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Abstract—The problem of evolution of an axisymmetric vortex generated by an infinitely elongated
cylinder rotating around its axis in a compressible viscous f luid is considered. The asymptotic solution
is constructed for large times. The conditions under which the velocity circulation at long distances is
higher than in the incompressible f luid case are determined.
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1. INTRODUCTION
Solutions of viscous gas equations, which describe rather simple f lows, help one to understand the

physical features of complex f lows. A study of the problem of the point vortex diffusion in a viscous incom-
pressible f luid can be found in almost every hydrodynamics textbook. At the same time, it is known that
the field of the point vortex circumferential velocity

(1.1)

where  is the vortex circulation and r is the distance from the vortex, is the exact solution of the Euler
equations as well as the Navier–Stokes equations. In the second case, a constant energy supply is required
to maintain the velocity field (1.1) [1]. In addition, the f luid moving with velocity (1.1) has an infinite
kinetic energy. The velocity field (1.1) is induced in a three-dimensional f low by an infinite rectilinear vor-
tex filament with intensity . Let us separate a f luid layer with the unit length along the vortex filament
axis and calculate its kinetic energy

(1.2)

Here, m is the f luid mass and  is its density.
Integral (1.2) has a logarithmic singularity at both zero and infinity. Consequently, the question arises

as to how this velocity field could be created. It is impossible to create field (1.1) in the whole space. Usu-
ally, not one, but, for example, two vortices with opposite intensities are formed in physically realized
flows. Then, the velocity field has more rapidly decaying asymptotic representation at long distances.
Thus, the singularity is eliminated at r → ∞. The singularity is eliminated at r → 0 because the resulting
vortex is not infinitely thin but distributed.

We can propose a way to create field (1.1) in a bounded region of the space. This can be arranged in
incompressible viscous f luid using an infinite cylinder rotating around its axis [2, 3].

Previously, in [3, 4], nonstationary and limiting stationary f lows generated by a rotating cylinder with
a specified f lowrate of f luid through its surface were studied. Problems concerning the incoming f low
interaction with the rotating cylinder were studied in many publications, for example, in [4–6]. The sta-
bility of a moving cylinder in a circulating f low was studied in [7].
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966 GADZHIEV et al.
In this paper, the problem of an infinite cylinder rotation in compressible gas with a temperature-
dependent viscosity is considered. It is shown that the problem solution for the whole space can be
obtained only within the nonstationary formulation. The f low does not reach a stationary state anywhere,
except a bounded region near the cylinder surface; this was not taken into account earlier in [8], where an
attempt was made to obtain a stationary solution in the whole space.

2. FORMULATION OF THE PROBLEM

Let a circular cylinder with radius  and infinite length be placed in a viscous perfect gas at rest with
temperature , density , and dynamic viscosity  and thermal conductivity . At the
time t = 0, the cylinder starts to rotate around its axis with angular velocity , which is maintained
constant. The perturbed gas state is studied at t > 0 provided that the gas temperature on the cylinder sur-
face is also kept constant .

It is assumed that in cylindrical coordinate system , the nonstationary f low is laminar and
depends only on coordinate r. Thus, the possible f low instability is neglected. The equations and bound-
ary conditions that determine the gas state can be written in the following form [9]:

(2.1)

(2.2)

where  is the circulation of the azimuthal component of velocity ;  is the velocity radial component;
 is the gas pressure;  ~  is the Prandtl number; cp is the specific heat capacity at constant

pressure; and R is the universal gas constant, . The Prandtl number  and cp are assumed con-
stant.

According to Eqs. (2.1), the radial scale of the region where the viscous perturbations occur is propor-
tional to , where . The nondimensional parameter , the ratio of characteristic inde-
pendent spatial scales of the problem, can vary within a wide range at t > 0. In this paper, the problem of
constructing an asymptotic solution of Eqs. (2.1), (2.2) is formulated for relatively large times, when

. For definiteness, the case of the viscosity linear dependence on gas temperature
 is considered.

In order to solve the problem, the entire f low region can be divided into three asymptotic subregions.
The spatial scales  and  correspond to the internal and external regions of viscous perturbations
(regions  and G2, respectively). It is shown below that the external limit of the solution in region G2 cor-
responds to the zero azimuthal velocity and finite (but small at large Reynolds numbers) f lowrate caused
by the time-dependent radial velocity. When the speed of propagation of gas perturbations is limited, the
flowrate should vanish at long distances from the cylinder, thus a third asymptotic region  emerges,
whose sizes are determined by acoustic perturbations. The spatial scale of region  is , where  is the
speed of sound in unperturbed gas, and is the largest of the three scales: its ratio to the size of region G2 is

*r
= 0T T ρ = ρ0 μ = μ0 λ = λ0

* *w r

= *T T

( )θ, ,x r

( ) ( )Γ ∂Γ Γρ + Γ = μ Γ − + μ Γ − ∂  

' 2' '' ' ' ,
t r r

v

( )    ∂∂ρ + = + + μ + + μ  ∂ ∂    

'
' ' '' ' '

Pr
p

p
c TpTc T p T T

t t r
v v

( )  Γ+ μ Γ − + − +  
  

2 2
2

2 2

'1 2 4' ' ,
3r rr r

vv v
v

( )   ∂ Γρ + − = − + μ + − + μ −  ∂   

2

3 2

'4 2' ' '' ' 2 ' ,
3 3

p
t r rr r

vv v v
vv v v

( )ρ∂ρ + = = ρ
∂

'
0, ,

r
p R T

t r
v

( )
( )

( )

Γ = = ρ = ρ = = >
Γ = Γ = = = > =

Γ → → ρ → ρ → μ → μ > → ∞

0 0

0 0 0

*

* * * * *

0, , , 0 0, ,
, , 0 0, ,

0, , , 0, 0, ,

T T t r r
w r T T t r r

T T t r

v

v

v

πΓ2 w v

p = μ λPr pc ( )1O
≡ ∂ ∂( )' r Pr

ν0t ν = μ ρ0 0 0 ν0 *t r

−ν = ε �
1

0 1
*

t r

( )μ μ = 00T T T

*r ν0t
1G

3G
3G 0a t 0a
FLUID DYNAMICS  Vol. 55  No. 8  2020



ON VORTEX GENERATION 967
 = , where , , , and  is the adia-
batic parameter.

The purpose of this article was to determine the f low characteristics in regions  and G2. In each of
these regions, instead of independent variables  and t, we introduce new independent variables: ,
ε in region  and , ε in region G2.

We can write the dependent variables in Eqs. (2.1), (2.2) in the nondimensional form

Below we omit overlines above the nondimensional quantities. Equations (2.1), (2.2) can be rewritten
in nondimensional form. In region  , we have

(2.3)

(2.4)

In region  :

(2.5)

(2.6)
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968 GADZHIEV et al.
It follows from Eqs. (2.3)–(2.6) that at ε → 0 and , the required functions in regions 
and  are of the order of O(1) or less. Obviously, the boundary conditions (2.4), (2.6) are not sufficient
to unambiguously define these functions in each of the regions  and . It is necessary to require the
asymptotic solution in region  at  matching with the asymptotic solution in region  at τ → 0.

3. ASYMPTOTIC SOLUTION OF THE EQUATIONS IN REGION 

It follows from the third equation in (2.5) that, in the order of O(ε2), the static pressure in region  is
constant p = 1 at  and has the singularity  at τ → 0. We obtain from Eqs. (2.5) that,
within the terms of the order of O(ε2), the gas density and the velocity radial component can be expressed
through the function F:

(3.1)

Let the dependence c(ε) remain unknown for the time being. This quantity should be determined from
the condition  at , following from the conditions of matching with the solution in
region .

In the main approximation, function  satisfies the equation

(3.2)

The asymptotic behavior of the solution of Eq. (3.2) at τ → 0 can be written in the form:

(3.3)

From the conditions that function  should match the solution in region  at τ → 0, and its value
should maintain the order of O(1) at , it follows

(3.4)

Taking relations (3.3), (3.4) into account we present functions  and  as a power series in
the small parameter :

(3.5)

Thus, in the main approximation, the solution for temperature and circulation depends only on the
self-similar variable τ. The function  meets the nonlinear equation

(3.6)

and the boundary conditions

(3.7)

The only solution for  that meets (3.6), (3.7), is

(3.8)

According to expressions (3.1),
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Functions ,  meet the linear differential equations

(3.9)

and the boundary conditions

(3.10)

The solution of Eqs. (3.9) that meet conditions (3.3)–(3.5) and (3.10) is:

(3.11)

where . In the main approximation, the circulation distribution differs from the incompressible
fluid case by an unknown constant  that is determined by the condition of asymptotic match-
ing of solution (3.11) and the solution in region .

From representations (3.1) and (3.5), solution (3.11), and condition , at  (region of
overlapping with the solution in region ), it follows:

For the next approximation of the functions determining the temperature and circulation, we have:

(3.12)

The boundary conditions for Eqs. (3.12) are:

(3.13)

The solution of Eqs. (3.12) with boundary conditions (3.13) includes two more constants c1 and c2 yet
unknown.

(3.14)

In the first two approximations at τ → ∞, functions F, γ, ρ differ from their limiting values (2.6) by
exponentially small values. The nondimensional radial component of velocity  decays by the power
law . This behavior of  corresponds to the fact that with time, at τ → ∞, the expansion
of region  induces a field of radial velocities equivalent to the source (or sink), where the ratio between
the source intensity and the vortex circulation unlimitedly decreases with the increasing the Reynolds
number that is time-dependent and small compared to the characteristic vortex circulation 
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970 GADZHIEV et al.
In region , there is the problem of perturbation propagation from the source that “is turned on”
at time t = 0 and takes the form of (3.15) at large times. Since ε(t) decreases with time, the source
intensity decreases. It follows from asymptotic (3.15) and Eqs. (2.1) that radial velocity  and pertur-
bations of temperature , density , and pressure  are of the order of

 and meet the linear Euler equations, which can be transformed into the following
form:

At , the f low characteristics correspond to the unperturbed gas state. In contrast to the main
approximation of the equations in regions  (4.12) and  (3.5), the equations in region  are not
reduced to ordinary differential equations, and the solution is not self-similar.

It follows from representations (3.5), solutions (3.8) and (3.11) that on the scale , i.e., in
region , the first two approximations become the terms of the same order of smallness. In order to carry
out the procedure of matching the solution in region  and the solution in region , we describe the
behavior of functions F, γ at  (the inner limit of the outer expansion) as follows:

(3.16)

where ,  is the Euler constant.
The first relation from (3.16) rewritten in variables η ( ) defines the boundary conditions for

function F in region  at  (the outer limit of the inner expansion). In the order of , we can
write:

(3.17)

Due to the logarithmic nature of the singularity in the problem solution at τ → 0 (3.16), a situation
arises when for matching the solutions in variables of region  (3.17), accurate to , it is necessary
to construct the solution (3.5), (3.8), (3.11), (3.14) in region  accurate to .

4. THE ASYMPTOTIC SOLUTION OF THE EQUATIONS IN REGION 

We seek the solution of Eqs. (2.3) neglecting the terms of the order of O(ε2). Then, we can write the
following expressions for functions  and γ:
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It is easy to verify that circulation γ(η) without singularity at  meeting the condition  can
be expressed through function :

(4.2)

The substitution of representation (4.2) in the second equation from (4.1) leads to the identity. It
follows from Eqs. (2.3), with account of Eqs. (4.1), that  and  are also expressed through the
integrals of function . We focus on the solution of the first equation from (4.1), since other
hydrodynamic functions can be found by the type of function F. Substituting representations (4.2) in
the first equation from (4.1) and taking the boundary condition and the solution matching condition
into account, we have

(4.3)

(4.4)

We introduce a new dependent variable 

(4.5)

Let us write the equations and boundary conditions, which are met by function  accurate to

. From problem (4.3), taking substitution (4.5) into account, we come to the equation
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Using the definition of value b and substitution (4.5), we obtain

(4.7)

where , ,  is the speed of sound in gas near
the cylinder surface. From asymptotic (4.4), we obtain

(4.8)
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Thus, it follows

Consequently, for problem (4.6)–(4.8), the following boundary condition can be used instead of rela-
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Fig. 1.
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Let us look for the solution of Eqs. (4.6), (4.8), (4.10) in the form of the asymptotic series

(4.12)

From solutions (4.8), (4.11), (4.12), it follows that  contains no logarithmic term at . The
equation and the boundary conditions for function  can be written as

(4.13)

(4.14)

(4.15)

For the given parameters of the f low near the cylinder, parameter  is fixed. Then, if we set an arbitrary
value of  in addition to boundary conditions (4.14), (4.15), system (4.13)–(4.15) will be overdeter-
mined. Varying  and solving the Cauchy problem, we can find its value, such that system (4.13)–
(4.15) is solvable. The examples of solutions are given in Fig. 1 (from bottom to top): at  and

= 1.1731;  and ;  and ; and  and .
It follows from (4.4), (4.5) that parameter  is determined by the main approximation in region 

(4.16)

When  and , parameter  is also of the order of O(1), and can take both positive and
negative values. The interaction between the temperature and vortex fields in region  leads to the con-
version of the gas rotational motion energy into thermal energy. The relative temperature of the gas

 increases near the cylinder surface. The dependence  shown in Fig. 2 corresponds to
. If , the heat f lux passes from region  to region ; otherwise, the heat f lux

changes its direction.
According to boundary condition (4.8), function  should have a logarithmic singularity at

. Due to this singularity, both terms in asymptotic (4.12) become of the same order when passing
from region  to region . Solution matching becomes possible if both terms of the asymptotic expan-
sion are considered in representation (4.12).
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The equation and boundary conditions for function  can be written as follows:

(4.17)

(4.18)

(4.19)

For an arbitrary value of , system (4.17)–(4.19) is also overdetermined. By varying , we can
find its value, at which condition (4.19) is met.

Within the terms of the order of , the solution for  in region  can be considered
known. At , this solution can be written in the following form

(4.20)

where

(4.21)

Using solutions (4.4), (4.20), (4.21) it is possible to find an unknown coefficient c2 in the asymptotic
representation for function F in region .

Using the known functions  and , one can express from representations (4.2) and equation

(4.9), accurate to , the solution for the circulation
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Integrating expression (4.2) by parts twice and considering (4.20), we obtain at 

(4.23)

Thus, the outer limit of the inner expansion is represented by the expression

(4.24)

where .
Relation (4.24) rewritten in variables τ determines the inner limit of the outer expansion for the func-

tion γ in region 

(4.25)

where .
Expanding (4.25) in series in powers of , we obtain

(4.26)

The comparison of asymptotic (4.26) with (3.16) allows determining unknown constants A and 
that are included in the representation in region . For constant A, we obtain the relation

(4.27)

Expression (4.27) can be rewritten in the form

(4.28)

It follows from the equations and boundary conditions (4.13)–(4.15) that . Replacing  in
the integrand of (4.28) with a smaller value , we come to the inequality

(4.29)

In the case of , the gas temperature in the whole space is higher than the temperature of the
unperturbed gas ( ), since there is nothing against the gas heating due to the conversion of rotational
motion energy into heat. In this case, it follows from (4.29) that A > 1. It can be shown that the same result
can be obtained for an arbitrary monotonically increasing dependence . This allows us to formulate
the theorem on the circulation jump: if  and , the circulation in compressible gas in region

 exceeds the circulation in incompressible f luid at the same  and  (comparison is presented in
Fig. 5, see below). The name of the theorem is associated with the fact that the inner limit of the outer
solution ( ) for circulation  does not coincide with the value of circulation on the cylinder sur-
face.

Using intermediate asymptotics of temperature (3.17) and circulation (4.23), one can calculate the
kinetic energy of the f low in the main approximation

(4.30)
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where  is the kinetic energy for the incompressible f luid case at the same time. Almost all
the energy is the energy of the f low in the intermediate region , and over time, it increases
unlimitedly with the increase in the size of this region. In the case of , the numerical
solution gives the constant values  and . The kinetic energy of the compressible gas f low
is less than that of the incompressible f luid: in the limit of ε → 0, we find from (4.30) that .

5. THE COMPOSITE SOLUTION

Within the terms , the uniformly valid solution for functions F and  in the region  can
be presented in the form [10]

where  and  are solutions (4.5), (4.12), (4.22) in region  rewritten in variable τ; , and

 are solutions (3.5) in region ; and  and  are the valid limits of outer expansions
(3.16).

In Figs. 3 and 4, the behavior of dependences  and  corresponding to the case of
, , and three different values of  are presented: curves 1 correspond to the

values of parameters  and ; curves 2 correspond to  and ; curves 3 corre-
spond to  and ; dashed line shows the numerical solution of the Navier–Stokes equations
at  (see Section 8). In the case where , the temperature reaches its maximum in region ; at

 the temperature increases monotonically with the increase in distance from the cylinder surface.
The rotational energy transition into heat causes the gas temperature increase in region , while in
region , the gas temperature varies mainly due to the heat diffusion. The increase in the gas temperature
causes the increase in dynamic viscosity (μ ~ T) and produces the viscosity gradient ,
which in the case of  leads to a nonmonotonic behaviour of the rotational motion circulation along
the coordinate r. As the distance from the cylinder surface grows, the vorticity
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changes its sign twice. There is a region where a positive vorticity is generated. In the case corresponding
to Fig. 3 at , it includes . From the second equation of system (4.1), the following
relation can be obtained

from which it follows that the vorticity extremum in region  is reached at the same point ( ,
Fig. 3) as the temperature extremum. The rotational velocity circulation over the interval  <
τ <  exceeds the circulation near the cylinder surface. This effect is not observed in incompress-
ible f luid, in which the circulation varies monotonically along the coordinate , while within region ,
the circulation is constant. In Fig. 5, function  for compressible gas at ,

 (solid curve) is compared with function  for an incompressible f luid (dashed
curve).
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6. THE PROBLEM SOLUTION FOR SMALL NUMBERS OF M1

When , which corresponds to small numbers of M1, the solution for F can be obtained in ana-
lytical form. It follows from relation (4.3) and the boundary condition on the cylinder surface that accurate
O(λ–1), the following relation is true in region :

(6.1)

In region , the relation

(6.2)

is still true.
The asymptotic matching of solutions (6.1) and (6.2) determines the unknown constants  and d

The distribution of the circulation is determined in the same way. It follows from (4.27) that in the
main approximation

7. THE PROBLEM SOLUTION FOR LARGE NUMBERS OF M1

In the previous paragraphs, the asymptotic solution of the problem at  is obtained under the
condition . In this case, it is also true that . At the same time, at feasible large times (small

), value  can no more be negligibly small, for example, at : .
The analysis of the results at  shows that when M1 increases, the coefficient  also grows.

Therefore, when M1 becomes large, where coefficient  can no more be a small value. Let us define
the conditions under which  is of the order of . For this purpose, let us consider the solution
at .

Functions  and  are bound by relation (4.14) and thus have different orders of smallness in
parameter λ. We can solve problem (4.13)–(4.15) numerically at small  to determine the orders of these
functions. In Fig. 6, the solutions of these equations at  (solid curve) and  (dots) are pre-
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sented. It is shown that in these cases, dependences  are close to each other. In the limit of ,
we denote the value of  as . The values that are obtained from the numerical solution are of
the order of :  and . Substituting these values in formula
(4.16) we obtain

Thus, the relations obtained in Sections 2–4, are true at . Let us construct a solution at

.

Similar to the case of small perturbations, in region , static pressure p = 1 at  within the

terms of order of  and has a coordinate singularity  at . The density, radial
component of velocity, and function F obey relations (3.1) and (3.2). The asymptotic behavior of the solu-
tion of Eq. (3.2) at  can be expressed as

(7.1)

Here, , . Since functions F and  according to (7.1) depend on τ and , the
equations for their determination in region  in the main approximation can be written in the following
form:

(7.2)

The unknown coefficients  and  determine the solution of the boundary value problem for
Eqs. (7.2) and should be chosen based on the condition F = 1 at  and the matching with the solution
in region .

The outer limit of the inner expansion for function  in region  is determined from relation (7.1).
When ,

(7.3)

Expression (7.3) shows that function  can be represented in the form of the following asymptotic
series

In order to define  we can formulate a problem that coincides with (4.13)–(4.15) (Fig. 1). The
matching condition can be written in the following form

(7.4)

The boundary value problem (7.2) can be solved by varying the initial conditions of the Cauchy prob-
lem for Eqs. (7.2). The initial condition is the value of F set by function (7.1). In this case, coefficients 
and  are bound by relation (7.4). Thus, varying only the value of  and determining  by means
of (7.4), we find the value of , at which F = 1 at .

After the coefficients  and  are found, we solve the problem of determining function  in
region . The algorithm for deriving the function is described in Section 4.
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Determining the temperature field makes it possible to solve the problem of finding the circulation dis-
tribution in region . In the main approximation, function  should obey the equation

with the boundary conditions  at  and  at .
In region , expression (4.2) is still true for finding γ. The value of A is chosen using the matching con-

dition

In Figs. 7 and 8, the behavior of dependences  and  (Section 5), corresponding to
the case of ,  and  (solid curves), and of the numerical solution of the
Navier–Stokes equations at the same values of parameters (dashed curves) is presented.
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8. THE NUMERICAL SOLUTION OF THE NAVIER–STOKES EQUATIONS
The asymptotic solution of the problem is compared with the numerical solution of the Navier–Stokes

equations (2.1). These equations are calculated by the finite volume method of the second order of accu-
racy with respect to the space with upwind differences and the first order of accuracy with respect to the
time in the circular region  on a radially symmetric grid with 24 000 cells. The number of
cells is  along the circle  and  along the radius; the size of cells in the radial
direction is 10–3 near the cylinder surface , and 20 on the external boundary of the calculated region

. The boundary condition of the unperturbed flow is imposed on the external boundary of the
calculated region; the error due to the presence of a radial f low with nonzero  is acceptable.

All calculations are performed at the nondimensional parameters , Pr = 1, and Re = 100. The
greatest time period of the calculations corresponds to the values: ,  at  and

,  at M1 = 7. Further calculations during the foreseeable time do not allow any sig-
nificantly decrease in the value of small parameter  in expansions (3.5) and (4.12). The time step Δt
is such that  at  and  at M1 = 7.

The circulation and temperature distributions obtained from the numerical solution of the Navier–
Stokes equations confirm the asymptotic solution and are shown in Figs. 3, 4, 7, and 8.

CONCLUSIONS
The vortex diffusion problem and the inverse problem of a vortex generation with a rotating cylinder in

incompressible f luid are well known. These problems are characterized by the growth of the spatial size of
the viscous region according to the law . The radial distribution of the circulation is a monotonic
function that grows in the vortex diffusion problem and declines in the rotating cylinder problem.

The problem of a vortex generation in a compressible gas with the temperature-dependent viscosity is
similar to one for the case of incompressible f luid by the size of the viscous region, but differs radically
from it by nonmonotonic distribution of circulation within this region. As shown in Eqs. (2.1), the circu-
lation distribution is influenced not only by the viscosity but also by the viscosity gradient. Due to this
influence, as opposed to the incompressible f luid, in which the entire vorticity of the rotating f luid is of
the same sign, there are such cases in compressible gas, when the vorticity changes the sign twice along
the radius. When  and t are the same and the cylinder temperature is not lower than the unperturbed gas
temperature, the incompressible f luid particles close to the cylinder rotate faster than the compressible gas
particles; while in the far region, the situation is the opposite (Fig. 5). In the case of a compressible gas
with constant viscosity, the circulation distribution is close to the case of incompressible f luid.

The solutions are obtained using the method of matched asymptotic expansions at large times, when
the size of the viscous region is much larger than the cylinder radius. We note that in the main approxi-
mation, the solution for the temperature and circulation has a discontinuity at the junction of regions G1
and G2, i.e., the outer limit of the inner expansion is not equal to the inner limit of the outer expansion;
this equality is provided only in the next approximations.

The temperature and circulation in region G1 obey stationary equations; however, the boundary con-
dition that ensures the solution in region G1 matching the solution in region G2 is nonstationary. There-
fore, the solution in region G1 is parametrically dependent on time and reaches the steady state in the limit
of .

The small parameter  of the problem slowly decreases with time. The problem can be linearized
at  in the far region. However, if , it can be required to solve a nonlinear problem of ordi-
nary differential equations in the far region, which is possible only applying the numerical method. For
large numbers of M1, the maximum temperature and coefficient  that is responsible for circulation

behavior in the far region are proportional to . In Fig. 7, it is shown that in the case of M1 = 7, the max-
imum temperature is 13 times higher than the surface temperature of the cylinder. According to Fig. 8, the
maximum circulation exceeds the circulation on the cylinder surface only twice; it can be shown that it
reaches the order of  only at exponentially large times when the problem is linear ( ) in the
far region.
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All of the main results have been confirmed by the numerical calculations of Eqs. (2.1) for nonstation-
ary axisymmetric f lows.
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