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Abstract–The problem of rarefied gas f low through a long cylindrical channel as a function of the pres-
sure and the temperature maintained at the channel ends is considered on the basis of the S-model of
the Boltzmann kinetic equation. The pressure and temperature drops between the channel ends vary
from small values at which the linear transport theory is valid to large values at which the gas molecule
mean free path ceases to be constant along the channel. The solution to the model kinetic equation is
found by means of the collocation method using the Chebyshev polynomials and rational functions.
The mass f low and the pressure in the channel are obtained. Isobaric and isothermal f lows are inves-
tigated.
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The investigations of rarefied gas f lows through micro- and nano-channels are essential to many prac-
tical applications [1–3]. Such flows can be correctly described on the basis of the kinetic Boltzmann equa-
tion or the model kinetic equation [1]. For example, a series of investigations [5–10] were carried out for
the cylindrical channel using the S-model of the kinetic Boltzmann equation [4]. In [5–7] numerical
solutions of the problem of steady-state nonisothermal rarefied gas f low through a long circular cross-sec-
tion pipe were obtained without regard for the end effects on the basis of the linearized S-model. In [5–7] the
gas temperature and pressure distributions along the channel were assumed to be linear. In the complete
formulation without simplifying assumptions the problem was solved in [8–10] for fairly long pipes using
the finite difference method in the entire f low region. In particular, in [9] the effect of the pipe length on
the distributions of macroscopic quantities (density, temperature, mass velocity, and gas mass f low) along
the pipe axis was analyzed when gas f lows out from the high-pressure section into a vacuum and a com-
parison with the results obtained in accordance with the methods presented in [1] was carried out. Using
these methods (see, e.g., [2, 12]) the end effects, including the processes proceeding in the containers, are
neglected. The gas mass f low is determined locally in each of the pipe cross-sections from the linear the-
ory of infinite pipe and the pressure distribution along the pipe is determined by integrating the one-
dimensional continuity equation with the boundary conditions of equality of the pressure to the corre-
sponding pressures in the containers connected by the pipe under consideration. In this case the tempera-
ture distribution is assumed to be specified by the boundary conditions. In [9] it was shown that the sim-
plified formulation of the problem without regard for one or both boundary conditions at the pipe ends
and the approximate method for calculating the gas mass f low can be used only for fairly long pipes and
fairly rarefied gases. The applicability criterion is determined by the ratio of the rarefaction parameter to
the dimensionless channel length.

The aim of the present study is to solve the problem of steady-state nonisothermal gas f low through a
long circular cross-section pipe at given pressures and temperatures at the pipe ends in the simplified for-
mulation [1] with the use of the semianalytic method. In the present study the S-model is used as the basic
equation and the diffuse reflection model is used as the boundary condition on the channel walls. In the
formulation [6] the solution of the linear problem with the diffuse boundary conditions is found using the
collocation method for the Chebyshev polynomials and rational functions [13, 14], the gas mass and heat
fluxes caused by the gas pressure and temperature gradients in the channel are calculated over the entire
Knudsen number range, and the comparison with the results of [2, 5–7, 11] is carried out. The solution
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408 GERMIDER, POPOV
of the nonlinear problem of the pressure distribution is found numerically using the Runge–Kutta method
for a given linear temperature distribution which holds when the wall thermal conductivity and thickness
do not vary along the channel. A particular attention is payed to recovery of the gas pressure distribution
in the channel. As follows from the numerical calculations performed, the semianalytic method proposed
makes it possible to diminish significantly the calculation volume due to the preliminary elaboration of
construction of the solution of the model equation.

1. FORMULATION OF THE PROBLEM. KINETIC EQUATION
We will consider rarefied gas f low from one container to another when the containers are connected

by a long cylindrical channel of radius . In the first and second containers the pressure and the tempera-
ture remain constant and are equal to ,  and , , respectively. We will assume that  and

. The  axis is directed along the channel axis. We will consider gas f low in the middle part of chan-
nel. We will assume that the channel length . The temperature distribution in the channel is deter-
mined by the wall temperature [1]. The dimensionless gas pressure and temperature gradients are assumed
to be small in absolute value:

(1.1)

where  and  are the gas pressure and temperature at a certain point taken as the origin. The radius 
of the cylindrical channel is taken as the dimensional length scale. In what follows, the dimensional quan-
tities will be denoted without prime. In the linear approximation for the gas pressure and temperature as
functions of z we obtain the following expressions:

We will determine the state of rarefied gas at the point whose radius-vector  has the coordinates , ,
and  in the cylindrical coordinate system in configuration space using the gas molecule distribution func-
tion , where  is the dimensionless molecular velocity, ,  is the Boltzmann
constant, and m is the gas molecular mass. In the velocity space we will also use the cylindrical coordinates

: , , and Cz. Since the dimensionless pressure and temperature gra-
dients are small, in the linear approximation the distribution function  takes the form [15]:

(1.2)

where  is the absolute Maxwellian distribution function and n0 is the gas num-
ber density at the origin. The perturbation function  can be represented as the sum in which the
terms are related to  and :

(1.3)

Following [1, 16], we introduce the dimensionless components of the mass velocity of gas and the heat
flux vector

(1.4)

Here,  and  denote the corresponding dimensional quantities [16]

(1.5)

(1.6)

where  is the gas molecular number density.
Substituting (1.2) in (1.5) and (1.6) and taking (1.3) into account, for the dimensionless compo-

nents (1.4) we obtain
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(1.7)

(1.8)

Here,  and  determine the mass velocity and the component of the heat f lux vector as a result of
the presence of the pressure gradient for isothermal gas channel f low, while  and  represent their
values for isobaric f low caused by the temperature gradient.

In the first stage of investigation our aim is to find the reduced gas mass and heat f luxes which depend
on Gp and 

(1.9)

Here, primes denote the dimensional f luxes. The coefficients  and  (i = 1, 2) are the dimension-
less factors of proportionality between the f luxes across a channel cross-section and the local pressure and
temperature gradients Gp and GT

(1.10)

As the basic equation that describes kinetics of the processes, we will use the S-model of the kinetic
Boltzmann equation in the cylindrical coordinate system [6, 17]

(1.11)

where  is the gas rarefaction parameter,  is the Knudsen number,  is the
molecular mean free path,  is the dynamic gas viscosity, and  is the kernel of this equation [17]

We will multiply the left- and right-hand sides of Eq. (1.11) by  (k = 1, 3) and integrate
it with respect to Cz from  to . With regard to (1.3), (1.7), and (1.8) the equations thus obtained can
be reduced to two independent systems of equations. For restoration of the mass velocity  and the
component of the heat f lux vector  the system of equations takes the form:

(1.12)

(1.13)

where  and

(1.14)

(1.15)
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The components  and  (i = 1, 2) can be expressed in terms of the functions introduced
above  ( ) as follows:

(1.16)

(1.17)

For restoration of  and  the system of equations take the form:

As the boundary condition on the channel surface Γ, we will use the diffuse reflection model [16]

Here,  is the distribution function of the gas molecules reflected from the channel surface, en

is the unit vector normal to this surface directed towards the gas, and  is the locally equilibrium
distribution function [18]

(1.18)

where  is the gas temperature on the channel surface and  is the gas molecular number density
in the neighborhood of the channel walls. In view of smallness of  and , we will linearize (1.9) the
function (1.18) about the absolute Maxwellian distribution function  [1]. As a result, taking (1.2) and
(1.3) into account, for the functions  (k, i = 1, 2) we obtain the following boundary conditions:

(1.19)

2. SOLUTION TO THE BOUNDARY-VALUE PROBLEM.
GAS FLOWS AT SMALL PRESSURE AND TEMPERATURE DROPS

We will find the solution to the system of equations (1.12) and (1.13) with the boundary conditions
(1.19). We will expand the unknown function  (i = 1, 2) in a series in the Chebyshev polyno-
mials and rational functions

(2.1)

(2.2)

where . In order to determine  in expansion (2.1) we will use the recurrence rela-
tions [13]
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Restricting our attention in expansion (2.1) to the terms with the numbers  ( ), we obtain

(2.3)

Here,  and  ( )

(2.4)

 and  are the block diagonal matrices
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(2.6)
and  is the unknown column matrix ( )
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The derivatives of  with respect to the variable ρ and of  with respect to ζ can be determined
as follows:
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where  is the matrix (k = 1, 2) whose nonzero elements can be calculated from the following
formulas [19]
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expressions:
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where  is meant the sum in which the first and last terms are multiplied by 1/2.

In (2.13) n is even. For n = 40 the absolute difference of the values of  (i = 1, 3, ) obtained
with the use of (2.13) and the Gauss method is not greater than 10–9.

Expressing the variables  and  from equalities (2.2) in terms of  and  and taking into
account (2.3)–(2.11), we can transform the system of equations (1.12) and (1.13) to the form:
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Here,

As the collocation points, in Eqs. (2.17)–(2.19) we will use the roots of the polynomials  ( )
on the segment 

(2.20)
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, i.e., , if n2 is even and  otherwise.

As a result, we obtain
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Table 1

δ

–JM, 1

(2.23)
 [2]  [5]  [6, 7]  [11]

n* = 10 n* = 20

0.01 1.4861 1.4798 1.4781 1.4800 1.4770 1.4765

0.02 1.4710 1.4631 1.4617 1.4636 1.4616 1.4611

0.05 1.4386 1.4334 1.4330 1.4339 1.4334 1.4329

0.1 1.4097 1.4090 1.4086 1.4101 1.4090 1.4085

0.2 1.3892 1.3899 1.3891 1.3911 – 1.3893

0.5 1.3986 1.4008 1.3996 1.4011 1.4005 1.3998

1.0 1.4740 1.4768 1.4748 1.4758 1.4764 1.4731

2.0 1.6749 1.6784 1.6772 1.6799 1.6779 1.6757

5.0 2.3615 2.3664 2.3646 2.3666 2.3655 2.3619

10.0 3.5726 3.5778 3.5752 3.5749 3.5762 3.5674
Similarly, substituting (2.20) in (2.18), we arrive at the system of linear  equations in which we
replace the equations with  and  by the equations following from the boundary condition (2.19)

for Z2, 1 with the values of variables ρ* = 1 and  ( ). As a result, we obtain

(2.21)

where  and the matrices D1 and D2 are determined similarly to B2 and B1 in which  and 
are replaced by  and  ( ), respectively.

For finding A1 we obtain the equation

(2.22)

where  is the inverse matrix for D2.

The solution of Eq. (2.22) can be found by means of the LU-method in the software of computer alge-
bra Maple. In accordance with (2.10), on the basis of the obtained elements of the matrix A1 we obtain an
expression for . Substituting (2.10) in (1.10), we have

(2.23)

In Table 1 we have given the values of  obtained from formulas (2.23) at  for 
and at  for . For the sake of comparison, in the same table we have given the values
of the components  borrowed from [2, 5–7, 11]. The results in [2, 5, 6] were obtained on the basis of
solving the linearized S-model using the methods of discrete velocities and ordinates. In [7] the spectral
method was applied to finding the solution with the use of cubic splines (δ = 0.1, 0.5, and 1), and in [11]
the conservative method was used. This method represents the implicit second-order scheme on non-
structured grids. As can be seen, already at n* = 10 the method proposed gives, in whole, the acceptable
results for . In the free-molecular limit (δ = 0) the value of JM, 1 is equal to  at n* = 10 and

 at . This corresponds to the value  calculated analytically [1].
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Table 2

δ

JQ, 1 = JM, 2 –JQ, 2

(2.23)
 [2]  [5]  [6, 7]  [11], JM, 2  [11], JQ, 1

(2.23)
 [6, 7]

n* = 10 n* = 10 n* = 10 n* = 20

0.01 0.7301 0.7238 0.7223 0.7243 0.7210 0.7188 0.7207 3.3074 3.2912 3.2848

0.02 0.7112 0.7033 0.7022 0.7042 0.7020 0.6998 0.7016 3.2390 3.2197 3.2166

0.05 0.6678 0.6629 0.6627 0.6637 0.6630 0.6609 0.6626 3.0750 3.0636 3.0638

0.1 0.6214 0.6208 0.6469 0.6206 0.6209 0.6192 0.6189 0.6205 2.8799 2.8800

0.2 0.5663 0.5672 0.5896 0.5667 – 0.5653 0.5668 2.6159 2.6190 –

0.5 0.4777 0.4785 0.4953 0.4780 0.4784 0.4767 0.4780 2.1334 2.1363 2.1360

1.0 0.3961 0.3969 0.4087 0.3962 0.3968 0.3947 0.3946 1.6723 1.6749 1.6745

2.0 0.3022 0.3028 0.3095 0.3022 0.3027 0.3020 0.3020 1.1778 1.1797 1.1794

5.0 0.1757 0.1763 0.1781 0.1759 0.1762 0.1759 0.1759 0.6175 0.6186 0.6186

10.0 0.1012 0.1020 0.1024 0.1018 0.1020 0.1019 0.1023 0.3403 0.3411 0.3410
The matrix A2 can be found from Eq. (2.21). In accordance with (2.11), on the basis of the obtained
elements of the matrices  ( ) we can restore the component . Expression (1.10) for  can
be reduced to the form:

(2.24)

In Table 2 we have given the values of  obtained from formula (2.24) for the same values of n which
were used earlier for obtaining . We will use the approach proposed above for finding the components

 and  and calculating the values of the corresponding reduced fluxes. In this case the system
of equations (1.14) and (1.15) with the boundary conditions (1.19) can be reduced to the form:

where the unknown matrices  (k = 1, 2)

and the column matrices  and  can be determined similarly to  and , in which  should be
replaced by  and  ( ), respectively.

In Table 2 we have given the values of  and  as functions of δ. From Tables 1 and 2 it can be seen
that rapid convergence in the mean is observed with increase in . It is necessary to note that coinci-
dence of the values of  and  is confirmed by the Onzager relation [1] and serves as an additional
criterion of the accuracy of the results obtained.
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3. GAS FLOWS AT ARBITRARY PRESSURE AND TEMPERATURE DROPS
We will now describe the second stage of the problem, namely, we will be find the mass f luxes as func-

tions of the pressures  and  and the temperatures  and  at the channel ends. In the case of small
temperature and pressure drops at the channel ends, the temperature and pressure distributions along the
channel can be assumed to be linear [1]. In this case the temperature and pressure gradients can be deter-
mined from the formulas [1]

where , ,  and the temperature and pressure drops are small:
 and . In this case the quantity JM remains constant. If the ratios 

and  are large, then the pressure distribution ceases to be linear and the quantity JM varies along the
channel.

We introduce the new reduced flux whose value does not vary along the channel as [1]

(3.1)

Expressing  from (1.9) and substituting in (3.1), with regard to (1.1) we obtain

(3.2)

Let , , and , then expression (3.2) can be written in the form:

(3.3)

It should be noted that, as distinct from  which does not vary along the channel, the quantities 
and  depend on z. This dependence manifests itself implicitly in terms of the parameter δ. For the
hard-sphere model we have the following relations [1]:

(3.4)

We will consider isothermal f low. In this case  ( ) and equation (3.3) takes the form:

(3.5)

Expressing p* from (3.4) and substituting in (3.3), we will integrate the left- and right-hand sides of
(3.5). Taking into account the fact that  is independent of , we obtain

(3.6)

In (3.6) the values of the integral can be found numerically from the formula

(3.7)

(3.8)

where the function  is defined above in (2.13). The values of  in (3.7) can be found using
the expansion of this quantity in a series in terms of the Chebyshev polynomials on the interval 
[13], where we take points (3.8) as the interpolation nodes in calculating the function (2.23). The calcu-
lations show that absolute value of the error is of the order of  for the number of series terms equal to
33. In the third, fourth, and fifth columns of Table 3 we have given the values of  obtained from for-
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Table 3

–  at T* = 1  at p* = 1 and  = 3.8

δ1 δ2

(3.7)
κpJM, 1(δ')  [20] δ1

(3.11)
(κTJM, 2(δ')

m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0.1 1.0 12.7720 12.7499 12.7494 12.6628 12.6270 0.1 0.6426 0.6375 0.6376 0.6007

1.0 10 22.4956 22.4719 22.4711 22.3691 22.3200 1.0 0.4579 0.4533 0.4535 0.4191

0.1 10 239.2577 237.5450 237.4764 235.4562 235.8180 10 0.1674 0.1630 0.1630 0.1376

*MJ *MJ 2*T
mulas (3.7) for m = 2, 4, and 8 on the intervals , , and . In the sixth column of Table 3
we have given the values calculated from the mean value theorem: , where κp =

 and . In the last column we have given the values of  obtained in [20] on the
basis of the BGK model of the kinetic equation. From Table 3 we can see that rapid convergence in the
mean is observed for small values of m in (3.7), the intermediate value of  being close to the arith-
metical mean. This corresponds to the assumption in [1].

Using the values of the parameter  found from formula (3.6), from (3.5) with regard to (3.4) we can
obtain the differential equation for 

with the boundary condition .

In Figs. 1 and 2 we have given the distributions  obtained by the Runge–Kutta method for the
values of δ1 and δ2 given in Table 3. These are, respectively, curves 1 and 2 for  and 1 and 
and 10 in Fig. 1 and curve for  and  in Fig. 2. From Figs. 1 and 2 it can be seen that for

= 0.1 and  the distribution  approaches the linear distribution (curve 1).
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Fig. 1. Pressure distribution  in the isothermal gas channel f low regime: curves 1 and 2 correspond to
 and , respectively.
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Fig. 2. Pressure distribution  in the isothermal gas channel f low regime: .
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We will consider isobaric f low. In this case p* = 1 ( ) and equation (3.3) can be reduced to the
form:

(3.9)

We will integrate (3.9). Taking (3.4) into account, we obtain

(3.10)

The values of integral (3.10) can be found numerically from the formula

(3.11)

where , , and  are determined in accordance with (2.13) and (3.8). In Table 3 we have rep-
resented the values of  calculated from formula (3.11) at m = 2, 4, and 8 for  and , ,
and . The temperature ratio  corresponds to the room temperature  К maintained in
the second container and the liquid nitrogen temperature  К in the first container [2]. For the
values of  shown in Table 3 the intervals of  are contained on the interval ; therefore, as in the case
of isothermal gas f low, we use the Chebyshev polynomials for the interpolated function . In the last
column in Table 3 we have given the values of  calculated from the mean value theorem

for the integral, where  and .

Using the values of the parameter  found in this case from formula (3.10), we obtain from (3.9) with
regard to (3.4) the differential equation for 

with the boundary condition .
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Fig. 3. Temperature distribution  for  in the isobaric gas channel f low regime: curves 1–3 correspond to
, 1, and 10, respectively.
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In Fig. 3 we have plotted the distributions  obtained by the Runge–Kutta method at 
and the values of  from Table 3. These are curves 1–3, respectively. From Fig. 3 we can see that with
increase in  the distribution  approaches to the linear distribution (curve 3).

We will now consider f low at T* and p* different from unity. In this case we will assume that the wall
heat conductivity and thickness do not vary along the channel. Then the temperature distribution can be
considered to be linear [2]: . The pressure distribution is not known in
advance and must be found as a result of solving Eq. (3.3) in which  is a parameter. The values of

 and  determine the boundary conditions. Let , then equation (3.3)
can be reduced to

(3.12)

with the boundary conditions  and .

In the free-molecular regime ( ) we have  and the general solution of the differen-
tial equation (3.12) takes the form:

(3.13)

where C is the integration constant. Substituting the boundary conditions  and  in
(3.13), we arrive at a system of equations for determining C and . As a result, we obtain

(3.14)

In the free-molecular regime for the cylindrical channel we have . At  =
3.8 for  and  the values of  found in accordance with (3.14) are equal to –75.6747 and
0.7327, respectively.
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Fig. 4. Pressure distribution  at  and : curves 1–4 correspond to , 1, 10, and 0, respec-
tively.
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Fig. 5. Pressure distribution  at  and : curves 1–4 correspond to , 1, 10, and 0, respectively.
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Substituting (3.14) in (3.13) and taking into account that  and T*(z*) =

, we obtain the pressure distribution along the channel 

(3.15)

In Figs. 4 and 5 the distributions  obtained from (3.15) at  for  and  are
shown by broken curve (curve 4).
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Table 4

δ1
–  × 10–2 at  = 100 and  = 3.8  at  = 1 and  = 3.8

(3.18) (3.17)  [2] (3.18) (3.17)  [2]

0.1 0.8974 0.9712 0.971 0.5871 0.6340 0.6324

1.0 2.8557 3.8326 3.818 0.3389 0.4312 0.4315

10 22.6028 33.2470 32.82 –0.2360 0.1474 0.1496

*MJ 2*p 2*T *MJ 2*p 2*T
In the intermediate regime  and  depend on the parameter δ whose values vary from δ1 to δ2.
Taking into account that , we can express p* from (3.4) and differentiate the equality obtained.
As a result, we have

(3.16)

Substituting (3.16) in (3.12), we obtain the differential equation for 

(3.17)

with the boundary condition . The solution of this equation can be found by the Runge–Kutta
method taking the parameter  so that  with the absolute error not greater than 10–4. As
the initial value of , we use the solution of the equation

(3.18)

where .

In Table 4 we have represented the values of  obtained from (3.18) and (3.17) at  and 
for  and , 1, and 10. In (3.17) for the interpolated functions  and  we used
the Chebyshev polynomials (m = 8). In Table 4 we have given the values borrowed from [2] in the last
column.

Taking into account the fact that  and , in accordance
with (3.16) we obtain the pressure distribution  along the channel. In Figs. 4 and 5 we have repre-
sented the distributions  at  and  for  and the values of δ1 from Table 4.

SUMMARY

The problem of mass- and heat-transfer in rarefied gas in a long cylindrical channel at arbitrary pres-
sure and temperature drops at the channel ends is solved within the framework of the kinetic approach.
The expressions for the mass and heat f luxes as functions of the pressure and temperature gradients are
obtained on the basis of the S-model of the Boltzmann kinetic equation using the Chebyshev polynomials
and rational functions. The mass and heat f luxes across the transverse channel cross-section are calcu-
lated for various rarefaction parameters. A comparison with similar results obtained by other authors is
carried out. The values of the mass gas f luxes are obtained in the intermediate and free-molecular f low
regimes as functions of the pressure and temperature at the channel ends and isothermal and isobaric rar-
efied gas f lows are investigated. The graphs of the gas pressure distribution along the channel are plotted.
For isothermal and non-isothermal gas f lows, the difference between the corresponding pressure profiles
along the channel axis is demonstrated. The technique proposed can be also applied to the channels of
other transverse cross-sections and another model of the surface interaction between the gas molecules
and the channel walls.
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