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Abstract—In this work we studied the structure and dynamics of a two-dimensional f low of a contin-
uously stratified f luid near a horizontal wedge using numerical methods. A mathematical model and
a method of numerical implementation were developed. This allows for the simultaneous study of all
the elements of multiscale stratified f lows without additional hypotheses and connections. The
numerical solution is implemented in the OpenFOAM open source package. The calculations were
performed in the parallel mode with the use of computing resources of the UniHUB web-laboratory.
The laws governing the f low formation are analyzed and the physical mechanisms that are responsible
for the vortex formation in areas with high density gradients near the edges of the streamlined wedge
are determined.
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INTRODUCTION
Substances dissolved in liquids and particles suspended in gases under the action of gravity or global

rotation of the Earth are unevenly distributed and form a stable stratification. In accordance with the type
of state equation of a continuous medium, the density field is determined by temperature, impurity con-
centration, and pressure profiles. The non-equilibrium medium with the molecular f low of the stratifying
components is at rest only if the density gradients are parallel to the direction of the gravity force. Inter-
ruption of the molecular f low at impermeable boundaries of arbitrary shape produces diffusion induced
flows. Theoretical studies of stratified f lows began in the early 1940s [1] and began to be modeled in the
laboratory [2] a little later.

Interest in the study of gradient f lows persists due to their prevalence in the environment. Under nor-
mal conditions, disturbances are concentrated in thin layers on impermeable surfaces and reach storm val-
ues, forming large temperature gradients in the atmosphere on steep slopes of the surface [3] and near gla-
ciers [4]. Special attention has recently been paid to studying the effects of diffusion-induced currents on
the dynamics and structure of processes in water bodies, lakes, seas [5], and oceans with allowance for the
effect of Coriolis force [6]. Special attention was paid in some studies [7] to the analysis of the state equa-
tion of the marine environment and the presence of an additional stratifying component with its own dif-
fusion coefficient (“differential diffusion”).

At the end of the last century, along with analytical studies of stationary f lows [1, 2, 5, 8], non-station-
ary models of current formation induced by diffusion on various obstacles (inclined and horizontal plate,
cylinder, and sphere) began to develop. Laboratory experiments were also performed using highly sensi-
tive shadow-imaging devices that showed the presence of beams of dissipative nonstationary gravitational
waves at the obstacle poles, except for the previously observed large vortices [9].

An integral force that is absent on symmetrical obstacles (sphere, cylinder or horizontal plate, etc.), but
takes a final value on an inclined plate and other bodies asymmetric with respect to the direction of the
gravity force is formed along the slope currents. The resulting pressure gradients are large enough and can
cause self-movement of free bodies of neutral buoyancy (“diffusion fish” [10]), which plays an important
role in the dynamics of the marine environment. Stationary f lows on a f lat fixed wedge were calculated
[11–13]. The study of the formation mechanisms of forces leading to the self-movement of bodies of dif-
ferent shapes is of practical interest.
940
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With the onset of body movement, the diffusion-induced multi-scale elements of the currents do not
disappear, but, on the contrary, turn into much more complex and subtle structures, such as quasi-sta-
tionary high-gradient layers separating different types of disturbances, vortex trail, and internal waves [9,
14]. The f low structure essentially depends on the problem parameters, such as the body shape, the strat-
ification size, and the velocity of the external f low.

Vortices and waves in inhomogeneous media exist simultaneously and actively interact with each other
along with the fine structure of the f low, which affects the processes of substance transfer, the separation
of f low components, and the increase in the local impurity concentration. Neglecting small changes in
density and imposing conditions of constant density, i.e., the approximation of a homogeneous incom-
pressible f luid, lead to a degeneration of the system of basic equations due to the merging of some elements
of the fine structure of different nature [15].

A method for constructing exact solutions of the basic system of equations for the mechanics of inho-
mogeneous liquids in a linear approximation was proposed in [14]. In the case of a viscous exponentially
stratified f luid, the fields of two-dimensional coupled internal waves caused by the uniform motion of the
plate along the underlying plane were calculated. The exact solution of the problem satisfying the physi-
cally justified boundary conditions was obtained in quadratures and visualized numerically. The resulting
flow patterns clearly demonstrate two groups of internal waves, whose structure essentially depends on the
surface inclination angle to the horizon and non-wave features near the obstacle edges.

At the same time, theoretical studies of diffusion-induced flows were performed for objects of infinite
or semi-infinite geometry, that is, edge effects were not taken into account. Since real bodies have finite
dimensions, studies of the f low structure near the extreme points of the body are of the greatest interest.
This leads to the construction of numerical models of diffusion-induced f lows and regularities of internal
waves around bodies of finite size.

1. SYSTEM OF DEFINING EQUATIONS
In a two-dimensional approximation, we consider the evolution of the structure of an initially linearly

stratified f luid, whose density  is determined by the salinity distribution  and is char-
acterized by the buoyancy scale , frequency , and period .

Mathematical modeling of the assigned problem is based on a system of equations for a multicompo-
nent inhomogeneous incompressible f luid in the Boussinesq approximation [15] with allowance for the
effects of buoyancy and diffusion of a stratifying impurity. In the study of slow compared with the sound
speed fluid f low characterized by high thermal conductivity, the calculations can take into account only
density changes associated with the concentration of the stratifying component, neglecting temperature
changes. Thus, the defining system of equations is written as follows:

(1.1)

Here, S = S0(z) + s is the total salinity including the degree of salt compression, s is the salinity perturba-
tion, v is the velocity vector, P is the pressure, except the hydrostatic one, ν is the kinematic viscosity, 
is the salt diffusion coefficient,  and ∆ is the Hamilton and Laplace operators, and g is the gravity accel-
eration. The term with the vertical f low velocity component vz in the last equation in (1.1) is the convective
transfer of salinity that disturbs the initial stratification.

The sticking condition for the velocity components and non-leakage for salinity, as well as an unper-
turbed free f low at infinity, are given on the wedge surface:

(1.2)

where U is the external f low velocity, and n is the external normal to the wedge surface Σ. The initial con-
dition for a forced f low of a stratified medium is a steady-state f low caused by the interruption of the dif-
fusion flow of a stratifying impurity on an impermeable surface of a fixed body. A detailed study of the
structure and dynamics of diffusion induced flows on immobile obstacles was performed experimentally
and numerically [9, 12, 13].
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The system of equations (1.1) with initial and boundary conditions (1.2) is characterized by a number
of characteristic scales, including the time scale  and , velocity scale ( ,

, U), and length scales (buoyancy scale, Λ, horizontal and vertical dimensions of the obstacle,
L and h, length of surface gravitational waves , as well as internal  and viscous

 waves, and viscous  and diffusion  microscales). The
variety of linear scales and a wide range of their values   (four–six orders of magnitude) indicate the com-
plexity of the internal structure of the studied processes, which arises due to the heterogeneity of the
molecular f low of a stratifying impurity.

Large dynamic scales, which are the internal wave length λ and the viscous wave scale , characterize
the structure of the attached internal wave fields [16, 17]. The fine structure of the f low is characterized
by universal microscales  and  determined by dissipative coefficients and buoyancy frequency [18].
Another pair of parameters, such as the Prandtl  and Peclet  scales, is determined by
dissipative coefficients and the velocity of the body movement [15].

Significant differences in the values   of linear scales indicate the complexity of the internal structure of
a stratified f low that includes a set of regularly perturbed components characterizing waves or vortices and
singularly perturbed components describing the components of the fine structure of the f low [9]. All com-
ponents of the complete solution, both regularly and singularly perturbed ones, exist simultaneously in
inhomogeneous media, actively interacting with each other and manifesting themselves in a wide range of
defining parameters. Large length scales prescribe the choice of size for areas of observation or calcula-
tion, which should contain all the studied f low structural components, such as advanced disturbances, a
downstream track, internal waves, and eddies, while microscopes determine the grid resolution and time
step. At low speeds of body movement, the Stokes scale is critical while the Prandtl scale becomes domi-
nant at high speeds.

In the nonlinear formulation, problem (1.1) and (1.2) provides the simultaneous study of all f low ele-
ments within the same description in natural physical variables without additional constants and relations.
Due to the multiscale of the phenomenon under study and the nonlinearity of the governing equations,
one of the main tools for analyzing such evolutionary processes is numerical modeling.

2. NUMERICAL MODELING
The solution of problem (1.1) and (1.2) is constructed numerically in a complete nonlinear formulation

using the finite-volume method in the open-source OpenFOAM (www.openfoam.com) computing pack-
age. The package that was originally developed for the numerical calculation of three-dimensional prob-
lems of continuum mechanics can also effectively model two-dimensional problems. Technically, this is
performed by selecting only one computational cell in the third dimension and setting special “empty”
boundary conditions and on the front and back boundaries of the computational domain.

The standard numerical model of the open package OpenFOAM was supplemented with original soft-
ware modules that take the effects of stratification and diffusion [19] into account. New variables (ρ, s),
additional first and fourth equations in (1.1), and new physical parameters (N, Λ, , and g) were added
to the initial icoFoam model that implements the second and third equations in (1.1). The boundary con-
dition of the salinity perturbation (the last condition (1.6)) was implemented using the extended utility
funkySetBoundaryField that allows defining analytical expressions for physical variables. The utilities
vorticity, forceCoeffs, funkySetFields, etc., were used to calculate additional physical variables.

For the interpolation of convective terms, a limited TVD scheme was used that provides minimal
numerical diffusion and no solution oscillations. For discretization of the time derivative, we used an
implicit asymmetric three-point scheme of the second order with differences back, which provides good
time resolution of the physical process. On orthogonal sections of the grid, the normal velocity gradients
required for calculating the diffusion terms by the Gauss theorem were on the cell surface from the velocity
values   in the centroids of the neighboring cells according to the second-order scheme. On non-orthogonal
sections, an iterative error correction procedure caused by the grid non-orthogonality was used.

To solve the resulting system of linear algebraic equations, we used various iterative methods, such as
the conjugate gradient method with the PCG pre-conditioner applied to symmetric matrices and the bi-
conjugate gradient method with the PBiCG pre-conditioner for asymmetric matrices. As a pre-condi-
tioner for symmetric and asymmetric matrices, we chose, respectively, the DIC and DILU procedures
based on the simplified procedures of incomplete Cholesky factorization. To link the equations of
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Fig. 1. Discretization of the computational domain: (left) division into blocks, and (right) grid pattern.
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momentum and mass conservation, a stable well convergent PISO (Pressure-Implicit Split-Operator)
algorithm that is most effective for solving non-stationary problems was used.

The computational domain was discretized using the SALOME open integrable platform that allows
creating, editing, importing, and exporting CAD (Computer Aided Design) models and also building a
grid for them using various algorithms and associating the physical parameters of the studied problem with
the geometry. To build the computational grid, standard OpenFOAM utilities, such as blockMesh,
topoSet, and refineMesh, were also used. The main OpenFOAM’s polyMesh class that processes the
mesh is created using the minimal amount of information needed to define the elements and parameters
of the partition, such as vertices, edges, faces, cells, blocks, external boundaries, etc. By choosing a suit-
able type of computational grid, that is structured or unstructured, orthogonal or non-orthogonal, con-
sistent with the area boundaries or not and each of which usually has its advantages and disadvantages,
one can ensure a successful search for a solution to the problem under study. Therefore, the methods for
constructing the grid for a specific problem were chosen individually based on the values   of the character-
istic length scales and the geometric complexity of the problem under consideration.

The computational domain is a rectangle divided into seven blocks. The streamlined body that is a hor-
izontal wedge of length L and base height h (left side of Fig. 1) is located in the central part of the compu-
tational domain. The spatial discretization procedure of the problem was parameterized, which allows sig-
nificantly reducing the duration of grid restructuration when changing the parameters of the problem. The
simplicity of the wedge geometry allows the construction of a block-structured hexagonal computational
grid with nodes that coincide at the boundaries between the blocks. Test calculations with various grid res-
olutions confirm the need for resolution of the smallest microscales of the problem since a relatively
coarse mesh with a total cell number of  produces an unstable solution. Thus, numerical model-
ing of even two-dimensional problems of continuously stratified f lows near impenetrable obstacles
requires high-performance computations. The discretization algorithm of the computational domain
includes the grid thickening towards the obstacle (right side of Fig. 1). The aspect ratio of the grid cell near
the body is approximately equal to unity, which positively affects the convergence of the solution.

The need for a high spatial resolution of the assigned problem leads to a rather large number of com-
putational nodes, which makes it irrational to perform calculations using a single-processor personal com-
puter. The division of the computational domain for calculations in the parallel mode is performed by a
simple geometric decomposition, in which the domain is divided into parts in certain directions with an
equal number of computational cells in each block. Such an approach allows for the establishment of a
high spatial resolution of the computational domain and investigating the problem in a wide range of basic
parameters in quite reasonable time. Parallel calculations of the problem were performed in the web-lab-
oratory UniHUB (www.unihub.ru).

The following values   of the problem parameters were used in the calculations:

The calculated time step, ∆t, is determined by the Courant condition , where  is
the minimal mesh size, and v is the local f low velocity.

6~ 10cN

− −ρ = = ν = κ = ×
=

3 2 6 2 9 2
00 1020 kg/m , 9.8 m/s , 10 m/s , 1.41 10 m/s ,

6.28 s,  = 10 cm, and  = 2 cm.
z S

b

g
T L h

= Δ Δ ≤Co | | / 1t rv Δr
FLUID DYNAMICS  Vol. 54  No. 7  2019



944 DIMITRIEVA

Fig. 2. Formation of the gradient field of the salinity perturbation when the wedge moves at a speed of  m/s (a–d):
t/Tb = 0.3, 1.1, 3.2, and 16.0 (positive values in red and negative values in blue).
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3. CALCULATION RESULTS

The initial complex structure of the medium formed by diffusion-induced flows on a stationary wedge
changes dramatically with the onset of forced motion even at low speed (Fig. 2). In a continuously strati-
fied f luid, outrunning disturbances, rosettes of non-stationary internal waves and fields of the affiliated
internal waves, as well as an extended trace behind the extreme points, are formed.

When the velocity of the external f low is comparable in order of magnitude with the characteristic
velocity of the diffusion-induced flows , the field structure retains the elements of the original
field for a long time (Fig. 2a). In this case, the beams of alternating lanes remain attached to the sharp cor-
ners of the obstacles, which drift downstream at an increase in the velocity of the external f low. The length
of the affiliated internal waves increases. Sources of internal waves are wedge corners that produce intense
vertical displacement of the f luid. Therefore, the deflection of f luid layers from the initial position of neu-
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Fig. 3. Horizontal component of perturbations of the salinity gradient  at an increase in the external f low velocity:

(a–e):     and  m/s (positive values in red and negative values in blue).
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tral buoyancy produces their periodic oscillations. The irregularities of the crests and valleys of the internal
wave forms reflect a complex pattern of interference between growing non-stationary and affiliated inter-
nal waves.

The number of observed non-stationary waves that do not penetrate behind the body increases with
time. Sharp interfaces delineating the upper and lower boundaries of the density trace are clearly expressed
FLUID DYNAMICS  Vol. 54  No. 7  2019
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far beyond the body. Non-stationary internal waves are well observed around the wedge corner points at
 in Figs. 2b and 2c.

The structure of the boundary f low near the wedge sides also strongly depends on the velocity of the
external f low (Fig. 3). At an increase in the body speed, the introduced disturbances become more pro-
nounced and overlap the f low pattern produced by weak slow initial diffusion-induced flows.

The observation of a sequence of calculated f low patterns shows that the f low around the wedge is non-
stationary. Periodically formed on the leading edge, vortices move downstream along the body sides.
Besides the vortices, high-gradient thin-structural layers and long internal waves are observed near the
body. In this case, the internal wave pattern is stationary relative to the body.

As the speed of the external f low increases, the length of the affiliated internal wave increases propor-
tionally according to the linear theory: . The phase surface separating the wave perturbations of
opposite signs is bent in the direction of the wedge movement. Well-defined periodic structures are
formed beyond the extreme points of the wedge corners (Figs. 3a and 3b). Small-scale perturbations form-
ing many fine structures in the f low near the body boundary (Fig. 3c) are produced near the anterior sharp
tip of the wedge. At speeds of  m/s, vortex disturbances form in the trace behind the wedge
(Figs. 3d and 3e).

The calculated field structure of the salinity gradient when wrapped the wedge is in qualitative agree-
ment with the shadow imaging of the gradient fields of the refractive index that was performed in the lab-
oratory tank by the “color shadow method” with a horizontal slit and grating for bodies of other geometric
shapes [9].

CONCLUSIONS
Calculations of stratified f lows near the horizontal wedge of neutral buoyancy showed the high perfor-

mance of the proposed numerical model.
Even near a stationary body, the field of the diffusion-induced flow under study in a stratified f luid is

characterized by a complex internal structure: dissipative gravity waves appear at the body edges. The
sharp edges of the streamlined obstacles produce expanding horizontal high-gradient layers that are
clearly observed in laboratory experiments using high-resolution shadow imaging.

A group of affiliated waves with opposite phases relative to the neutral buoyancy horizon is formed
around the slowly moving body at the edges. The main f low components then become eddies that are
formed at the sharp edges of the wedge and drift behind it downstream. At a further increase in the f low
rate of the body wrapping, the f low pattern becomes more complex and non-stationary.

Wrapping a wedge with a stratified f luid is a complex, multiscale, and non-stationary physical process
that requires an additional detailed experimental and theoretical study with allowance for the effects of
diffusion, thermal conductivity, and compressibility of the medium.
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