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Abstract—We study the motion of an incompressible viscous conducting f luid, which initially rotates
as a solid at a constant angular velocity together with parallel bounding walls under the action of lon-
gitudinal vibrations of one of the walls beginning suddenly and a magnetic field suddenly applied to
one of them. The walls make an arbitrary angle with the axis of rotation. The magnetic field is applied
along the wall normal. In the general case, the solution is presented in the form of a series. The vectors
of tangential stresses that act on the gap walls from the f luid are presented. Some particular cases of
the wall motion are discussed. The results are used to study individual structures of the boundary layers
at the walls. This study generalizes studies [1–3].
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INTRODUCTION
In this study, we investigate an unsteady f low of an incompressible viscous conducting f luid in a rotat-

ing gap in an external uniform magnetic field. The unsteady f low is induced by nontorque vibrations of
one of the gap walls. The formulation of the problem is schematically illustrated in Fig. 1. To the best of
our knowledge, the problem is formulated in such a way for the first time. It is shown that, without rota-
tion and magnetic field and with the fixed wall removed to infinity, the solution passes to the well-known
solution of the problem on the unsteady motion of a f luid bounded by a moving plane wall [1]. In zero
magnetic field at the fixed wall removed to infinity, the solution coincides with the results of [2] and, in
zero magnetic field, the solution passes to the solution of [3]. In recent study [4], the f low of a conducting
fluid between parallel walls was investigated, but the f luid was assumed to be ideal and the examined flow
was stationary.

1. EXACT SOLUTIONS OF THE EQUATIONS OF MAGNETIC HYDRODYNAMICS
We solve the problem in the following formulation. A gap with width l formed by two infinite parallel

walls  and  with insulating properties is filled with an incompressible viscous conducting f luid. The
gap with the f luid rotates as a whole at the constant angular velocity , such that the vector 

and the walls make constant angle . A particular case of zero magnetic field  was dis-

cussed in [5].
We relate the Cartesian system of coordinates  with the basis vectors  to the plane  so that

the plane  coincided with the plane  and the  axis was directed along the normal to it inside the
fluid. In this system of coordinates, the walls and liquid are at rest. At the instant of time , the wall

 starts moving in the longitudinal direction at the velocity . At the same instant of time, the external
magnetic field  is applied along the wall normal. The problem is schematically illustrated in
Fig. 1.

Below, we investigate the propagation of the perturbation in a homogeneous conducting medium
under the action of a uniform magnetic field and longitudinal vibrations of the wall.
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Fig. 1. Schematic of the problem.
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The motion of a f luid in the system  rotating at angular velocity  in the magnetohydrodynamic
approximation (an infinitely conducting f luid) is described by the equations of magnetic hydrodynamics
and the boundary and initial conditions, which can be presented in the conventional notation as

(1.1)

where  is the radius vector relative to the pole O,  is the velocity of the f luid, P is the pressure,  is the
density,  is the kinetic viscosity, U is the potential of the external mass forces,  is the magnetic induc-
tion,  is the magnetic permeability, and Q is the f luid volume.

We will find the solution of system of Eqs. (1.1) in the form

, where  is the unknown pressure function.
Then, system (1.1) falls into the two subsystems
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The equation for the pressure field is written in the form

(1.3)

We introduce the complex structure

Then, system of Eqs. (1.2) takes the form

(1.4)

and the boundary and initial conditions are

We exclude the magnetic induction from Eqs. (1.4) and obtain

(1.5)

We write the solution of Eq. (1.5) using the Duhamel integral

(1.6)

Here,  is the solution of the boundary problem
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and we have

(1.9)

The solution of Eq. (1.9) takes the form

Having determined the integration constants c1 and c2 from the boundary conditions, we obtain

(1.10)

We introduce the function

and decompose it into simple fractions [7]

We make the designation  Then, we have

(1.11)

Using the well-known operator calculus formulas [6], we obtain

(1.12)

where L–1 is the reciprocal Laplacian and

Substituting (1.11) into (1.10), we obtain, with regard to (1.12), the solution of Eqs. (1.7) in the space of
originals

(1.13)

Thus, the solution of problem (1.5) is determined by formulas (1.6) and (1.13). Substituting (1.13) into
(1.6), we obtain the desired field of velocities of the viscous conducting f luid.
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The vectors of tangential stresses that act on the upper and lower gap walls from the f luid side are deter-
mined from the formulas

The velocity field, magnetic induction vector, and vectors of the tangential stresses acting on the plates
from the f luid can be used to take into account the force effects during the motion of a f luid in channels
of different shapes, as well as in the filtration problems and modeling different physical phenomena in a
moving f luid.

2. FIELD OF VELOCITIES OF THE FLOW INDUCED BY THE MOTION 
OF ONE OF THE WALLS

Let one of the planes Q0 that forms the gap boundaries move in the longitudinal direction at the veloc-

ity , where λ = –α + iω.
We investigate normal vibrations of a viscous conducting f luid inside a rotating gap, i.e., a class of

movements in which all time factors depend on time with the factor . Then, system of Eqs. (1.4) takes
the form

(2.1)

The boundary and initial conditions are
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function 

(2.2)

and the boundary conditions

(2.3)

The general solution of Eq. (2.2) has the form

where  and  are the arbitrary complex constants and

( ) ( )∂∂= −
∂ ∂

v1
0

0

ρν τ 0, τˆˆ τ,ˆ
t

f u t d
t y

∞
−

==

  +∂ = − + −   ∂   
 α1

10

α 2Ω1 1 2 cosω sinω ,
ω

ˆ nt n
n n

nny

ie t t
y l
v

( ) ( )∂∂= τ −
∂ ∂ 1

0

ˆρν ,   τ τ, ˆ ˆ
t

lf u l t d
t l

v

( )
∞

−

= =

  +∂ = − + − −   ∂   


v α1

1

α 2Ω1 1 2 1 cosω sin ω .
ω

ˆ nn t n
n n

y e nn

ie t t
l l

= λ( ) (0) tu t u e

λte

∂ ∂λ − Ω = ν +
∂∂

∂λ =
∂

2
0

2

0

2 ,
μρ

    

ˆˆˆ ˆ

ˆ,ˆ

B Bi
yy

B B
y

v
v v

v

( ) ( ) ( )= = = =v 0 
ˆ0, 0 at 0, 0, 0,ˆˆ att u y B t B y

( ) ( )= = = =0
ˆ, 0  at , ,  ˆ at ,l t y l B l t B y lv

( ) ( )= = = >v ,0 0, ,0 0  at  ˆˆ 0, 0.y B y t y

v̂( )y

∂ λ −= < <
∂ ν +

2

2 2
0

   2Ω  , 0 ,

μρ

ˆ

λ

ˆi y l
y B
v

v

( ) ( ) ( )= =0 0 , 0ˆ ˆˆ .u u lv

−= +v 1 2
ˆ) ,( ˆˆ qy qyy C e C e

1̂C 2̂C
FLUID DYNAMICS  Vol. 54  No. 8  2019



1048 GURCHENKOV
(2.4)

Determining the integration constants from boundary conditions (2.3), we obtain the normal vibra-
tions of a viscous conducting f luid in a dc magnetic field in the rotating gap

(2.5)

Here, we can see that any of two roots of Eq. (2.4) can be taken as q. Using Eq. (2.5), we find the vectors
of the tangential stresses that act on the upper and lower gap plates from the f luid side

(2.6)

(2.7)

It follows from Eqs. (2.5)–(2.7) that the field of the f luid velocities and the forces of friction strongly
depend on the complex parameter q, which relates the parameters of the harmonic vibrations of the plates
and rotation of the gap.

3. STRUCTURE OF THE BOUNDARY LAYERS
Let us consider Eq. (2.5) for the velocity field in more detail. We express the frequency q as

(3.1)

where δ is the thickness of the boundary layer and k is the wavenumber.
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Then, the quantities  and , which have the physical meaning of a boundary layer thickness and
wavenumber, respectively, are determined by the formulas

(3.2)

We present velocity field (2.5) as a superposition of two traveling waves

(3.3)

(3.4)

Then, the wavenumbers are
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These waves propagate along the axis toward one another at the same phase velocity and depend on
frequency. It means that the viscous conducting f luid is a dispersing medium.
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The group velocities of these waves  also coincide. They depend on the damping

coefficient, parameters of wall motion, velocity of rotation of the system, magnetic induction, and param-
eters of the f luid. The amplitudes of these waves depend on the gap depth, projection of the angular veloc-
ity onto the у axis, parameters of the wall motion, magnetic induction, and parameters of the f luid.

We assume the field induction to be . Let us consider the resonance case . Then,
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ing coefficient, and projection of the angular velocity of the gap rotation onto the Оу axis. The wavenum-
ber and boundary layer are independent of the magnetic permeability and conductivity of the f luid.

At α = 0, the wavenumber is k = 0 and the motion of the f luid is reduced to the vibrations. In this case,
the boundary layer fills the entire gap and is considered to be missing.

CONCLUSIONS
The problem of the unsteady f low of an incompressible viscous conducting f luid in the plane-parallel

configuration was analyzed. The exact solutions of the three-dimensional nonstationary equations of
magnetic hydrodynamics were found. No limitations on the nature of plate motion were imposed. The
velocity field in the f low and the vectors of tangential stresses acting from the f luid on the gap walls were
determined. For the case of normal vibrations of one of the walls, the resonance case was considered and
the structure of the boundary layers adjacent to the walls was investigated. The mathematical procedure
of integration of the system of differential equations of the investigated problem can be used to study more
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complex problems. The results can also be used to take into account the force effects during the motion of
a f luid in channels of different shapes and solve the problems of filtration, as well as in modeling various
physical phenomena in a moving f luid.
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