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Abstract—The surface oscillations of a two-layer drop of an ideal liquid are analyzed. It is shown that
two different oscillation frequencies of the taken mode can exist. The effect of the main parameters of
the liquids that compose the drop on the mode oscillation eigenfrequencies is analyzed. It is found that
a relative decrease in the outer liquid layer thickness leads to a decrease in the eigenfrequencies of both
in-phase and out-of-phase oscillations. An increase in the difference between the surface tension coef-
ficients leads to an increase in the eigenfrequencies. Relative increase in the inner liquid density
increases the eigenfrequencies of the in-phase mode and affects only slightly the eigenfrequencies of
the out-of-phase mode. Simplified expressions for the dependences of the eigenfrequencies of oscil-
lating free surface of a compound drop on parameters are obtained.
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The investigation of surface oscillations of liquid drops consisting of a liquid kernel and the surround-
ing layer of another liquid were began significantly later than the investigation of homogeneous drops.
One of the pioneer papers is considered to be [1] in which the stability of thin film on the drop surface was
investigated. In [2] the oscillations of a density-stratified drop of an ideal liquid were theoretically and
experimentally investigated, author’s attention being restricted to analysis of the effect of the wall thick-
ness on the oscillations frequencies. In successive investigations, some additional factors and features of
the behavior of compound drops, namely, rotation of f luid [3], damping of oscillations [4], stability of sur-
face [5], and the effect of shape and location of the kernel on the shape of the drop surface [6, 7], were
considered. Note that in [2, 4, 7] only the oscillation modes  were analyzed.

Investigator’s interest in the behavior of a compound drop did not become weaker, oscillations of the
compound drop on the horizontal surface were experimentally investigated [8] and the eigenfrequency
spectrum of compound drops was analytically studied [9]. The free surface of a compound drop whose
equilibrium shape differs from the spherical one was investigated using the numerical simulation
methods [10–14].

In the present study, the oscillations of the free surface of a compound drop are considered with the
aim to investigate the effect of the main liquid parameters on the oscillations and analyze the effect for
typical liquids used in the experiments. The second aim is to obtain simplified expressions for the studied
dependences on the parameters. It is also reasonable to consider the oscillations of both basic and higher
modes since the modern high-speed cameras and the image processing techniques make it possible to
identify and distinguish the third and higher mode characteristics [15].

1. FORMULATION OF THE PROBLEM
We will consider oscillations of a spherical drop of radius R consisting of two layers of immiscible invis-

cid incompressible liquids. The upper liquid layer of density  has the thickness . The inner liquid which
forms the drop “kernel” has the density . The surface tensions coefficients of the free drop surface and
the liquid interface are denoted by  and , respectively. The oscillations of the disturbed free surface of
the drop and the perturbations of the interface between the liquids will be described by the functions

 and , respectively. We will restrict our attention to consideration of capillary oscillations of
such a drop. The impact of the free-stream air f low is neglected.
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The problem is formulated and considered in the spherical coordinate system ( , , ) with the origin
at the center of mass of the drop. We will use the axisymmetric formulation of the problem, i.e., the depen-
dence of the quantities on the azimuthal angle  is neglected. Such an approach makes it possible to
reduce the volume of the algebra without loss of the generality of considerations.

In the mathematical formulation of the problem we will use the following dimensionless variables with
three characteristic scales, namely, the radius of the equivalent drop R, the density of the outer liquid layer

, and the surface tension coefficient . All remaining quantities in the equations will be expressed in
fractions of their characteristic scales:

The dimensionless quantities conserve the old notation.
We introduce the dimensionless ratios of the layer densities  and the surface tension coeffi-

cients .
We will restrict our attention to consideration of irrotational f lows . Owing to this fact, in the

problem considered we can go over from the vector fields of the liquid f low velocities V1, 2 to the corre-
sponding hydrodynamic potentials  and : .

The system of equations thus scalarized consists of the Euler equations in the Gromeka–Lamb form
for irrotational f lows:

where P1 and P2 are the hydrodynamic pressures in the outer and inner layers of the drop, respectively.
The equations of incompressibility of liquid can be transformed in the Laplace equations for the hydro-

dynamic potentials

The kinematic and dynamic conditions on the free surface are

where  and  is the pressure of the capillary forces on the free surface
and  is the hydrodynamic pressure of the surrounding medium. The normal to the free surface of the
drop n1 is determined by the formulas

The conditions on the interface between the media represent the kinematic and dynamic conditions
and the conditions of equality of the normal components of the liquid velocities:

where  аnd  is the pressure of the capillary forces on the inter-
face, and n2 is the normal to the interface between the media which can be determined from the expression

The integral conditions of conservation of the drop volume are as follows:

The integral condition of immobility of the center of masses of the drop can be written with regard to
the expression for  in the Cartesian coordinate system:  + jsinθsinϕ + kcosθ.
Thereafter, this expression is divided into three integrals {i, j,k} which represent the projections on the
Cartesian unit vectors. The integrals representing the projections on the axes determined by the unit vec-
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tors  and  vanish after integration with respect to the angle . After this algebra, the integral condition
can be reduced to the form:

The problem formulated above can be solved using the asymptotic methods: the wave perturbations of
the drop surface and the interface between the media are assumed to be small as compared with the drop
dimensions: . Here, the quantity  which represents the ratio of the surface oscil-
lation amplitude of the drop to its radius is the small parameter of the problem. The liquid velocity fields
induced by these perturbations and the hydrodynamic potentials will have the corresponding order of
smallness:  ~ ε. The hydrodynamic pressures and the pressures of capillary forces can
be represented in the form of expansions in the small parameter ε. Here and in what follows, the compo-
nent of the corresponding order in ε will be denoted by the superscript with an Arabic numeral in paren-
theses:

We will restrict our attention to the terms of the order of ε1 inclusively. The procedure of linearization
is carried out using the standard methods and then the problems of the zeroth and first orders in the per-
turbations amplitude is formulated.

2. CONSTRUCTION OF THE SOLUTION
The problem of the zeroth order in  consists of Euler’s equations and the dynamic boundary condi-

tions. The additional integral conditions are identically fulfilled. The equilibrium shape of the drop coin-
cides with that specified initially. The solution reduces to finding the hydrodynamic pressures in the
undisturbed two-layer spherical drop

To analyze the oscillations of the disturbed surface of the drop, the problem of the first order in  is
investigated:
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(2.11)

(2.12)

The functions describing the perturbations of the free surface  and the interface between the
media  can be represented in the form of expansions in the Legendre polynomials:

(2.13)

(2.14)

where the coefficients  and  have the sense of the oscillation amplitudes of the nth mode.
The kinematic problem consists of the Laplace equations for the hydrodynamic potentials with regard

to the boundedness conditions of the velocity field (2.3) and (2.4), the kinematic boundary condi-
tions (2.5) and (2.7), and the condition of equality of the normal velocity components (2.9) on the layer
interface.

In the spherical coordinate system the solutions of the Laplace equations (2.3) and (2.4) are well
known [16] and with regard to the boundedness conditions of the velocity field they take the form:

(2.15)

(2.16)

The solutions (2.15) and (2.16) and the expressions for the surface perturbation functions (2.13) and
(2.14) can be substituted in the kinematic boundary conditions (2.5) and (2.7) and the condition of equal-
ity of the normal velocity components (2.9). These conditions must be satisfied for any angle ; therefore,
we can use the linear independence of the Legendre polynomials by equating the coefficients of the poly-
nomials of the same order, after which the system can be reduced to the form:

(2.17)

Here and in what follows, prime denotes the partial derivative with respect to time.
From the above system (2.17) we can find the following expressions for the coefficients An, Bn, and Vn
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The additional integral conditions (2.11) and (2.12), written with regard to the expressions (2.13) and
(2.14), determine the amplitudes of the zeroth modes α0(t) and  and give the relation between the
amplitudes of the first modes α1(t) and β1(t) of the oscillations of the free surface and the interface

The absence of oscillations of the zeroth mode of the free surface  is determined by the require-
ment of conservation of the liquid volume. The relation of oscillations of the zeroth mode of the free sur-
face (α1(t)) with oscillations of the zeroth mode of the interface (β1(t)) follows from the introduced refer-
ence system located at the center of masses of the drop. Note that the zeroth mode of oscillations of the
free surface is related to the displacement of the drop kernel as a whole, while in the experiments [2] it was
obtained that the drop kernel is centered during several oscillation periods (i.e.,  and, consequently,
also α1(t), become equal to zero). In what follows, we will consider oscillations of the higher modes
with .

Using expressions (2.15) and (2.16) for the hydrodynamic potentials and the surface perturbation func-
tions (2.13) and (2.14), we can determine the expressions for the components of the pressures entering into
the dynamic boundary conditions (2.6) and (2.8).

The component of the hydrodynamic pressure of the outer liquid is determined from expression (2.1)
with substitution of the explicit form of the hydrodynamic potential (2.15):

(2.19)

The component of the hydrodynamic pressure in the inner liquid can be calculated from formula (2.2)
with substitution of expression (2.16):

(2.20)

The corrections of the order of  to the capillary pressure on the free surface and the interface between
the media can be calculated from formulas (2.10) with regard to expressions (2.15) and (2.16):
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Expressions (2.19)–(2.21) for the pressures are substituted in the boundary conditions (2.6) and (2.8).
The pressure balance on the free surface (2.6) with regard to (2.13), (2.18), and the linear independence
of the Legendre polynomials
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Using the similar substitution of (2.14) and (2.18) in (2.8), we obtain the evolutionary equation for
 and  on the interface between the media:
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The evolutionary equation can be also obtained from the mutual combination of Eqs. (2.22) and
(2.24). For this purpose,  is expressed from (2.22) and the expression obtained is substituted in (2.24).
Thereafter, equation (2.24) is solved with respect to  and the solution obtained is substituted in
Eq. (2.22) which takes the form:

(2.26)

(2.27)

The evolutionary equation (2.26) for  is the fourth-order homogeneous differential equation and
can be reduced to the characteristic equation for the eigenfrequencies  of individual oscillation modes
whose solution can be written in the form of the dispersion relation:

(2.28)

where the coefficients  of the evolutionary equation are determined by expressions (2.27) with regard
to expressions (2.23) and (2.25) for the coefficients . The values of the eigenfrequencies calculated
from formulas (2.28) correspond to the results published in [2].

3. ANALYSIS OF THE SOLUTION
We will analyze the case in which the drop is composed from two immiscible liquids taken in approx-

imately equal volumetric proportions. Restricting our attention to consideration of liquids of densities
close in the value, we obtain the parameter .

As an example, we will consider the water-oil (mineral or vegetable) pair of liquids in which the water
forms the inner liquid layer. The surface tension coefficient of water on the interface with air is approxi-
mately by 2.5 times greater than the similar coefficient for oils. Taking into account the Antonov rule for
the interfacial tension coefficient, we obtain the approximate value of the dimensionless parameter
σ = 1.5. We will consider the low modes of oscillations of the free surface of the drop .

As can be seen from Fig. 1, each of the modes of oscillations of the drop surface has two eigenfrequen-
cies, one of which is significantly greater than the other. For the purpose of comparison, curve 3 shows
the eigenfrequencies obtained by Lord Rayleigh [17] for the spherical drop of homogeneous liquid.

In dimensionless form, for homogeneous liquid (i.e., when the entire drop consists of outer-layer liq-
uid) the eigenfrequencies can be written by the formula . As shown in [2, 5], the high-
frequency surface oscillations (curve 1) correspond to the in-phase modes of oscillations of the kernel and
the outer layer, while the low-frequency surface oscillations (curve 2) correspond to the out-of-phase
modes.

We will now analyze the influence of the problem parameters on oscillations in both regimes. In order
to illustrate the difference from the case of homogeneous drop we introduce the parameter  as the ratio
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Fig. 1. Eigenfrequencies of oscillations as functions of the mode number for , , and : curves 1 and 2
correspond to two solutions of the biquadratic evolutionary equation (26); curve 3 corresponds to the eigenfrequencies of
surface oscillations of a spherical drop of homogeneous liquid [17].
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Fig. 2. Normalized oscillation frequencies  as functions of the dimensionless layer thickness  constructed for 
and : curves 1–4 correspond to  4, 5, respectively; I and II correspond to the in-phase and out-of-phase
modes, respectively.
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of the eigenfrequency (2.28) to the oscillation frequency of homogeneous drop . Such
a normalization makes it possible to reproduce the frequencies of several modes at once in the same figure
since their absolute values differ strongly from one another. In the further figures the normalized oscilla-
tion frequencies of homogeneous drop are equal to unity and the estimates of the oscillation frequencies
of compound drop are compared with the frequencies of homogeneous drop.

As can be seen from the dependences reproduced in Fig. 2, as  increases, in the in-phase regime the
normalized oscillation frequencies also increases as compared with homogeneous drop [17]. Variation in
the layer thickness affects more significantly the out-of-phase oscillation regime, namely, the frequencies
are considerably lower than the Rayleigh frequencies [17] but approach the latter, as the layer thickness
increases. Note that for the considered values of the parameters , , and  the coefficient  is small
as compared with  and  and the normalized frequency of out-of-phase oscillations can be
approximately described by the function

(3.1)

The rougher approximation which consists of the first term of expression (3.1) leads to junction of the
solutions corresponding to different oscillation regimes.
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We will estimate the influence of the surface tension coefficients of liquids. In the in-phase regimes the
oscillation frequencies become appreciably higher than the Rayleigh frequencies, as the dimensionless
ratio of the surface tension coefficients  increases. The dependences can be described by formulas (2.28);
however, correct to 4% they can be also approximated by the linear functions with  at 
and  for the nth modes at . In the out-of-phase regime, increase in  affects weakly the
oscillation mode amplitudes for the same parameters, increasing them only slightly, while the quantity

 amounts a few percent. When the liquid densities are close ( ), for the out-of-phase
oscillations when  the value of  is lower than  by two orders of magnitude and  has almost
no effect on the surface oscillations. For the in-phase oscillations the normalized frequency decreases with
increase in  and over the given limitations ( ) it can be approximated by the linear function with

 for the low modes ( ).
Note that the presence of the liquid kernel in the drop has the maximum effect on the oscillation fre-

quencies of the basic second mode. This can be seen from Fig. 2, in which the curves corresponding to
n = 2 are located farther from those for the eigenfrequences for the homogeneous drop  as compared
with the remaining curves. The higher-mode frequencies also differ significantly from the eigenfrequences
for the homogeneous drop and this fact must be taken into account in simulating the surface of the oscil-
lating drop which contains a liquid kernel.

SUMMARY
Two values of the eigenfrequencies of oscillations of the free surface of a compound drop are obtained.

In the in-phase regime the oscillation frequencies are higher than the oscillation frequencies of homoge-
neous drop (the case of absent liquid kernel).

In the in-phase oscillation regime, decrease in the dimension of liquid kernel, decrease in the differ-
ence between the liquid densities, as well as increase in the ratio of the interfacial tension coefficients 
lead to increase in both the eigenfrequencies and their difference from the eigenfrequencies in the case of
homogeneous drop.

In the out-of-phase regime the oscillation frequencies are lower than the frequencies in the case of
homogeneous drop and this difference increases as  and the layer thickness decrease. Variation in the
density ratio over the range  has an only slight effect on the frequencies in the out-of-phase
regime.

Within the framework of the parameter range investigated the dependences of the normalized frequen-
cies on  can be approximated by the linear functions correct to 4%.

The difference of the oscillation eigenfrequencies from the frequencies of homogeneous drop is essen-
tial also for the higher modes. This fact must be taken into account in simulating the surface of a com-
pound drop.
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