to the insoluble surfactants and the viscoelastic properties. The
velocity and temperature profiles are shown and the influence of coupling constant, viscoelastic
parameters and the interfacial surfactants on the liquid film are discussed in detail. The validity of our
solutions is verified by the numerical results to show the effects of different parameters involved and to
show how the f luid f low evolves with time.
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The study of dynamical properties of a thin layer f low on a heated infinite long plate is still an import-
ant type for a large number of technological methods and has vast applications in industry. Moving liquid
films have extensive use in various technological studies because of their applications to modern technol-
ogy and industries. Such flows have implementations in microchips fabrication, condensers, heat
exchangers, biomedical engineering, material processing, coating of paper or plastic, evaporators, food,
and chemical industries and many other fields. Laplace transform is a very helpful tool for dealing with
differential equations. However, to analytically evaluate the inverse Laplace transform of the solutions
acquired by the utilization of the Laplace transform is a very significant but complicated step. To review
some previous studies on this problem, a lot of algorithms for numerical inversion of the Laplace tech-
nique have been approached in the literature [1–7]. In [4] the Laplace transformation was applied to illus-
trate the problem of the unsteady and irrotational f low of a dipolar liquid set to motion by the acceleration
of a f lat plate from rest. Some significant new results concerning steady f lows were given. The results
obtained were compared with the relating case for a viscous Newtonian fluid, in which an exact general
solution is obtained.

In [5] the Laplace transform method have been used to perform the exact solutions of two Couette
flows of a second–grade f luid in a porous liquid layer in the case when the lower substrate moves unex-
pectedly and oscillates. In [6] the unsteady viscous f lows and Stokes’s first problem have been investi-
gated. In the unsteady motion, the relationship between Couette f low, Poiseuille f low, and boundary layer
flow in the light of Stokes’ first problem are examined in that research. In a rectangular tank that is obeyed
to a periodic oscillation, in [7] Durbin’s numerical inverse Laplace transform technique has been applied
to illustrate the motion of a viscoelastic f luid layer in the presence of heat transfer.

Non-Newtonian fluids have been a very important problem of scientific research because of their var-
ious employ in considerable industrial processes. Several complex f luids like polymer melts, oils, distinct
types of drilling muds and coatings of clay and many emulsions are involved in the category of non-New-
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tonian f luids. Flows of non-Newtonian fluids have been investigated by many authors [8–11]. Depending
on a linear stability analysis in [8] the Bénard–Marangoni thermal instability has been investigated for Jef-
freys’ f luid layer in a viscoelastic media bounded from the upper by a realistic free deformable surface and
by a lower plane surface. It has been illustrated that the relaxation time, as well as surface deflection, have
a destabilizing impact, unlike the retardation time.

In [9] the two-dimensional f low of a f luid represented by Walter’ B” model have been investigated in
a viscoelastic domain running down an oblique heated substrate in the finite–amplitude regime, where a
linear temperature variation is assumed. The analytical solutions relating to two modes of unidirectional
flows of a generalized Oldroyd-B fluid with fractional derivative confined between two parallel planes in
which the motion is unsteady are mentioned in [10]. In [11], the accelerated f lows for f luid in terms of by
the fractional Burgers’ model are considered, in which the f luid has viscoelastic properties. The problems
of f low induced by a constantly accelerating plate and flow induced by changing accelerated substrate are
solved exactly.

On the other hand, the presence of surfactants has an important impact on the shape and the motion
of the interfaces. Surfactants also have an enormous range of implementation in the oil industry, for exam-
ple in the cleanup of oil spills and for enhanced oil recovery. A number of studies have been devoted to the
insoluble surfactant limit. In the limit of vanishing Reynolds number [12] the influence of surfactants has
been illustrated on the gravity-driven f low of a liquid thin layer down an oblique wall with indentations or
periodic undulations.

The subject of [13] is the study of a thin-film flow, in which the evolution relations for the surfactant
concentration and the film thickness are discussed in the concept of the linear stability, where numerical
calculations are done.

In [14] the longwave Marangoni convection in a liquid thin film with surfactant located on the surface
has been examined in the linear approximation. The layer is subjected to a transverse temperature gradi-
ent, and a surfactant is governed by interfacial speed range and diffuses only over the free surface.

The motivation of the current study is to explore numerically and analytically the non-Newtonian
impact in the presence of heat transfer and insoluble surfactants on the surface wave scheme formatted at
the free interface of a liquid layer within a viscoelastic nature. The f low motion has happened on a hori-
zontally oscillated infinite substrate. From this point of view, the present paper gives an extension to some
published papers that recently used the Laplace transformation. Indeed, the Laplace method is very
important for solving the problems and it is still used in recent research such as [15] that dealing with
unsteady laminar boundary layer f low of a Maxwell liquid over an exponentially accelerated vertical f lat
wall subject to Newtonian and slip heating at the boundary. The authors obtained semi-analytical solu-
tions of the dimensionless problem by employing the inverse Laplace transforms for temperature and
speeds fields. In [16], the authors apply the Laplace transform to study the problem of free convection
flow of a fractional viscous f luid over an infinite vertical plate with exponential heating, where the f luid
motion is induced by the plate that involves arbitrary time-dependent shear stress to the liquid motion.

Overall, the fundamental differences in our work is to highlight the role of surfactants as well as the
retardation and the relaxation times on the stability of the considered system, that is by applying the
Laplace transform to obtain the numerical and semi analytical solutions in the original domain and to find
the impacts of several f luid parameters. Exact and analytical outcomes are obtained in some limiting
cases. In addition, in future studies, our work can be extended to include motion through porous media,
porous substrate, wavy plane or imposed shear stress on the surface as well as a magnetic or electric field
with surface charge. Further, the results presented here can find applications in modern technology and
industries such as diesel and gas turbine engines, the production of plastics, oil burners, metal powders,
liquid rocket engines, and lubricants.

1. MATHEMATICAL FORMULATION

The problem under consideration is composed of a two-dimensional f low of a heated viscoelastic liq-
uid film on an infinite long substrate. Away from the bulk of the f luid insoluble surfactants are assumed
on the free surface. The phenomenon of the f low and the kind of boundary conditions are illustrated in
Fig. 1. The substrate and the f luid are both initially motionless. Unexpectedly, the plate is shaken into
motion at its own level with an oscillatory speed.
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Fig. 1. Schematic representation of the problem.
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1.1. Equations of Motion

The constitutive relations depend on the conservation of mass (the continuity equation) and momen-
tum equation for the motion of the liquid film and the heat equation for the temperature area [17–19].

(1.1)

(1.2)

(1.3)

where the notation u  indicates the velocity vector,  is the density of the f luid film,
 refers to the convective derivative,  is the gravity force,  indicates

the gradient operator, p is the pressure. Also, in Eq. (1.3) T identifies the temperature domain and  refers
to thermal conductivity as well as cp denotes the specific heat when the pressure is constant.

In this work we use the Oldroyd-B model, which classified a constitutive technique applied to the f low
of viscoelastic f luids. The constitutive equation for the viscoelastic f luid is [8, 9]

(1.4)

where λ1 and λ2 refer respectively to the characteristic relaxation time and the constant deformation retar-

dation time and  characterizes the transpose of the gradient of the velocity vector.

1.2. Initial and Boundary Conditions

The corresponding boundary conditions on the limited surface and the interfacial constraints are men-
tioned to achieve the problem formulation (1.2)–(1.4). For time greater than zero, the substrate at zero
vertical axis beginning unexpectedly to slide in its own level with an oscillatory speed. Under this circum-
stance, we formulate the following

(1.5)

The condition imposed for the temperature field reads as

(1.6)

Let the deformable free surface be  = . When the interface always has the same fluid
particles, the kinematic condition is then imposed and therefore the function  whose graph
defines the interface satisfies with each other:

(1.7)
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The jump in the normal component of the surface–traction through the free surface is balanced by sur-
face tension times curvature, which is expressed as

(1.8)

where  symbolizes the pressure afforded by the surrounding air, which is assumed to be constant. The
perpendicular vector at any position on the surface signifies n = , and H =

 is the mean surface curvature.

The quantity  refers to the surface tension, which changes according to the linear law with the
temperature range and the concentration of the surfactant domain, in which both Marangoni influences
are taken into account, so that [9]

(1.9)

where  is the reference parameter distinguish the surface tension, σT =  and σΓ =
. Due to the presence of the Marangoni influences and air stress, the tangential component of

the surface–traction is affected and reads as

(1.10)
Here, t refers to the unit vector over the tangential orientation at that point, where  ·  = 0. Another

thermal condition is Newton’s law of cooling that comes across the continuity of heat f lux through the
free surface:

(1.11)

where  represents the heat transfer parameter between the liquid and the air. On the free surface, the liq-
uid layer contains insoluble surfactants with a concentration . The concentration allocation varies
according to the transport equation [12–14]:

(1.12)

Here, in the above equation  and Ds characterizes the surface diffusion coefficient

where the effect of buoyancy can be ignored, that it is assumed that the film is sufficiently thin.

1.3. Scalings and Non-Dimensionalization
Before solving the problem, it is usual to remove the units related to the above system utilizing the phys-

ical quantities, reference scales should be specified. Using the unperturbed film thickness l as the charac-
teristic length, we can assign the following parameters to form dimensionless controlling equations and
boundary conditions:

(1.13)

The asterisk  is omitted here for simplicity. Thus, by substituting these dimensionless variables into
the previous governing equations and the related boundary conditions, we arrive at the following system
of equations:
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where  refers to the Reynolds number, the notation  characterizes the Péclet number,

whereas  describes the Prandtl number. In terms of these non-dimensional quantities, the

boundary conditions at the substrate y = 0 then read
(1.17)

The interfacial stress created by the surface tension gradient including the Marangoni influences and
the connected modes of instability is known as the thermocapillary instability. Hence, the boundary con-
ditions at the free surface  can be written in the form:

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

where  denotes the Marangoni number,  is the elasticity number that

expresses the effect of surface surfactants,  represents the capillary number expressing the effect

of surface tension,  is the surfactant surface Péclet number, which denotes the interfacial diffu-

sivity of the surfactant and  refers to the Biot number.

2. METHOD OF SOLVING
2.1. Solution for the Basic State

As the system is unperturbed, in base laminar state, the speed profile and the heat domain are separated
from each other. Depending on this, the base state output of the speed and the energy relations are
acquired by using the zero order of the controlling equations and the related constraints at the planar and
the surface boundaries. By considering a motionless initial state, the solutions of the base state are gained,
and hence the base velocity in the liquid film is zero in which the f low is independent of time and fully
developed.

In the undisturbed case, the energy relation for the dimensionless temperature field is
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associated with the basic f low thermal boundary conditions

(2.2)

(2.3)

Equation (2.1) together with Eqs. (2.2) and (2.3) give the basic temperature field

(2.4)

where the relation

(2.5)

outlines the hydrostatic pressure, in which  signifies the constant pressure due to the surrounding air.

2.2. Perturbed Flow
In order to perturb the velocities, the pressure, the temperature, the interfacial position and the con-

centration of surfactant magnitude, we introduce a small perturbation from its basic state:

(2.6)

For facilitating the solution of the above system of governing relations and related boundary condi-
tions, we define the stream function :

(2.7)

The solution of the current problem depends on the Laplace transform. With respect to time, the
Laplace transform has the general standard form

(2.8)

where  being the transform parameter. With the aid of Eq. (2.8) and by taking the Laplace transform
of Eqs. (1.15) and (1.16), we arrive at
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(2.16)

(2.17)

The solutions of the above problem can be expressed as

(2.18)

(2.19)

Consequently, the quantities  and  are defined by the next equations:

(2.20)

(2.21)

With the aid of the boundary conditions (2.11)–(2.17), the functions  and  are governed by the rela-
tions

(2.22)

(2.23)

where , .

Thereby, Eqs. (2.9) and (2.10) will take the following solutions

(2.24)

(2.25)

(2.26)

The mathematical formulas for the coefficients  are given in Appendix. It is useful, at this
point to define the f low rate (also known as volumetric f low rate or volume velocity). Depending on the
zone of the channel and the speed of the liquid, the f low rate in the physical meaning can be defined as
the volume of liquid which occurs per unit time. The rate of f low  is ordinarily given by the relation:

(2.27)

In addition, we can also evaluate the shear stress to obtain the skin friction  on the lower boundary:

(2.28)

The expressions (2.27) and (2.28) are in agreement with the results obtained previously (see [22–24]).
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2.3. Inversion of the Laplace Transforms

In complex form, the inversion notation for Laplace transform  of a domain  is spec-
ified by the next contour integral [1, 2]

(2.29)

Here,  and  is greater than the real part of any singularity in the transformed function .
The numerical inversion style of Durbin’s [25, 26] is adopted to obtain the unknown physical functions

(2.30)

where  denotes the real part of , whereas  stands for the imaginary part. The function f indi-
cates , T, or . The parameter J is a sufficiently large integer symbolizing the number of terms in the
truncated infinite Fourier series. The parameter J must be selected such that

(2.31)

where  is a suggested small positive number that corresponds to the degree of accuracy to be performed.
The optimal selection of  was acquired according to the criteria given in [27]. The prescribed magnitude
of  is through 5 and 10 for reaching the sufficient accuracy, with J extending from 50 to 5000 [25].
Also, the solution is generally valid for  where tmax is the time up to which the results are to be
achieved [28].

2.4. Limiting Cases
In the following, it is useful to examine some significant limiting situations:
(i) The case of isothermal f luid layer.
Here, we assume to investigate the case in which the sheet is considered to be isothermal and thus there

is no heat transfer in the liquid film. In this case, the equations of motion are the same as Eq. (2.9), and
the corresponding conditions are
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dition (2.31). Consequently, the solution for the stream function will be expressed as

(2.34)
and the surface deflection becomes

(2.35)
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Fig. 2. Free surface elevation as a function of time corresponding to (2.26), for a system having , , ,
    ,  and x = 3; (a)   = 2, (b)   = 0.5. While (c) represents the

variation of  =  and (d) shows the changing in  = .

U0 = 0.7U0 = 0.4

U0 = 0.1

η
0.10

0

0 2 4 6 8
t t

t t

0.05

(a) (b)

(c) (d)

−0.05

−0.10

ω = 1

ω = 2

ω = 1.5

η
0.10

0

0 2 4 6 8

0.05

−0.05

−0.10

η

0 20 40 60 80

λ2 = 0.01
λ2 = 0.50
λ2 = 0.80

λ1 = 0.01
λ1 = 0.40
λ1 = 0.90

η
0.002

0

0 20 40 60 80

0.001

−0.001

−0.002

−0.003

−0.004

0.002

0

0.001

−0.001

−0.002

−0.003

−0.004

= .0 7iB = 1aM = 2eP
= . ,0 05aC = . ,es 0 5P λ = . ,1 0 3 λ = . ,2 0 1 = .0 5eN = ,5eR ω 0U

λ1 . , . , .0 01 0 4 0 9 λ2 . , . , .0 01 0 5 0 8
(2.36)

In the light of the Laplace transformation in the inverse form, the stream function and the surface devi-
ation will be given as functions of the time:

(2.37)

(2.38)

The quantities  and L, as well as α and β that given in the above relations are coefficients of the basic
parameters of the issue under study. The values of these quantities are lengthy and not appeared here. In
any case, they are available upon request from the authors. Such results are in good agreement with those
mentioned in the researches [20, 21].

3. RESULTS AND DISCUSSIONS

In this section we choose the values ,   = 200, where a number of numerical
estimations was accomplished to select these values. Durbin inversion formula (2.30) supplies stable and
convergent outcomes in all cases investigated The computations were performed based on a suitable per-
sonal computer, and the convergence of numerical estimations was established in a simple test and error
technique, by increasing the number the truncation parameter J, while searching for stability in the
numerical parameters of the computed solutions.

In all graphs, the numerical investigation is performed by fixing the quantity of all the physical param-
eters except for one parameter having various values for comparison. In the calculation given below, all the
physical variables are sought in the dimensionless form as appointed previously. Figures 2a and 2b are
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Fig. 3. Three-dimensional spatial evolution of free-surface deformation for the system has , , ,
, , , , , , and , whereas the values , 4, and 10 are taken

for (a–c) respectively.
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plotted to show respectively the effect of the variations of the velocity U0 and the angular frequency ω on
the free surface time history, represented by Eq. (2.26). The graphs are shown in the plane (t, η) and the
values of the other quantities are fixed, as given in the caption of Fig. 2. Figure 2a is plotted for three values
of  = 0.1, 0.4, and 0.7, corresponding to the continuous, dashed, and dotted lines respectively. The
results are shown by the dashed, and dotted curves explain that there is no qualitative variation in the
behavior of the surface waves with the evolution in time at the various values of the velocity U0, a notice-
able growth in values of  is observed. As the curves displayed in Fig. 2b are compared to each another,
it is noted that the frequency has a regular impact on the surface wave elevation, especially at the values of

.

The effects of both relaxation time  and the retardation time  on the surface waves profile are pre-
sented in Figs. 2c and 2d in which the elevation is plotted against the time. The relaxation and retardation
times have some different values for the sake of comparison. In Fig. 2c we select the values  = 0.01, 0.4,
and 0.9 correspond to the solid, dashed, and dotted curves respectively. From the inspection of Fig. 2c,
the phenomenon of the dual (irregular) role is observed for increasing the relaxation time: one of the two
roles is a slight influence in the range  (a very slight decreasing on the surface wave motion), and
the other is a significant increase in values of the surface waves elevation when . The curves in
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Fig. 4. Variation of the temperature distribution with the horizontal position for the same system as investigated in Fig. 3,
with , , corresponding to  = 0.1, 0.2, 0.3 (a) and  = 1, 2, 3 (b). with the time, with  = 0.7: (c) at

, where  = 1, 2, 3, (d) at , where  = 1, 5, and 9.
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Fig. 2d are plotted at  = 0.01, 0.5, and 0.8, a general trend shown by this graph is that the effect of retar-
dation time on the surface waves elevation is contrary to that of relaxation time. It is obvious that the relax-
ation and retardation times have slight effects on the surface elevation at , but when the time value
exceeds 50 we observe that both the relaxation and retardation time have a significant effect on the move-
ment of the layer. Such conclusions are in a fully agreement with those reported in [10]. On the other
hand, the modes presented in Fig. 3 through its partitions supply the graphical explanation of the impact
of the increasing quantity of Marangoni number on the f luid free surface in the three-dimensional inter-
face. It is observed from these partitions that the motion of the free surface diminishes gradually with the
large values of the Marangoni number. Further, an oscillating motion is noted for growing Marangoni
number, through the horizontal position in the liquid mode.

The aim of the numerical results investigated in Figs. 4a and 4b is to explore the effect of the Biot num-
ber Bi on the behavior of the temperature profile, when Biot number has values less or greater than unity.
In these partitions, the dimensionless temperature is plotted against the horizontal position. In Fig. 4a the
solid, dashed and dotted curves correspond to the values 0.1, 0.2, and 0.3 of the Biot number, respectively,
while the magnitudes 1, 2, and 3 are selected to refer these curves in Fig. 4b. An inspection of Figs. 4a
and 4b then shows that, broadly speaking, the f luid temperature distribution increases with the horizontal
position until it reaches the maximum value and then decreases gradually with increasing position. On the
other hand, by comparing the results displayed throughout Figs. 4a and 4b, it is remarkable that the effect
of increasing the Biot number when it has values less than unity is to increase the f luid temperature.
Whereas the converse is true for increasing the Biot number when it has values greater than or equal to
unity in the range , and so it is concluded that the Biot number strongly influences the tempera-
ture.

Figures 4c and 4d provide the graphical illustration of the f luid temperature field within the liquid layer
with time for the variation of both Péclet and capillary numbers, respectively. In contrast to the results pre-
sented in these graphs, it is worthwhile to notice that the curves meet at the same point t = 95 for increas-
ing Péclet number  (it is increased stepwise from 1 to 3) in Fig. 4c while increasing the capillary number

λ2

< 50t

< <0 2x

eP
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Fig. 5. Streamlines contours for a system having the same parameters considered in Fig. 4: (a)  = 1, (b)  = 400,
(c) = 800, while Fig. (d–f) display the corresponding isothermal contours.
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(it is increased stepwise from 1 to 9) leads to the curves intersecting t axis in three close points, as in
Fig. 4d.

On the other hand, investigation of the numerical results demonstrated in these partitions, it is
observed that growing both capillary and Péclet parameters lead to an increment in the maximum mag-
nitudes of the liquid temperature.

To understand the f low behavior better, figure 5 illustrates the passing dimensionless streamline and
the related temperature range. The streamlines are effective apparatus to visualize a qualitative impression
of the f low behavior through the motion. A streamline is the curve formed by the velocity vectors of each
fluid particle at a certain time such that the tangent at each point of this curve signalizes the direction of
fluid movement at that point. Snapshots of instantaneous streamlines of the stream function are shown in
Figs. 5a–5c, the streamlines picture is achieved by fixing the value of all the physical parameters except
the Reynolds number  equal to 1, 400, and 800 at t equal to 5. When the Reynolds number is increasing
the dimensionless streamline value increases (the density of streamline cells increases), this is due to the
fact that by increasing Reynolds number the viscous effect decreases.

eR
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Fig. 6. Isothermal case in the plane , where , , , , , and : (a) at
, where  = 100, 400, and 800, (b) at , where  = 0.2, 0.5, and 0.8. Effects of the velocity  = 0.5, 1,

1.5 illustrated in (c) at t = 2, while (d) at x = 1.
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Changing Reynolds number in Figs. 5d–5f has an effect on dimensionless isothermal contours, where
the contours are transformed gradually into two sets of cells (Figs. 5e and 5f). This is due to the effect of
convection heat transfer which increases by increasing Reynolds number. A conclusion that may be made
from the comparison among Figs. 5d and 5f is that higher Reynolds numbers increase the concentration
of the isothermal curves in the movement of the fluids. Similar results were also found in [29–31].

In the limiting case of no heat transfer in the f luid layer, Figs. 6a and 6b exhibits the effects of both the
Reynolds number and the angular frequency of the periodic horizontal velocity on the surface waves
deflection. The other quantities are given in the caption to Fig. 6, so that, the plane is assigned ( ) to
Figs. 6a and 6b, where the values 100, 400, and 800 are chosen for the Reynolds number in Fig. 6a,
whereas in Fig. 6b three different magnitude of the angular frequency (0.2, 0.5, and 0.8) are taken into
account, for the aim of differentiation. It is obvious, from Fig. 6a that as the Reynolds number increases,
the interfacial elevation enlarges; while the opposite is true due to growing the angular frequency in
Fig. 6b. By comparing the outcomes established over Figs. 6a and 6b it is worth mentioning to remark that
the impact of growing the Reynolds number on the liquid film flow is contrary to that of the angular fre-
quency.

As the Reynolds parameter vanishingly small, the numerical illustrations presented in Figs. 6c and 6d
aim to investigate the influence of increasing the velocity parameter on the surface wave domain with the
evolution in both the horizontal level and the time. For this purpose the two planes ( ) and ( ) are
illustrated corresponding to Fig. 6c and Fig. 6d, respectively. Investigation of the numerical results shown
in Figs. 6c and 6d reveals that the increase in the values of the velocity results in a significant increase in
values of  (Fig. 6c). Whereas the effect of the velocity on the motion of the free surface will slightly
diminish gradually with the evolution in time, which occurs in Fig. 6d. On the other hand, it is noted that
the surface evolution has small growth with time due to the increase of velocity. This means that the
motion of the f luid layer is slightly unstable due to an increase in velocity. However, this behavior can be
explained physically, as we study the special case of small Reynolds number which is sufficient for high
viscosity and from here the system is more stable. Similar behavior is outlined in [32]. To demonstrate a
more clear representation of the wave motion, the impact of the increasing value of velocity on the liquid
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η − x η − t

η
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Fig. 7. Three dimensional spatial evolution of free-surface deformation for the same system as considered in Fig. 6.
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free surface in the three–dimensional domain, corresponding to the cases of Figs. 6c and 6d is graphically
illustrated, where Figs. 7a, 7b, and 7c are respectively corresponding to the continuous, dashed and dotted
curves of Fig. 6.

SUMMARY
In this study, we have investigated a two-dimensional f low of a viscoelastic f luid film on an infinite

long heated plate, in the presence of insoluble surfactants appearing in the free surface. The substrate and
the f luid are both motionless at first. Unexpectedly, the plate is shaken into motion at its own level with
an oscillatory speed. The solution to the governing relations is acquired depending on the usual Laplace
transform. However, the numerical inversion of the Laplace transform is applied to transform the solu-
tions from the Laplace area back to the original domain. At this end, time–domain solutions are investi-
gated by involving Durbin’s numerical inverse Laplace transform technique. This shows that, in solving
the boundary layer f low, the numerical inversion of the Laplace transform is a very useful and effective
scheme.

Numerical results are presented graphically to elucidate the impacts of the several physical quantities
on the behavior of the surface wave model, the alteration of the thermal distribution within the liquid film,
the streamlines, and isothermals curves. The results of our study showed that the relaxation and retarda-
tion times have slight effects on the surface elevation when the value of the time less than 50 and their
effect reflected at a time greater than this value. In three-dimensional space, an oscillating behavior is
noted for growing Marangoni number, in which the free surface diminishes progressively. The increase in
the Reynolds parameter reveals that a continuous increase in the values of the temperature of the f luid
layer, where it approaches the center of the layer, after which the temperature will decrease to reach the
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end of the layer. A similar behavior is noticeable for the effect of Marangoni number. The effect of increase
in the Biot number when it has values less than unity is to increase the liquid temperature distribution.
While, we note that the opposite role is achieved, in the event that the Biot number takes values greater
than or equal to unity. It is observed that increase in the capillary as well as Péclet numbers leads to an
increment in the maximum quantities of the liquid temperature. When the Reynolds number is growing
the dimensionless streamline value increases (the density of streamline cells enlarged), this is due to the
fact that by increasing Reynolds number the viscous effect decreases.

In the limiting case of no heat transfer in the f luid layer, it is found that the Reynolds number increases
motion of the surface waves, while the inverse behavior is true for growing the angular frequency. It is
worthwhile to notice that the impact of increasing the Reynolds number on the isothermal f luid layer is
contrary to that of the angular frequency. In the special case when the Reynolds parameter is very small
( ), it was observed that the effect of increase in the capillary number is opposite to the effect of
increase in the elasticity number.

APPENDIX

The quantities  given in Eqs. (2.24)–(2.26) may be formulated as follows:
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