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Abstract—The structure and dynamics of f lows near a horizontal and inclined plates in stratified and
homogeneous f luids in a transient vortex regime are studied for various angles of inclination of the
plate to the horizon and various geometrical modifications of its front and rear edges. This study is
based on high-precision numerical modeling of the fundamental system of equations, which allows
calculations of both stratified and homogeneous viscous liquids in a unified formulation. Instanta-
neous patterns of the vorticity fields, pressure gradient, and density, as well as the values of forces and
moments acting on the surface of the plate are analyzed at different inclination angles, curvature radii
of the front edge of the plate, and sharpness coefficients of the rear part. The pressure field consists of
multi-scale spotted structures with a negative values of pressure, corresponding to the positions of vor-
tical elements of the f low, whose spatial and time scales, geometric features, manifestation level, and
dissipation rate essentially depend on the angle of inclination of the plate to the horizon, geometrical
modification of its edges, and the type of the f luid. Special attention is paid to the fine structure of the
flow near the front edge of the plate, which is the area with the most diverse scales of the f low, in which
both large-scale and small-scale vertical structures form and actively interact.
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INTRODUCTION
Starting with the pioneering work by D’Alembert [1] and Euler [2], calculations of f low patterns

around obstacles with the evaluation of forces acting on their surface occupy a leading place in theoretical
and experimental f luid mechanics due to the fundamental nature of such problems and the wide range of
practical applications. One of these is the optimization of structures according to a number of criteria, the
expansion of the range of sustainable f light of aircraft, submarines, and surface vehicles, the development
of reliable control systems ensuring stability in a wide range of f light and environment conditions, etc.

Particular attention is paid to calculating the f low around obstacles of a fairly simple form, e.g., plate,
cylinder, sphere, etc., which are often studied to verify numerical algorithms, improve methods of f low
control [3], analyze f low structuring and turbulence mechanisms [4], etc. In view of the mathematical
complexity of the problem, a number of approximate models of f low around obstacles were developed at
the beginning of the last century, including the Blasius solution for a horizontal half-plane in a boundary
layer in the homogeneous f luid approximation [5]. As a rule, such approaches do not take edge effects into
account, which makes such idealized models applicable only to rough estimates of the f low structure on
a part of a surface of a fairly simple form. The Blasius solution, obtained under the assumption of constant
pressure along the normal to the surface without taking edge effects into account, was used for more than
100 years to compare with the data of laboratory experiments and numerical simulation. However, the
structure and dynamics of the f low around a plate essentially depend on its thickness, the angle of incli-
nation to the horizon, and the quality of the surface, which determines the fields of velocity, pressure, and
their gradients.

A number of experimental and numerical studies of f lows around horizontal and inclined plates have
been conducted to understand the fundamental regularities governing the formation and development of
the structure and dynamics of f lows. One of the earliest works concerning the vortex formation behind a
958
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plate with sharp edges was performed in [6], where the f low field around a f lat plate was analyzed for 18
different angles of attack. Numerical modeling of f lows behind an inclined f lat plate with sharp edges was
performed in [7–10] using various techniques, including DNS, DES, RANS, and LES, which studied the
effect of edge-generated vortices on the structure of the wake f low and specificities of the formation and
development of successive stages of the transition from stationary to chaotic f low around an inclined plate.
Experimental studies on the visualization of the f low structure in the wake behind an inclined f lat plate at
α = 15° using the phase-averaged laser Doppler anemometry were performed in [11], which showed the
dominance in a wake f low of vortex structures detached from the rear edge of the plate and rotating coun-
terclockwise, and whose formation, development, and subsequent transfer are studied in accordance with
the successive stages of the vortex formation cycle.

In practice, the structure and dynamics of f lows substantially depend on the geometrical irregularities
of the obstacle’s surface, in particular, thickness, the quality of the front and rear edges, and the inclina-
tion angle of the plate, which determines the velocity and pressure fields, as well as their gradients.
Although the number of publications concerning the study of f lows in the wake behind a plate oriented in
the direction of the incident f low is very large, some earlier and recent problems remain unsolved. One of
the most relevant problems is the choice of the shape and thickness of the front edge of a straight wing,
which was thin in O. Lilienthal’s aviation experiments [12] and was thick in the later design of the Wright
brothers’ aircraft [13], which took a shape similar to the wing profiles in modern aviation. Many studies
have been published in recent years on the influence of the geometrical shape of the front and rear edges
of plates and wings on the structure and dynamics of the f low [14–16]. Much attention was paid to the
study of vortices generated by the front edge during wing f laps, which presumably play a significant role
in the mechanism of insect f light [17].

Under natural conditions, the structure and dynamics of f lows also depend on the real properties of
the f luid, since the density of the f luid in the environment and industrial devices is not constant due to the
nonuniformity of distribution of the concentration of solutes or suspended particles, as well as tempera-
ture or pressure [18], which, under the action of buoyancy force, leads to the formation of a stable strati-
fication with a buoyancy period ranging from a few seconds in the laboratory conditions to ten minutes in
the Earth’s atmosphere and hydrosphere [19].

In this paper, using a numerical simulation, we analyze the multi-scale structure of the f low around an
inclined plate in a transient f low regime on the basis of the fundamental system of equations of f luid
mechanics, which makes it possible to study the f low in a unified formulation. This study is a logical con-
tinuation of previous works, in which the structure and dynamics of stratified f lows near immobile [20]
and uniformly moving horizontal plates in the linear [21] and complete nonlinear formulations [22, 23]
were studied.

1. THE SYSTEM OF GOVERNING EQUATIONS
Mathematical modeling of the f low around an inclined plate is based on the fundamental system of

equations for a multi-component inhomogeneous incompressible f luid in the Boussinesq approximation.
The effects of buoyancy and diffusion of the stratifying component are taken into account, and the effects
of heat conduction and energy release due to dissipation are neglected [24]. Thus, the governing equations
take the form:

(1.1)

Here,  is the salinity perturbation, including the salt compression coefficient,  is the

induced flow velocity vector,  is the pressure minus hydrostatic one,  and

 are the kinematic viscosity and salt diffusion coefficients, and  and  are the
Hamilton and Laplace operators.

The proven solvability of the two-dimensional equations of f luid mechanics makes it possible to simul-
taneously carry out calculations for stratified (strongly, when  m, , and  s and
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weakly when  km, , and  min), and for potentially homogeneous fluids, in which

the density variations are so small (  km, , and  days) that they cannot be reg-
istered by existing technical means, but the original mathematical formulation is preserved, as well as for
actually homogeneous media ( , , and ). In the last case, the fundamental system of
equations degenerates in the part of singular components [25].

The physically justified initial and boundary conditions are the no-slip and impermeability conditions
on the obstacle’s surface for the velocity components and total salinity, as well as the conditions of unper-
turbed external f low at a sufficiently large distance from the body:

(1.2)

where  is the uniform velocity of the incident f low at infinity;  is the outward normal vector to the
obstacle’s surface , which is here a f lat plate of length  and thickness , placed at an angle  to the hori-
zon, as well as a plate with some geometrical modifications of the edges, which are characterized by
dimensionless parameters such as the rounding diameter of the plate’s front edge, , and the
sharpness coefficient of the rear edge, , where  is the thickness of the plate at the rear edge; ,

, and  are the initial perturbations of the fields of the corresponding physical variables, which are deter-
mined from the numerical solution of system (1.1) with trivial boundary conditions at infinity and zero
gradient of the total salinity along the normal to the plate surface. The so-called diffusion-induced f lows,
which arise as a result of the interruption of the molecular f low of the stratifying component by the imper-
meable surface of an immobile obstacle, have been carefully studied by the authors for various geometrical
shapes of the obstacle [19, 20].

The system of equations and boundary conditions (1.1) and (1.2) are characterized by a set of param-
eters that have the dimensions of length  and time  and also contain dissipative
coefficients.

Large dynamic scales: the internal wavelength  and the viscous wave size

, reflect the structure of the attached wave field. The fine structure of the f low is
characterized by universal microscales  and , defined by dissipative coefficients
and buoyancy frequency (analogs of the Stokes scale on an oscillating surface, ). Another pair:
the Prandtl and Peclet scales, are determined by dissipative coefficients and the velocity of the body:

 and  [21, 25].
The ratios of the intrinsic scales of the problem are specified as characteristic dimensionless combina-

tions: the Reynolds number , the internal Froude number , the
Peclet number , the sharpness coefficient , and coefficient specific for strat-
ified f lows. The additional dimensionless ratios include the scale ratio : the ratio of the buoyancy
scale  to the obstacle size ; this is an analogue of the inverse Atwood number 
for continuously stratified media.

Such a variety of length scales with significant differences in values indicates the complexity of the
internal structure of even such a slow flow induced by small buoyancy forces, which arise as a result of the
spatial nonuniformity of the molecular f low of the stratifying component. Large scales define the mini-
mum sizes of the observation and computation domains that must contain the structural elements under
study: outrunning perturbations, wake, waves, vortices, and the microscales determine the cell size and
time step. At low velocities  of the plate, the critical microscale is the Stokes scale and, at high velocities,
the Prandtl scale.

2. NUMERICAL SOLUTION
System of equations (1.1) with boundary conditions (1.2) was solved numerically using our solvers and

libraries of dynamic meshes as part of an open source OpenFOAM software package based on the finite
volume method [26]. For the discretization of the convective terms and the time derivative, we used a lim-
ited TVD scheme and an implicit three-point second-order backward difference scheme, respectively,
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which provide minimal numerical diffusion, the absence of non-physical oscillations of the solution, and
good time resolution of the physical process. In orthogonal regions of the mesh, the diffusion terms are
discretized on the basis of the Gauss theorem, and the normal gradient to the surface is calculated from
the edge of the computational cell using second-order interpolation of the vector connecting the centers
of two adjacent cells. In non-orthogonal areas of the computational mesh, an iterative procedure with a
user-specified number of loops correcting the errors caused by the skewing of the mesh.

Two different approaches have been implemented in this numerical simulation. The first consists in
imposing the boundary conditions for the free f low and zero gradient at the inflow and outflow boundar-
ies of the computational domain, respectively, while the positions of the cells of the computational mesh
and the obstacles remain unchanged. The second approach, in which the plate executes a uniform motion
in a steady f luid, is implemented using dynamic computational mesh methods within the OpenFOAM
package, which makes it possible to accurately reproduce the conditions of a laboratory experiment sim-
ilar to those implemented in the Fluid Mechanics Laboratory of the Ishlinsky Institute for Problems in
Mechanics of the Russian Academy of Sciences [27]. This approach also makes it possible to avoid the
nonphysical perturbations arising at the outer boundaries of the computational domain and to adequately
model the structure and dynamics of the f low at the initial stage of the plate’s motion. Both approaches
give slightly different results at the initial stage, but they are in good agreement at large times, when some
repeating patterns can be distinguished on the background of the general unsteady f low.

The algorithm for constructing an orthogonal computational mesh around a plate oriented at an arbi-
trary angle to the horizon consists in creating separate blocks of the mesh, including an internal cylinder
rotating with the plate when its angular position changes, a mesh block attached to the cylinder and com-
plementing it to a parallelepiped, and two more blocks, connected to the parallelepiped on both sides.
When the inclined plate moves, the central cylinder and the adjacent mesh blocks move with the plate,
while the side mesh blocks are compressed and stretched, respectively, so that the vertical boundaries at
the inflow and outflow boundaries remain unchanged.

The spatial sizes of the computational cells were chosen from the condition of adequate resolution of
the smallest f low components associated with the stratification and diffusion effects, which impose sig-
nificant restrictions on the minimum spatial step: the high-gradient areas of the f low should accommo-
date at least several computational cells in the minimum linear scale of the problem. The computational
time step is determined from the Courant condition , where  is the minimum size of
the computational cell and  is the local f low velocity.

3. CALCULATION RESULTS

The calculations were performed for four types of f luids, including strongly (  s–1) and weakly
(  s–1) stratified, as well as potentially ( s–1) and actually ( ) homogeneously f luids.
Density variations in a potentially homogeneous f luid are infinitesimal, but the original mathematical for-
mulation is preserved in this case, whereas, in an fully homogeneous f luid, the density is considered con-
stant and the fundamental system of equations degenerates in the singular components [24, 25].

The structure of a stratified f low around an inclined plate is significantly transformed with increasing
velocity of the plate, starting from multi-level diffusion-induced circulation f lows that occur when molec-
ular f low is disturbed by an impermeable immobile obstacle [19, 20] to complex unsteady vertical and
fine-structured regimes at relatively large Reynolds numbers, when all components of the f low are
involved in a complex nonlinear interaction [22]. We can distinguish a number of typical f low regimes,
depending on the prevalence of one or another structural component of the f low, such as vortices, which
are common to all types of f luids, and internal waves, outrunning perturbations, and thin interlayers typ-
ical of stratified media [23].

Of the most practical significance are studies of an unsteady vortical regime around obstacles at rela-
tively large Reynolds number. Figure 1 shows instantaneous patterns of the pressure perturbation field at
different inclinations of the plate to the horizon for two types of f luid: highly stratified and potentially
homogeneous. These patterns demonstrate a number of common features, including an increase in pres-
sure in front of the obstacle and a pressure drop in the spotty structures around the plate, which are local-
ized at the centers of the vortex elements generated by the front edge of the plate. The maximum and min-
imum pressure values and their location in space essentially depend on the angular position of the plate
relative to the horizon and the type of f luid.

All components of the f low actively interact with each other, with the fine structure, and even with
attached internal waves, which, in this case, significantly exceed the observation region. Even at small
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Fig. 1. Instantaneous patterns of pressure perturbation field around an inclined plate for different inclination angles to the
horizon:  (left) highly stratified f luid and (right) potentially homogeneous f luid. 
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inclination angles of the plate, the vortex dynamics noticeably differ in the areas above and below the
plate, so that the intensity and scale of the vortices generated by the upper boundary of the front edge and
drifting downstream along its surface are noticeably larger in the area above the plate (Fig. 1a). In this
case, the vortices under the plate are seen more clearly in the case of a potentially homogeneous f luid,
which is explained by the overwhelming influence of the stratification effects.

With increasing inclination angle of the plate, the vortex dynamics of the f low on its lower upstream
side is suppressed by the effect of the incident f low, while the scales of the vortex structures forming above
the upper side of the plate and in its wake increase (Figs. 1b–1d)). The differences in the intensity, posi-
tions, scales, and decay rates of the generated vortex structures for different types of f luids under consid-
eration increase with increasing inclination angle of the plate.

The f low around an inclined plate is a complex multiscale nonstationary physical process, accompa-
nied by the interaction of large- and small-scale components with each other and with the incident f low.
All components of the f low are characterized by their own geometry, spatial and temporal scales, mani-
festation level, and dissipation rate, which must be carefully studied both theoretically and experimentally
with allowance for the effects of diffusion, heat conduction, and compressibility, as well as with control of
the observability criterion and resolution of all different-scale components of the f low.

Of particular scientific interest is the study of the fine structure of the f low near the front edge of an
inclined plate, which is the most diverse-scale region of the f low, where both large and small vortex ele-
ments, which actively interact with each other, are formed. The fine structure of the f low near the front
edge of an inclined plate is illustrated by instantaneous patterns of the horizontal component of the density
gradient  and the baroclinic vorticity generation rate , the fields of which are shown
in Fig. 2. Amplification of images in a specific region of the f low makes it possible to identify the complex
small-scale structure of the fields and evaluate the geometrical features of the structural elements. Each
physical variable entering into the original system of equations reveals some new important features of the
flow, favoring a better understanding of the general regularities of the physical process under consider-
ation.

∂ρ ∂/ x −Ω = ∇ × ∇ ρ�

1( )P
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Fig. 2. (a–d) Instantaneous pattern of the horizontal component of the density gradient field and (e–h) baroclinic vor-
ticity generation rate of near the front edge of an inclined plate for different angles of inclination to the horizon in a highly
stratified f luid (top down: ).
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The field patterns of the horizontal component of the density gradient, which is linearly dependent on
the refractive index of light visualized in laboratory experiments using schlieren [27], have a complex fine
structure due to the small ratio of diffusion and viscosity coefficients (left side of Fig. 2). The fine-struc-
tured layered elements of both signs are localized mainly on the vortex shells and in the regions of the f low
with intense vortex interactions. The larger the plate inclination angle to the horizon, the more complex
the field structure and the greater the length of the observed layered elements. For , perturbations
of the f low on the upstream side of the plates are suppressed by the incident f low, while the field structure
over the downstream side becomes much more complicated due to the development of multiple vortex
interactions, accompanied by merging, splitting, and complex transformations of different-scale vortex
elements of the f low.

The field of baroclinic vorticity generation rate, the patterns of which are shown in Fig. 2 on the right,
is determined, according to the Bjerknes theorem, by the noncollinearity of pressure and density gradi-
ents. This field is the most complex and structured in f lows of inhomogeneous f luids. In the vicinity of
the front edge of the plate and in front of the body, there are areas of generation and dissipation of vorticity
with scales much smaller than the plate thickness. With increasing inclination angle, the structural ele-
ments become thinner and much more complicated: a number of multiple fine-structured regions of
amplification and attenuation of vorticity, which gradually elongate with their downstream motion,
appear. The geometry of the field of the baroclinic vorticity generation rate explains the dynamics of for-
mation of the fine structure of the vortex f low, as well as the mechanism of field splitting into a series of
layered structures clearly observed in the shadowgrams of stratified f lows in laboratory experiments
[21, 27].

α ≥ °10
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Of great practical interest is the analysis of the structure and dynamics of a stratified f low in a non-
stationary vortex regime, in which temporal and spatial scales, manifestation level, and dissipation rate of
the forming vortex structures essentially depend on the geometrical shape of the plate edges. The calcula-
tion results presented below illustrate instantaneous patterns of the vorticity, pressure, and density gradi-
ent fields, which allow a comprehensive analysis of the structure and dynamics of the f low for different
curvature radii of the front edge and sharpness of the rear edges of the plate.

The front and rear edges of a horizontal plate are special areas of the f low in which the vorticity vector
 is generated due to the general reorganization of the velocity field and the baroclinic effects.

Vortex structures form at the front edge of a rectangular plate with sharp edges with a frequency of about
4 Hz, then detach from its surface at some distance downstream and attach again to the surface at the cen-
ter of the plate (upper part of Fig. 3a). Then the vortices generated by the front edge drift downstream
along the surface and interact with the vortex street that forms in the wake behind the rear edge of the plate
with an oscillation frequency of about 5 Hz. As a result of multiple complex interactions of two vortex sys-
tems in the wake f low, a new system is formed with a wake frequency of approximately two times lower
than that of the original vortex street. It can be seen that the vortices from the front edge and the vortex
street in the wake of a rectangular plate with sharp edges are clearly delineated and have an average spatial
scale comparable to the thickness of the plate.

With increasing curvature radius of the edge, the vortex structures decrease in scale and intensity and
take more diffuse and elongated forms as they move downstream (upper part of Fig. 3b). At the maximum
radius of the front edge, the scales of the vortices decrease almost by a factor of two in comparison with a
plate with sharp edges and, as they move downstream, take the form of attenuating wave perturbations. In
this case, the vortices from the front edge dissipate fairly quickly, even before reaching the rear edge of the
plate, and, therefore, do not have a significant effect on the wake, which, in this case, preserves the struc-
ture of the primary vortex street.

The patterns of the pressure field for all considered configurations of the plate edges (lower part of Fig. 3)
demonstrate a number of common features, including an increase in pressure in front of the obstacle and
a pressure drop in spotty structures around the plate, which are localized at the centers of the vortex ele-
ments generated by the plate edges. The patterns presented show that the intensity, spatial scales, mani-
festation level, and dissipation rate of the typical structural elements of the pressure field essentially
depend on the considered geometrical configuration of the plate edges.

With increasing curvature radius of the front edge, the high pressure area in front of the obstacle and
the spotty low-pressure structures above and under the plate are significantly reduced in intensity and
scale due to the smoothing and stabilizing effect of the rounded edge on the vortex dynamics. In the case
of a maximally rounded front edge of the plate (lower part of Fig. 3c), the dynamics of the wake f low is
most intense due to the minimal influence of the downstream-drifting vortices from the front edge on the
wake f low, which preserves the primary structure of the vortex street. In the case of a plate with a rounded
front edge and a sharp rear edge (bottom of Fig. 3e), whose shape is closest to the typical airfoil, all per-
turbations of the pressure field practically disappear at a distance from the rear edge of about half the plate
length and the vortex dynamics of the f low becomes least intense and least-scale in comparison with the
other considered geometrical configurations of the plate.

Each individual physical variable entering into the original system of equations reveals its own aspect
of the physical phenomenon under consideration, which, in general, contributes to a more complete
understanding of the physical mechanisms underlying the formation and development of stratified f lows
near obstacles. The most general and complete analysis of the physical process should be based on the fun-
damental system of equations, which most comprehensively reveals the features of the physical process
thanks to the extended set of physical variables entering into the system [25].

From the field patterns of the horizontal component of the density gradient shown in Fig. 4 for differ-
ent geometrical configurations of the front and rear edges of the plate, one can obtain additional informa-
tion on the fine-structured elements of the f low, which are practically indistinguishable in the fields of
other physical variables. Shadow imaging methods reveal a wide variety of fine-structured components
around moving bodies in a stratified f luid, including ligaments: small-scale links, interfaces, shells, fibers,
etc., which are very similar to those observed in the calculated patterns of the horizontal component of
the density gradient, which linearly depend on the refractive index of light detected in the laboratory
experiments [21, 25].

The field patterns consist of a multitude of small-scale multilayered structures of both signs, which are
oriented mainly along the streamlines of the vortex f low elements, forming a system of spiral curls typical
of vortices. Fine-structured elements are also localized in the areas of the f low where various f low com-
ponents actively interact with each other, the incident f low, and the obstacle’s surface. The fineness of the

= curlΩ v
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Fig. 3. Instantaneous patterns of the (a–e) vorticity and (f–j) pressure fields near the horizontal plate with different geo-
metrical modifications of its front and rear edges: . 
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field structure of the horizontal component of the density gradient is explained by the smallness of the
ratio of the diffusion and kinematic viscosity coefficients.

The shortest and finest structures are concentrated near a rectangular horizontal plate with sharp edges
in the shells of the vortices generated by its front edge, while, in the wake f low, these structures begin to
lengthen, thicken, and become more complicated as they develop downstream from the rear edge of the
plate (Fig. 4a). The curvature of the front edge affects the number of fine-structured elements in the area
of the f low above and below the plate within the specified range of the horizontal component of the den-
sity gradient (Figs. 4b and 4c). At the same time, perturbations of the field are well-defined in the entire
region of visualization of the wake f low with all considered geometrical configurations, in contrast to the
patterns of the vorticity and pressure fields, in which, in the case of an airfoil-type plate, wake perturba-
tions are hardly distinguishable (upper part of Fig. 3 and lower part of Fig. 3e).
FLUID DYNAMICS  Vol. 54  No. 7  2019
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Fig. 4. Instantaneous field patterns of the horizontal component of the density gradient near the horizontal plate in a
continuously stratified f luid with various modifications of its leading and trailing edges:
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Pressure distributions on the upper side of the plate are shown in Fig. 5 for three different geometrical
configurations of plate edges. The distribution curves are essentially nonmonotonic, which reflects the
typical structure of a vortex f low. In the case of a rectangular plate with sharp edges, the variations in pres-
sure near the front edge are about three times greater than in other considered configurations of the plate
edges. The pressure f luctuation amplitudes weaken with approaching the rear edge of the airfoil-type plate
FLUID DYNAMICS  Vol. 54  No. 7  2019

Table 1. Integral values of drag, lift, and twisting moment for various modifications of the front and rear edges of the
plate

ξ CD CL – CM

0 1 0.0322 0.0935 0.0136
0.04 1 0.0311 0.0912 0.0128
0.4 1 0.0254 0.0844 0.0106
0.8 1 0.0252 0.0783 0.0092
1 1 0.0251 0.0752 0.0083
1 2 0.0125 0.0743 0.0126
1 4 0.0110 0.0721 0.0145
1 10 0.0104 0.0693 0.0162

�lr
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Fig. 5. Pressure distribution on the upper side of a horizontal plate with different modifications of its front and rear edges:
L = 10 cm, h = 0.5 cm, U = 80 cm/s, ( ,ξ) = (1) (0.01, 1), (2) (1, 1), and (3) (1, 10).
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(curve 3), while, in the case of a rectangular plate, the amplitudes of oscillations, on the contrary, increase
downstream (curves 1 and 2).

The integral values of the drag , lift , and twisting moment  are presented in Table 1 for differ-
ent configurations of the front and rear edges of the plate. The values of  and  were calculated by inte-
grating the corresponding local values only over the upper part of the plate surface, since the integration
over the entire surface of a symmetric obstacle gives values comparable to the computational error. It can
be seen that an increase in the radius of curvature and the sharpness coefficient of the plate leads to a
monotonic decrease in the drag and lift. The integral twisting moment takes negative values, i.e., the inci-
dent f low strives to turn the upper side of the plate clockwise.

CONCLUSIONS

The approach developed in this work is based on the numerical solution of a system of differential
equations of an incompressible viscous stratified f luid using our solvers and libraries of the OpenFOAM
software package, which makes it possible to study the f low of both continuously stratified and homoge-
neous viscous incompressible f luids in a unified formulation. Each additional physical variable resolved
by the original system of equations reveals some new important features of the f low, which contributes to
a better understanding of the physical processes under study.

The instantaneous field patterns of perturbation of pressure behind an inclined plate were studied in
an unsteady vortex regime for both stratified and homogeneous f luids at different inclination angles of the
plate to the horizon. The pictures consist of multiscale spotty structures with negative pressure, which cor-
respond to the location of the elements of the vortex f low with spatial and temporal scales, which also
essentially depend on the inclination angle of the plate to the horizon and the type of f luid.

Instantaneous patterns of the vorticity, pressure gradient, and density fields, as well as of forces and
twisting moment acting on the plate surface, were analyzed for different radii of curvature of the front edge
and the sharpness of the rear edge of the plate. The vortices generated by the rounded front edge are much
smaller in scale and rapidly decay downstream, so that the character of the wake preserves its original vor-
tex structure. The perturbations of the f low behind an airfoil-type plate practically disappear downstream
at a distance of less than half the length of the plate from the rear edge.

DC LC MC
LC MC
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The patterns of the horizontal component of the density gradient field, which describe the fine struc-
ture of the f low, consist of many small-scale multilayer structures of both signs, oriented mainly along the
streamlines of the elements of the vortex f low, as well as localized in the areas of the f low with active inter-
action of various components of the f low with the incident f low and plate surface. The perturbations of
this field are well-defined in the wake region for all considered geometrical configurations of the plate,
whereas, in the case of an airfoil-type plate, perturbations of the wake in the structure of the vorticity and
pressure fields are relatively weak.

Instantaneous patterns of the fields under study are characterized by their own geometry, spatial and
temporal scales, manifestation level, and dissipation rate, describe the structure and dynamics of the f low
from various physical aspects, and explain the mechanisms of formation of the vortex structure and split-
ting of the f low into a number of fine layered structures clearly observed in the experiments. The f low
around a plate of finite length in the general formulation is a complex physical process, which requires
detailed experimental and theoretical study with allowance for the diffusion, thermal conductivity, and
compressibility effects, as well as with control of criteria of observability and resolution of all different-
scale components of the f low.
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