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Abstract—The problem of investigation of unsteady tangential shear stress under the periodic laminar
flow of a viscoelastic f luid in a cylindrical tube is considered on the basis of the Maxwell model. For-
mulas for the dynamic-response and frequency characteristics are obtained. The effect of the oscilla-
tion frequency, the acceleration, and the relaxation properties of f luid on the tangential shear stress is
studied by means of numerical experiments. It is shown that the viscoelastic properties of f luid, as well
as its acceleration, act as the limiting factors for using the quasi-stationary approach.
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The viscoelastic properties of non-Newtonian fluids affect significantly the hydraulic characteristics
of f low. In transporting highly viscous and heavy oils and oil products at large distances and in drilling
mud circulation in the well, one of the important problems is the development of the efficient method for
reducing hydraulic resistance of streams. The experimental investigations showed that both the drilling
muds processed by highly-molecular polymers and the oils with high content of asphaltene-tarry sub-
stances possess the relaxation properties and can be related to viscoelastic liquids [1–4]. In many techno-
logical processes the f luid stream is pulsating or oscillatory and its characteristics can significantly differ
from those of usual streams. In such streams the regime of variation in the pressure or the behavior of f luid
has the oscillatory nature. Such streams are widely used in various technological processes, together with
those noted above, in the chemical technology, food industry, physiology, and acoustics.

The mathematical description of the processes of non-Newtonian fluids is directly connected with the
choice of the rheological model which can adequately describe the f low of such liquids. From the above
it follows that the hydrodynamic resistance is the most important characteristic of f luid f low when inves-
tigating various technological processes. The hydrodynamic resistance for non-Newtonian fluids and the
tangential stress for shear f lows are determined in different ways for various rheological models. In this
case the tangential shear stress can have specific features which are not distinctive characteristic for ordi-
nary viscous f luids. Therefore, the study of the tangential shear stress in non-Newtonian fluid f low,
together with other f low characteristics, is of great importance [5–7].

Many investigations are devoted to studying the pulsating motion of non-Newtonian fluids in tubes, in
particular, viscoelastic f luids. In [8] the f luid velocity field developed in oscillatory laminar f low through
a long circular pipe under the action of a periodic pressure gradient was studied experimentally. In the case
of Newtonian fluid the experimental results demonstrate that the amplitude of the periodic longitudinal
velocity as a function of the radial coordinate and the frequency is in good agreement with the theoretical
results. It is shown that at low frequencies the velocity distribution is approximately parabolic with a max-
imum on the pipe axis. At the higher frequencies the maximum velocity is reached between the axis and
the pipe wall and this peak is displaced towards the wall with increase in the frequency. In [9, 10] some
investigations of periodic streams were also considered.
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In [11] the motion of a viscoelastic f luid through a long pipe under the action of an oscillatory pressure
gradient was studied and the distinctive features of this motion as compared with the case of the corre-
sponding motion of a Newtonian fluid were demonstrated.

In [12] the instantaneous velocity profiles over the circular pipe cross-section and the corresponding
streamwise pressure gradients in inertialess oscillatory and pulsating f lows of a nonlinear viscoelastic poly-
meric solution were investigated. It was shown that in oscillating f low the longitudinal velocity profiles are
symmetric and there exists a considerable phase shift between the pressure gradient and the velocity. In
pulsating f lows, there was actually no phase shift and the axial velocity varied asymmetrically with respect
to its period-average value.

In [13] laminar oscillatory f low of viscoelastic Maxwell and Oldroyd-B fluids was studied. The oscil-
latory behavior of f low was classified in two wide classes which corresponded to “wide” and “narrow” sys-
tems.

In Poiseuille f low of a viscoelastic Maxwell f luid with a relaxation time spectrum the instantaneous
flow velocities can significantly increase at certain frequencies of the oscillating pressure gradient [14].
Rather large increases can be reached at the resonance frequencies even if the amplitude of an additional
oscillatory pressure gradient is very low.

In [15] pulsating Green–Rivlin f luid f low in straight tubes of an arbitrary cross-section was investi-
gated. The principal conclusion of the study consists in the fact that the effect of velocity enhancement in
tubes of arbitrary shape cannot be predicted using the first-order analysis. In [16] unsteady axial viscoelas-
tic pipe f lows of an Oldroyd B fluid through an infinite pipe of circular cross-section was analyzed. The
fluid moves under the action of a time-dependent pressure gradient in three following cases: 1) the pres-
sure gradient varies with time in accordance with the exponential law; 2) the pressure gradient is pulsating;
3) the pressure gradient is constant. The f luid velocity distributions with the pulsating behavior are
obtained.

Recently, the differential rheological models with fractional derivatives came into use in the theory of
viscoelasticity [17–19]. This can be considered as the natural generalization of classical models. In [20] it
was noted that very good description of the experimental data was reached using the fractional-order
Maxwell models. Certain exact analytical solutions were obtained for the class of unsteady f lows for a gen-
eralized second-grade f luid with fractional derivatives between two parallel plates [21]. Unstable f lows
were created by pulse motion or periodic oscillation of one of the plates. In [22] unsteady viscoelastic f luid
flow is described for the Maxwell model with fractional derivatives. The effect of the fractional parameters
and material constants on the velocity field and the tangential shear stress is analyzed.

It should be noted that studying the pulsating unsteady motion of non-Newtonian fluids in pipes and
channels is of importance in investigating the stability of f low and pipe itself [23, 24]. In this case, the
establishment of the stability and absolute instability criteria as functions of the rheological properties of
f luid and pipe material, as well as of the f low regimes, is of the same importance.

In the above-mentioned papers, the f luid velocity field is mainly studied in various regimes of change
in the pressure. The stress fields and the tangential and normal stresses developed in the motion of visco-
elastic f luids were investigated to the relatively small extent. In the majority of cases, in the hydrodynamic
models of unsteady f luid f lows the real streams were replaced by a succession of streams with a quasi-sta-
tionary distribution of hydrodynamic quantities [25]. However, the structure of unsteady f lows differs
from the structure of steady f lows and such a replacement of f low should be justified in each particular
case. At present, the question of legitimacy of using the quasi-stationary approach in determining the tan-
gential stress field even for unsteady f lows of ordinary viscous f luid, without mentioning viscoelastic f lu-
ids, is far from being settle to the end. It is natural that for such conditions it is necessary to use the hydro-
dynamic models of unsteady processes that take into account variations in the f low characteristics and the
hydrodynamic parameters as functions of time. In particular, in the generic case the friction resistance in
unsteady f luid pipe f low cannot be determined from the characteristics that correspond to the stationary
flow conditions.

In the present study, the theoretical method for determining the generalized resistance law in the peri-
odic motion of a viscoelastic Maxwell f luid in the cylindrical pipe is proposed. The transfer function that
expresses the generalized friction resistance law is constructed and formulas for the frequency function are
derived. The dependence of the pipe wall unsteady tangential shear stress on the oscillation frequency, the
acceleration, and the relaxation properties of f luid is studied using these formulas. The role of f low
unsteadiness in the resistance law is estimated and the difference between the results obtained and those
found on the basis of the quasi-stationary approach is demonstrated.
FLUID DYNAMICS  Vol. 56  No. 2  2021



TANGENTIAL SHEAR STRESS UNDER THE PERIODIC FLOW 191
1. FORMULATION OF THE PROBLEM

We will consider the problem of determination of the tangential shear stress  on the wall
of a circular cylindrical pipe of radius R under the periodic motion of f luid. The rheological equation of
state of f luid is taken in the form [5, 7]:

(1.1)

where r is the radial coordinate reckoned from the axis of pipe ( ),  is time, u is the f luid velocity,
μ is dynamic viscosity, τ is the tangential shear stress, and λ is the relaxation time. In (1.1) when λ = 0 we
obtain the Newton viscous friction law and when λ > 0—the model of the viscoelastic Maxwell medium.
Substituting (1.1) in the equation of motion

for the f luid velocity u(r, t), we obtain

(1.2)

where  is the gradient of the pressure p along the Oz axis that coincides which the axis of pipe and ρ
is the f luid density. At the initial instant of time the f luid is assumed to be at rest and, in accordance with
the no-slip condition, the velocity is equal to zero on the pipe wall. Then the initial and boundary condi-
tions take the form:

(1.3)

Equations (1.1) and (1.2) and conditions (1.3) express the mathematical model of the process consid-
ered.

We introduce the following dimensionless quantities:

(1.4)

where U is a certain characteristic velocity.
In dimensionless variables (1.4) equations (1.1) and (1.2) take the form:

(1.5)

(1.6)

where ,  is the dimensionless tangential shear stress,  =
 is the dimensionless pressure gradient, , and .

In dimensionless quantities the initial and boundary conditions take the form:

(1.7)

2. SOLUTION OF THE PROBLEM
Using the integral Laplace transformation [26]

for solving Eqs. (1.5) and (1.6) with the boundary conditions (1.7), we obtain
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(2.2)

(2.3)

The solution of Eq. (2.1) with the boundary conditions (2.2) takes the form:

(2.4)

Substituting (2.4) in (2.3), we obtain the following formula for the tangential shear stress:

(2.5)

where , , and  and J1(x) are the zeroth- and first-order Bessel functions of the
first kind.

The pipe wall friction resistance is determined by the tangential shear stress  whose
dimensionless form in the case under consideration takes the form:

By setting  in (2.5), we can find the Laplace transform of the dimensionless time-dependent tan-
gential shear stress on the pipe wall

(2.6)

For the quasi-stationary velocity distribution, the tangential shear stress on the pipe wall  is deter-
mined as follows [27, 28]:

(2.7)

and in dimensionless form as
(2.8)

where  is the quasi-stationary pipe-cross-section-average velocity, , and .
In accordance with (2.7), the quasi-stationary tangential shear stress on the pipe wall  is the func-

tion of the pipe-cross-section-average velocity. In order to find the dependence of the time-dependent
tangential shear stress on the pipe wall on the pipe-cross-section-average velocity  of unsteady f low in
dimensionless quantities, we eliminate the image of the dimensionless pressure gradient  from for-
mula (2.6). For this purpose, we multiply Eq. (1.6) by  and integrate over the segment [0, 1]

hence

(2.9)

Going over to the image in (2.9) with regard to (2.3), we obtain

where  is the dimensionless pipe-cross-section-average velocity and 

is its Laplace transform. Substituting the expression obtained for  in (2.6) and using the property of
Bessel functions , we obtain

(2.10)

where J2(x) is the second-order Bessel function of the first kind.
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TANGENTIAL SHEAR STRESS UNDER THE PERIODIC FLOW 193
Relation (2.10) establishes a link between the dimensionless values of the Laplace transform of the tan-
gential shear stress on the pipe wall and the pipe-cross-section-average f luid velocity for unsteady f luid
flow. In terms of the automatic control theory it can be represented in the form of the transfer function:

(2.11)

In the generic case the transfer function is determined by the ratio of the “force” factor (the voltage,
the force, or the pressure) to the “velocity” factor (the electric current, the velocity, or the volume flow
rate) in the complex form. The mechanical transfer function (2.11) expresses the ratio of the complex
quantities that describe the law of variation in the tangential shear stress on the pipe wall and the pipe-
cross-section-average velocity. It is valid for any perturbations initiating unsteady laminar motion in the
pipe and, therefore, describes the generalized friction resistance law. A particular case of this law is the
dependence of the pipe wall tangential shear stress on the velocity under steady-state motion of f luid
which is well-known in hydraulics in the form of relation (2.7). The function , where ω is the oscil-
lation frequency, is called the frequency function. Studies [25, 27, 28] are devoted to construction of the
transfer and frequency functions for the tangential shear stress on the pipe wall under laminar periodic
motion of viscous f luid.

In order to clarify the character of variation in the time-dependent tangential shear stress on the pipe
wall we will consider the definition of the dimensionless tangential shear stress on the pipe wall 
under the harmonic oscillations of f luid

(2.12)

where  is the amplitude of the dimensionless pipe-cross-section-average velocity and  is the
dimensionless angular frequency of f luid oscillations.

Considering the steady-state harmonic oscillations, we can represent  in the form of the follow-
ing function:

(2.13)

where aτ is the amplitude of the dimensionless tangential shear stress on the pipe wall and  is the phase
shift between the quantities  and . Taking (2.12) into account, equality (2.13) can be reduced to
the form:

(2.14)

Applying the Laplace transform to (2.14), we have

Hence and from (2.11) there follows

(2.15)

The frequency function that corresponds to (2.15) takes the form:

where  and  are the real and imaginary parts of the expression for .
Hence it follows that
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The function (2.16) determines the time-dependent tangential shear stress on the pipe wall in dimen-
sionless variables at any instant of time under the steady-state harmonic oscillations of f luid. It provides
insight into the main feature of its unsteadiness consisting in the fact that its value varies as a function of
both the velocity and the acceleration of f luid, in addition the oscillation frequency of f luid in the pipe
and the viscoelastic properties of f luid affecting its value. Based on the quasi-stationary velocity distribu-
tion over the clear area of the stream, such a character of variation in the tangential shear stress on the pipe
wall will be neglected under unsteady motion of the medium. In the last case the stress on the wall pipe
can be determined from relation (2.7) which, being nondimensionalized, takes form (2.8).

The use of formula (2.16) is related with the problem of determination of the real and imaginary parts
of the frequency function . In [27] the corresponding formulas were obtained for viscous f luid by
means of the Kelvin functions. The asymptotic formulas were used for large values of . We will now
derive the formulas  and  for the viscoelastic f luid considered here which are valid
for any . For this purpose, we introduce the following function of the complex variable

We can show that  as . For this reason, the point z = 0 is the removable singular point
for the function
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Fig. 1. Dependences of the real and imaginary parts of the frequency function ((a, b), respectively) on the dimensionless
oscillation frequency at Re = 640: curves 1–4 correspond to , respectively.
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In order to compare  and  in the same instants of time we take  and, by dividing (2.15)
term-by-term by , we find the ratio

(2.21)

Here, the parameter  serves as the criterion that reflects the effect of the f luid accel-
eration on the time-dependent tangential shear stress on the pipe wall in the instant of time considered.
Substituting (2.18) and (2.19) in (2.20), we obtain

(2.22)

In particular, for viscous f luid

(2.23)

From formulas (2.22) and (2.23) it can be seen that with increase in the acceleration (parameter Kn)
the time-dependent tangential shear stress increases for the viscous f luid, while for the viscoelastic f luid
it also depends on the relaxation parameter .

3. NUMERICAL EXPERIMENTS AND CONCLUSIONS
Using the formulas obtained, we have carried out the numerical experiments on investigation of the

effect of the oscillation frequency, the acceleration (criterion Kn), and the viscoelastic properties of f luid
on the time-dependent tangential shear stress distribution over the pipe wall under the periodic motion of
fluid. In our calculations we used the following dimensional quantities for the initial data of the problem:
R = 0.08 m, U = 0.2 m/s,  s–1, and λ = 0; 0.5; 1; 2 s. The corresponding dimensionless values
of the oscillation frequency and the relaxation parameter are as follows:  and ; 1.25; 2.50; 5.
For the density  kg/m3 and the viscosity  Pa s the value of the parameter Re = 
is Re = 640.

In Fig. 1 we have plotted the graphs of the dependence of the real and imaginary parts of the frequency
function on the dimensionless frequency . It can be seen that for viscous f luid both the parts increase
with the dimensionless frequency. For viscoelastic f luid they can decrease at high frequencies. With
enhancement of the elastic properties of fluid (with increase in ) the graphs take the oscillatory character.

The graphs of the amplitude-phase frequency characteristic of the oscillatory motion considered as the
dimensionless frequency  increases from 0 to 1 (Fig. 2) show that for the viscoelastic f luid the wall tan-
gential shear stress under the harmonic oscillations of f luid in the pipe differs radically from the case of
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Fig. 2. Amplitude–phase frequency characteristics of the tangential shear stress on the pipe wall under the laminar f low
of a viscoelastic f luid with increase in the dimensionless oscillation frequency from 0 to 1 at Re = 640; curves 1–4 are the
same as in Fig. 1.
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viscous f luid, especially with enhancement of the relaxation properties. For large values of the relaxation
time reverse f lows can be formed. This is typical for the viscoelastic f luids.

In Fig. 3 we have plotted the graphs of the dimensionless time-dependent tangential shear stress on the
pipe wall  as a function of the dimensionless frequency  for Re = 640 and the following values
of the criterion Kn: 0, 0.01, and 0.05. It can be seen that at  and low frequencies ( ) the
sharp growth in the tangential shear stress is observed with increase in the acceleration (parameter Kn). At
high frequencies the profiles differ only slightly. With increase in  (for example, at ) the graph has
the oscillatory character.

At low frequencies the profiles are restructured with increase in the acceleration. A minimum is formed
at the low frequencies with further increase in the parameter Kn = 0.1 and 0.3 (Figs. 4a and 4b). With
strengthening of the relaxation properties this minimum is displaced to the right along the axis of frequen-
cies. With further increase in the acceleration (parameter Kn) the profiles f latten out and the minimum
disappears (Fig. 4c).

The plots of  as a function of  show (Fig. 5) that with increase in the Re number (Re = 1000)
the time-dependent tangential shear stress on the pipe wall increases at the low frequencies and the min-
imum on the graphs is manifested already at  (Fig. 5a). With increase in the acceleration (at
Kn = 0.1) a significant modification of the profiles occurs mainly at the low frequencies . At
the higher oscillation frequencies, when , the tangential shear stress decreases sharply.

Note that the obvious result on increase in the time-dependent tangential shear stress on the pipe wall
with increase in the viscosity cannot be obtained when using formula (2.22), since in the ratio 
both the numerator and the denominator depend on the viscosity. In addition, with increase in the viscos-
ity this ratio decreases. At the first glance, this can lead to the contradictory conclusion on reduction in
the time-dependent tangential shear stress on the pipe wall with increase in the viscosity. In fact, let 
and  be the values of the unsteady and quasi-stationary tangential shear stresses for the viscosity  and

 and  be their values for the viscosity . From the equilibrium relation (2.7) it follows that
when the viscosity increases by two times the quasi-stationary tangential shear stress also increases by two
times. Due to the non-equilibriumness of relation (1.1), the time-dependent tangential shear stress (as a
result of time delay) increases lesser than by two times at various instants of time of the transition interval,
for example, by α times, where . Then

i.e., the ratio  decreases with increase in the viscosity.
It seems that when investigating the effect of viscosity on the time-dependent tangential shear stress it

is better to use the formula

(3.1)
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Fig. 3. Variation in the unsteady tangential shear stress on the pipe wall as a function of the dimensionless frequency at
Re = 640: (a–c) correspond to Kn = 0, 0.01, and 0.05 and curves 1–4 are the same as in Fig. 1.
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Fig. 4. Variation in the unsteady tangential shear stress on the pipe wall as a function of the dimensionless frequency at
Re = 640: (a–c) correspond to Kn = 0.1, 0.3, 0.5, respectively, and curves 1–4 are the same as in Fig. 1.
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Fig. 5. Variation in the unsteady tangential shear stress on the pipe wall as a function of the dimensionless frequency at
Re = 1000: (a, b) correspond to Kn = 0.05 and 0.1; respectively, and curves 1–4 are the same as in Fig. 1.
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where the second multiplier on the right-hand side can be calculated from formula (2.22). The calcula-
tions carried out using the formula (3.1) showed that increase in the f luid viscosity leads to a significant
increase in the tangential shear stress everywhere. Significant change in the profiles occurs only for visco-
elastic f luid, especially with increase in the relaxation time.

SUMMARY
It is established that the unsteady tangential shear stress on the pipe wall increases with the acceleration

of f luid, particularly at low oscillation frequencies, and the significant dependence on the relaxation
parameter of viscoelastic f luid is observed. As the relaxation parameter increases, the difference between
the profiles also increases with the f luid velocity oscillation frequency. For certain accelerations of f luid
the unsteady tangential stress has a minimum at low frequencies. As the acceleration grows, this minimum
is displaced to the right along the frequency axis and the difference between the profiles of viscous and
viscoelastic f luids increases. For the viscoelastic f luid this minimum depends also on the relaxation
parameter. As the parameter Re increases, the minimum on the graphs is manifested at relatively small
acceleration and the oscillatory nature strengthens. With increase in the acceleration the minimum disap-
pears and the profiles become decreasing.

As a whole, an increase in the relaxation time decreases both the relative and the absolute stresses on
the pipe wall. The oscillatory nature of the stress is caused by both the given oscillatory regime of the f luid
velocity and the relaxation properties of f luid that lead to the nonuniform oscillatory distribution of the
fluid velocity field over the pipe cross-section even in the non-oscillatory regime of f luid motion. The last
fact is known from numerous studies devoted to the motion of viscoelastic f luids in pipes. The results
obtained show that the relaxation properties of f luid serve as the limiting factor in using the quasi-station-
ary approach for determining both the unsteady tangential stress on the pipe wall and the acceleration of
fluid.
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