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Abstract—The motion of a charged dielectric microparticle in an electric field is first studied over a
wide parameter range on the base of the numerical solution of the system of Nernst–Planck–Pois-
son–Stokes equations. As the most important result, the formation of microvortices on the rear side
of the particle is revealed. The microvortices lose their steadiness with increase in the electric field
strength and separate periodically from the particle surface. Separation becomes chaotic with further
increase in the electric field strength. The phenomenon strongly resembles the formation of the
Kármán street but it has another physical mechanism by virtue of almost zero Reynolds numbers of
micro- and nanoparticle f low. The asymptotic analysis is carried out and the mechanism of microvo-
rtex formation and separation is theoretically substantiated at small Debye numbers.
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Electrophoresis represents the basic problem of theoretical physics. Its theoretical study has started
more than hundred years ago beginning from the classic Smoluchowski work [1] for dielectric particles.
The practical interest in the problem has sharply aroused in the last twenty years in connection with the
problems of charge particle control in microfluid devices, the problem of medical diagnostics, and the
study of motion and separation of various DNA and proteins in accordance with their properties [2, 3].
Besides the above-mentioned applications to microfluidics, the possibility of f luid mixing by means of
microvortex generation, in particular for removal of thermal stresses, is of great importance. The behavior
of a particle, its velocity, potential, and ion density fields depend crucially on the type of the surface,
namely, ion-selective, metal, dielectric, or more complex type (Janus-face particles with inhomogeneity
of their surface or volume properties [4], proteins, DNA, etc.). The present study is completely focused
on particles with the dielectric surfaces.

The linear Smoluchowski theory ceases to be valid for strong electric fields when the nonlinear effects
become important. Recently, the theoretical description of certain such effects has appeared [5–7], only
the asymptotic methods having been mainly proposed in certain particular cases. At the same time, the
numerical analysis is bounded by small and moderate electric field strengths. Among the experimental
studies we can mention only the latest investigation [8] which contains references to other earlier experi-
mental works. In both experimental and theoretical works most attention has been concentrated on the
dependence of the microparticle velocity on the external electric field strength, the Debye number, and
the charge density on the particle surface. The theory and the experiment for the electrophoresis rate were
compared only in [8], the comparison being restricted to the particle nano-dimensions.

Besides the electrophoresis rate, for applications to microfluidics it is of importance to know the dis-
tributions of the f luid velocity, the electric potential, and the ion concentration in the neighborhood of
the particle surface; however, the experimental methods are poorly suited for measuring the details of
unknown fields. For these purposes the direct numerical simulation carried out in the present study over
a wide parameter range from nano- to micro-dimensions gives the best fit.

The most important result obtained is the detection of formation of microvortices on the rear side of
the particle. As the electric field strength increases, the microvortices lose their steadiness and separate
periodically from the surface. Separation becomes chaotic with further increase in the electric field
134
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Fig. 1. Flow diagram in the coordinate system moving with a microparticle.
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strength. The phenomenon strongly resembles the formation of the Kármán street but it has another phys-
ical mechanism by virtue of the creeping f low approximation. As known from the experiments [9] and
confirmed by the calculations [10, 11], the steady-state microvortices are formed near an ionoselective
particle (particle whose surface transmits ions of a single sign) in the neighborhood of the surface point at
which the ion f lux changes sign. In the case of the dielectric particle there is no ion f low across its surface;
nevertheless, microvortices are formed. The asymptotic analysis is carried out for small Debye numbers
to explain the physical mechanism of microvortex formation and separation.

1. FORMULATION OF THE PROBLEM

We will consider the motion of a spherical dielectric microparticle of radius  located in an electrolyte
solution under the action of an external electric field of strength .

In the electrokinetics problems two approaches to description of the behavior of a charge in liquids are
most widespread. The first of them supposes that the liquid is dielectric and the charge is formed in it as
a result of injection from the electrodes [12]. In this case the charge can propagate into the liquid volume
and lead to electrohydrodynamic effects. The second approach based on the electrokinetics principles
supposes that the liquid is an electrolyte and the charge is formed due to the difference between the con-
centrations of ions of salts dissolved in liquid. In the present study we will use the second approach since
it corresponds to the microhydrodynamics problems to the higher extent.

As the buffer electrolyte, we will consider a binary monovalent electrolyte solution. The cation and
anion diffusion coefficients are assumed to be identical, i.e., . The behavior of electrolyte
can be described by the system of the Nernst–Planck equations for the ion concentrations . The system
must be supplemented with the Poisson equations for the electric potential  and the Navier–Stokes
equations for the velocity field . By virtue of the small scale and, as a result, of the low Reynolds
number, the Stokes approximation for creeping f low is used to describe the f luid f low. The electric field
inside the microparticle can be described by the Laplace equation for the potential ; a surface charge is
assumed to exist on the particle surface, the electric charge density  is homogeneous over the entire sur-
face.

The problem is formulated in the spherical coordinate system that moves with the particle velocity and
the origin of the coordinate system is at the center of particle (Fig. 1).

To go over to the dimensionless formulation, we used the following characteristic quantities: the
microparticle radius , the thermal potential , the equilibrium electrolyte concentration ,
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the dynamic f luid viscosity , and the ion diffusion coefficient . Here,  is the universal gas constant,

 is the absolute temperature, and  is the Faraday constant

The system is characterized by the following dimensionless parameter: the electric field strength

, the Debye number , where  is the thickness of the double elec-
tric layer, the coefficient of coupling between the hydrodynamic and electrostatic parts of the problem

, and the permittivity ratio , where  and  are the permittivities of the microparticle
material and the liquid medium, respectively.

For the electrolyte the dimensionless system of equations takes the form:

(1.1)

(1.2)

Inside the microparticle the electric potential ϕ can be described by the Laplace equation

(1.3)

The electric potential is assumed to be continuous across the particle surface, whereas its derivative
along the normal to the surface has a jump caused by the surface charge σ; on the particle surface the f lux
of positive and negative ions is equal to zero and the velocity components must satisfy the no-flow and
no-slip conditions:

(1.4)

Far from the microparticle, as , the ion concentration tends to the equilibrium one, the electric
field strength to the external applied field, and the f luid velocity to the particle velocity:

(1.5)

The condition of absence of the singularity at r = 0 must be imposed on the potential  inside the
microparticle.

For closing the problem it must be supplemented with conditions for the concentrations ; at the ini-
tial instant of time the concentrations are uniformly distributed over the space

(1.6)

2. NUMERICAL SOLUTION

In the performed numerical simulation of the problem the values of the parameters κ and δ were spec-

ified for an aqueous NaCl solution and a dielectric glass microparticle for which  and δ = 0.1. The
calculations were carried out for several values of the parameter ν; however, by virtue of the fact that the

results differ insignificantly, in the present study we will give the results only for . This corre-
sponds to the dimensional particle radius of 5 μm. The calculations at δ = 0, that demonstrated only slight
difference from the calculations at δ = 0.1 (of the order of 3–5%) were performed separately. This corre-
sponds to the Yariv results [6, 7] obtained analytically for moderate values of the external electric field

strength .

For solving the time-dependent problem (1.1)–(1.6) we used the direct numerical simulation method
based on the finite-difference approach adapted from [13]. Time integration was carried out using the
third-order semi-implicit Runge–Kutta method. The established solutions were found as . The
problem was parallelized on the “Lomonosov” supercomputer to carry out the massive calculations and
reveal new phenomena.

For nanoparticles, for which , the solutions rapidly tend to the steady-state regime with

 and coincide well with those obtained in [5–7]. The most interesting results were obtained for

microparticles at small Debye numbers  and strong electric field strengths . For a certain critical

value , a system of steady-state toroidal-shaped microvortices developed on the rear side of the particle.

It is convenient to characterize each of the vortices by the angle , at which  (see Fig. 2).
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Fig. 2. Maximum stream function  along the radius as a function of the angle  for , , and .

The value of r is in agreement with Fig. 3.
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Fig. 3. Propagation of unsteady separating vortex: , , and ; instants of time  (a),  (b),

(c), and  (d); .
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In Fig. 3 we have reproduced the typical propagation of microvortices in the coordinate system of a sta-
tionary observer.

From Fig. 3, in which we have reproduced the successive frames of propagation of a vortex, it can be

seen that the vortex is generated in the equator at . When the distance from the particle surface

increases, the vortices are stretched along the stream and end at the limiting value of the angle 

at which the vortex collapses into a point. In all the calculations the angle  varied only slightly and was

on the range .

With further increase in  the microvortex losses steadiness, its periodic separation from the surface

occurs, and the vortex is entrained by the stream (Fig. 3). For a fairly strong , separation becomes cha-
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otic. The phenomenon strongly resembles the formation of the Kármán street but it has another physical
mechanism by virtue of the creeping f low approximation.

Earlier, a steady-state microvortex was revealed in the neighborhood of the ion-selective particle, ini-
tially experimentally [9] and then numerically [10, 11]. The existence of this vortex called Dukhin-
Mishchuk vortex is usually related to nonequilibriumness of the processes in the neighborhood of the ion-
selective surface. The vortex develops in the neighborhood of a point on the surface at which the ion f lux
changes sign. At the same time, the dielectric surface is impermeable for both types of ions and the pro-
cesses have the equilibrium nature near the dielectric particle. Consequently, there must exist some
another physical mechanism responsible for the development of microvortex in the neighborhood of the
dielectric particle.

In order to understand the results of the numerical simulation we will consider the analytical solution

of the complete problem as . It breaks into the solution for the internal expansion in terms of ν at

 and that for the outer expansion at . As  and , two expan-
sions are matched [14].

Usually, in the electrostatics problems it is assumed that the charge density  is nonzero only

in the neighborhood of the surface at distances of the order of the Debye number, , i.e., for the inner
solution, while for the outer solution the solution (dilution) is electrically neutral (see, e.g., [15]). As a
result, we have

(2.1)

From the inner expansion as  we can found the slip velocity ; the normal compo-

nent of the velocity  is equal to zero.

For the outer expansion, far from the surface, the right-hand side of the Stokes equations caused by the
Coulomb forces vanishes. The f luid is put in motion by not the body forces but by the surface forces due
to the slip velocity which gives the effective hydrodynamic boundary condition at r = 1. Just this assump-
tion was made in the studies of Yariv team [5–7].

Eliminating the pressure from the system (1.2) by means of crossed differentiation and introduction of

the stream function, in the axisymmetric formulation in the coordinates  and  the stream function 
can be determined from the relations:

(2.2)

For the electrically neutral outer solution the equations of system (1.2) go over in the homogeneous

biharmonic equation for the stream function  with the effective boundary conditions for the outer solution:

On the basis of the homogeneous Stokes equation in the spherical coordinate system with the slip

velocity  and the velocity  at infinity, the stream function  can be represented as the linear com-
bination of the solution with zero slip velocity and the solution with zero velocity at infinity:

(2.3)

In the coordinate system moving with the particle the solution takes the form:

(2.4)

(2.5)

where Qi are the Gagenbauer polynomials [16] and  are the coefficients of expansion of the slip velocity Um
in terms of the Gagenbauer polynomials:
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In accordance with the Gary Leal theorem (see [17], relation 4-180) we have: in order for the balance
of the forces exerted on a spherical particle in infinite liquid volume in the absence of body forces to be

fulfilled, it is necessary that the stream function be orthogonal to the Gagenbauer polynomial .
In our case this condition means that

(2.7)

Using this relation, we can write the formula for the stream function in the form:

(2.8)

Curve  is the curve on which the centers of vortex in the cross-section in the angle θ are
located and which can be calculated as the extremum of the stream function in the angle:

(2.9)

On the particle itself r = 1, from (2.8) this angle is equal to π/2, as the root of the first Legendre poly-
nomial

(2.10)

(2.11)

As a result, we have , the value of this angle being independent of both the slip velocity 

and . These quantities affect only the transition rate of  from 90° on the particle to 54.7° at infinity.
The numerical pattern shows that tending to the angle of 54.7° occurs fairly rapidly. In this case, in the
numerical simulation in the complete formulation, separation of the space electric charge zone can be
observed just in the neighborhood of 54.7° and this separation seems to be initiated namely by the con-
vective influence of the Dukhin vortex. The fact that the separation angle is almost independent of the
parameter also argues for this hypothesis.

Both angles  and  correlate well with those obtained in the numerical experiment.

Thus, the existence of steady-state vortex is physically attributable to inhomogeneity of the charge dis-
tribution and, consequently, of the Coulomb force in the neighborhood of the particle surface. The ques-
tion arises: why the microvortices begin to separate from the particle surface at a fairly strong electric field
strength?

One of the reasons for the above asymptotic analysis is the assumption of the force balance in the outer
solution. This is responsible for the use of the Gary Leal theorem [17]. Actually, it is assumed that for outer
flow the right-hand side of the Stokes equations caused by the Coulomb forces vanishes. However, as
shown by the numerical calculations, such an assumption is valid only for fairly small electric field

strengths . For fairly large  an interesting phenomenon takes place, namely, the charge begins to be
entrained by the f luid stream and enters out into the outer solution. One of the consequences: violation of
the force balance that leads to vortex separation. In this case the typical charge distribution is given in

Fig. 4: charge separation can take place in both the particle equator  and the particle pole .

SUMMARY

The formation of the Dukhin vortex initiated by a dielectric particle is revealed by means of the direct
numerical simulation of the system of equations. The presence of both steady-state and unstable and
unsteady vortices is shown. For small supercriticalities, the vortices are strictly periodically separated. As
the electric field strength increases, vortex separation becomes chaotic. This resembles the well-known
pattern of von Kármán street. As distinct from the von Kármán street, in which inertia is the mechanism
of vortex formation, in our problem the inertia forces are negligibly small and the Coulomb force serves as
the mechanism of generation of the Dukhin vortices.
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Fig. 4. Distribution of the charge density  in the neighborhood of a microparticle, , , and
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