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Abstract—The steady-state Couette f low between two plane-parallel plates of finite thickness is con-
sidered. Fluids with the viscosity that decreases with increase in the temperature are considered. It is
shown that the isothermality condition across the plates can be violated in the practically important
case of small distances between the plates. This leads to the possibility of using dissipation to heat the
fluid and, as a result, to significant reduction in friction without additional energy supply.
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For moving bodies friction drag reduction is one of the topical problems of aerodynamics and mechan-
ics. For example, if it were possible to laminarize f low past a vehicle without expenditure of energy, this
would lead to a considerable reduction in fuel consumption in the cruising regime of airplane f light. At
present, there are reviews [1–7] devoted to the problem of f luid f low control in order to reduce friction.
In [4, 5] the ways of f luid f low control are classified. One of such ways of control is passive f low control,
i.e., when no energy is supplied to f luid. From the economic point of view, the active (energized) f low
control may also be attractive if friction reduction results in lower total energy costs. In this connection,
of interest is to investigate simple f lows in which the physical mechanisms that make it possible to reduce
friction are clearly demonstrated.

For internal f lows including the channel and Couette f lows the drag reduction problems are as import-
ant as the drag reduction problems in external aerodynamics. Friction reduction in channels is important
to reduce the liquid and gas pipelining cost. Among the studies in this area, we can note [8–13].

For the Couette f low, that can be considered as a very simple model of a liquid lubricated plain bearing,
the situation in which the viscosity of liquid is a function of temperature is of practical and scientific inter-
est. In this case dissipative heating of f luid is able to change the f low parameters, in particular, the value
of viscous friction. Investigations in this area are considered in monograph [14]. An interesting result can
be obtained when the f luid viscosity coefficient depends on the temperature in accordance with the hyper-
bolic law [15]. In this case, viscous friction behaves nonmonotonically as a function of the relative velocity
of plates. As the relative velocity of plates increases, friction initially also increases to a maximum and
then, having reached a certain velocity, tends to zero.

In [14] the effect of dissipative heating on the torque acting on the cylindrical journal bearing at various
angular velocities (the inner cylinder rotates and the outer cylinder is fixed) is theoretically analyzed and
it is shown that the results of the numerical calculation and the experiment are in adequate agreement. It
was established that the toque acting on the journal bearing decreases with the angular velocity within a
certain range of the cylinder angular velocities. Thus, dissipative heating of f luid leads to friction reduction
and decrease in the torque exerted on the cylinders.

In the present study, the way of viscous friction reduction without energy supply is investigated for
given properties of f luid, relative velocity of plates, and surface temperature as applied to the Couette
problem.
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Fig. 1. Couette f low between two plane-parallel plates.
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1. CLASSICAL COUETTE PROBLEM
Being within the framework of the Navier–Stokes equations, we will consider steady-state f low of a

viscous heat-conducting f luid between two plane–parallel plates that move relatively each other. Without
loss of generality, we will assume that the lower plate is fixed and the upper plate moves at a velocity U
(Fig. 1).

The f low can be described by the following system of equations:

(1.1)

with the boundary conditions

(1.2)

Here, x and y are the longitudinal and transverse coordinates, respectively, L is the distance between
the plates, u and T are the f luid velocity and temperature, T1 and T2 are given temperatures of the lower
and upper plates, respectively, μ is the dynamic viscosity coefficient, and λ is the thermal conductivity
coefficient. We will assume that the viscosity and thermal conductivity coefficients depend only on the
temperature: μ = μ(T) and λ = λ(T).

To describe the Couette f low, it is necessary to solve the boundary-value problem (1.1), (1.2). The sys-
tem of equations (1.1) represents the momentum and energy conservation laws in the Navier-Stokes
approximation, i.e., the following relations hold for the friction stress tensor Pxy and the component qy of
the heat f lux vector:

(1.3)

If we introduce the transformation of coordinates

(1.4)

then the momentum conservation law reduces to the second-order linear differential equation

and the velocity distribution must satisfy this equation with regard to the boundary conditions
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With regard to (1.5) and the boundary conditions for the temperature, the energy conservation law can
be reduced to the equation

(1.6)

where

Equation (1.6) is the nonlinear algebraic equation for T. For given μ(T) and λ(T) the temperature dis-
tribution of f luid between the plates can be found using Newton’s method. Using (1.3) — (1.6), we can
obtain the following simple expressions for the quantities Pxy,  = , and  = :

(1.7)

where  = d .

Using expressions (1.7), we obtain

We introduce the notation

hence

(1.8)

Relation (1.8) represents the energy conservation law in the stationary case. Earlier, in [16] a similar
relation was obtained for the Couette f low for a gas described by the Boltzmann equation. The quantity
τxyU is the energy dissipated in the form of heat owing to viscosity in the f luid layer between the plates and

 +  is the heat released from the f luid volume by heat conduction. For channel f low of incompress-
ible f luid of constant viscosity it was found that wall friction is proportional to dissipation [8].

In Figs. 2 and 3 we have reproduced the results of the numerical calculations of the classical Couette
problem without heat conduction between the plates (T1 = T2) at various plate temperatures. The distance
between the plates L = 4 × 10–5 m.

As the working f luids, we took engine oil and water. Below, we will give the approximate formulas for
calculation of the dynamic viscosity and thermal conductivity coefficients as functions of the temperature
T [17, 18].

For the M14G2TsS engine oil over the temperature range from 10 to 90°C the thermal conductivity
and the viscosity are specified by the following functions

For water over the same the temperature range the thermal conductivity and the viscosity are equal to

From Fig. 2a it can be seen that for small values of U at T1 = 10°C the dependence of the friction on
the plate velocity is linear. This is caused by the fact that the dissipation effects are small and the viscosity
can be assumed to be constant. Dissipative heating of f luid occurs at large values of U; thereby, the tem-
perature increases, the viscosity decreases, and, as a consequence, τxy decreases. In the Couette problem
with the viscosity dependent on the temperature the presence of the friction maximum was earlier revealed
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Fig. 2. Friction stress as a function of the plate velocity at various plate temperatures in the case of engine oil (a) and
water (b): curves 1–3 correspond to T1 = 10, 30, and 60°C, respectively.
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Fig. 3. Dissipated energy as a function of the plate velocity at various plate temperatures in the case of engine oil (a) and
water (b): curves 1–3 correspond to T1 = 10, 30, and 60°C, respectively.
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in [15] from an analysis of the integral equation corresponding to the boundary-value problem. However,
none particular calculations were made.

We note that, despite the decrease in friction with increase in the velocity (Fig. 2a), the dissipated
energy increases with the velocity (Fig. 3a).

From Fig. 2 it can be seen that at the fixed velocity U increase in T1 leads to decrease in τxy. For exam-
ple, it is possible to increase T1 using the energy supplied from the external sources but this is an additional
expenditure of energy.

However, there exists an alternative energy source, namely, the dissipated energy. The idea of the
approach proposed is to use the dissipated energy to reduce friction. In what follows, we will demonstrate
how this approach can be implemented.
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Fig. 4. Modified Couette f low.

L

y

�2

�1

�2

�1

x

u(y)

U

0

2. MODIFIED COUETTE PROBLEM
We will consider the Couette f low with plates of finite thickness (δ1 and δ2) which have certain heat

conductivity and given fixed temperatures  and  on the external boundaries of the plates (Fig. 4). The
thermal conductivity coefficients λ1 and λ2 of the lower and upper plates are assumed to be constant.

To solve the modified Couette problem, it is necessary to solve the self-consistent problem in three fol-
lowing domains.

In the domain 0 ≤ y ≤ δ1 the heat equation

is solved for the lower plate with the boundary conditions

In the domain δ1 ≤ y ≤ L + δ1 the classical Couette problem described by the system of equations (1.1)
with the boundary conditions

is solved.
In the domain L + δ1 ≤ y ≤ L + δ1 + δ2 the heat equation

is solved for the upper plate with the boundary conditions

where T1 and T2 are unknown temperatures on the interface between two phases (liquid—solid body)
which can be found from the condition of continuity of the heat f lux on the phase interface [19]
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Fig. 5. Friction as a function of the plate velocity for various thermal conductivities λ1 of the plates in the case of engine
oil (a) and water (b) at the temperature of the external boundaries  = 10°C: curves 1–3 correspond to λ1 → ∞, λ1 =
100 and 10 W/m °C, respectively.
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For illustrative demonstration of the effect of viscous dissipation we will consider the Couette f low
without heat conduction between the plates (  = ) in the symmetric case (λ1 = λ2 and δ1 = δ2).

From the condition of continuity of the heat f lux on the interface between two phases at the constant
thermal conductivity λ1 it follows that

hence

(2.1)

We denote f = r /  and r = δ1/λ1, where f is the relative temperature drop across the plate thickness
which characterizes the extent of plate nonisothermality and r is the thermal plate resistance per unit area.
Then (2.1) takes the form:

In [14] for calculating the Couette f low is was assumed that the plates are isothermal (T1 = ) since
for metal the thermal conductivity coefficient is considerably greater than that for f luid  (this cor-
responds to ). This case corresponds to the classical Couette problem considered earlier. In this
case the entire dissipated energy is withdrawn outside and for given properties of f luid and given L and U
friction can be change only by means of external heating of plates (by increasing ).

In our problem the parameter f can be varied from zero to values of the order of unity. As f increases,
the plate becomes nonisothermal and fluid on the phase interface is heated. This leads to friction reduc-
tion. This heating of f luid occurs not due to the energy supplied from outside (variation in  but due to
viscous dissipation).

As can be seen from definition of f, for fixed external plate temperatures  and given f luid the value
of f can be increased due to:

– increase in r (to decrease the thermal conductivity of plates or to increase their thickness);
– increase in  (to decrease the gap between the plates or to increase their relative velocity).
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Fig. 6. Friction as a function of the plate velocity for various thermal conductivities λ1 of the plates in the case of engine
oil (a) and water (b) at the temperature of the external boundaries  = 30°C: curves 1–3 correspond to λ1 → ∞, λ1 =
100 and 10 W/m °C, respectively.
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Fig. 7. Extent of nonisothermality f as a function of the plate velocity for various thermal conductivities λ1 of the plates in
the case of engine oil (a) and water (b) at the temperature of the external boundaries  = 30°C: curves 1 and 2 corre-
spond to λ1 = 100 and 10 W/m °C, respectively.
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From the practical point of view, of interest is the case in which the increase in the thermal resistance
r occurs without change in the problem geometry. In this case r can be increased due to replacement of
the plate material by a material with a lower thermal conductivity.

Equation (2.1) is the nonlinear equation with respect to T1 since  depends on T1. Determination
of T1 was implemented using Newton’s method.

In Figs. 5–7 we have reproduced the results of calculations of the modified Couette problem without
heat conduction between the plates (  = ) in the symmetric case (λ1 = λ2 and δ1 = δ2) at various tem-
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peratures on the external boundaries of the plates. The problem parameters are as follows: the plate thick-
ness δ1 = 2 × 10–3 m and the distance between the plates L = 4 × 10–5 m.

Our calculations show that decrease in λ1 leads to a significant decrease in τxy. This relates to the fact
that decrease in the thermal conductivity of the plates leads to blocking the heat extraction and thereby
leads to stronger f luid heating by increasing the extent of plate nonisothermality (see Fig. 7).

SUMMARY
The effect of viscous friction reduction without any additional expenditure of energy is demonstrated

with reference to the modified Couette problem.
Decrease in the withdrawn dissipated energy turns out to be effective means for viscous friction reduc-

tion. The calculation results show that viscous friction can be significantly reduced by decreasing the ther-
mal conductivity coefficient of the plates.

The energy necessary for friction reduction is taken due to viscous dissipation rather than from external
sources.
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