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Abstract—The paper presents a global stability analysis of the two-dimensional incompressible bound-
ary layer with the effect of streamwise pressure gradient. A symmetric wedge f low is considered at dif-
ferent values of the dimensionless pressure gradient parameter . The pressure gradient  in the
flow direction is zero, when , favorable (negative) for , and adverse (positive) for  <
0. The base f low is computed by numerical solution of Falkner—Skan equation. The Reynolds number
is based on the displacement thickness δ* at the inflow boundary. The stability equations governing
the f low are derived in body-fitted coordinates. The stability equations are discretized using the Che-
byshev spectral collocation method. The discretized equations, together with boundary conditions,
form a general eigenvalue problem and are solved using Arnoldi’s algorithm. The temporal global
modes are computed for , 0.044, and 0.066, for favorable and adverse pressure gradients.
The temporal growth rate  is found to be negative for all the global modes. The  value is smaller
for the favorable pressure gradient (FPG) than for the adverse pressure gradient (APG) at the same
Reynolds number ( ). Thus, the FPG has a stabilizing effect on the boundary layer. The com-
parison of the spatial eigenmodes and spatial amplification rates for FPG and APG show that FPG
has a stabilizing effect, whereas APG has a destabilizing effect on the disturbances.

Keywords: boundary layer, incompressible f luid, streamwise pressure gradient, global stability,
numerical solutions
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The boundary layers developing on solid surfaces are generally laminar near the leading edges. As the
distance from the leading edge increases, the Reynolds number also increases. The Reynolds number, at
which transition to turbulence occurs, is known as the critical Reynolds number. The region, over which
the f low transition takes place, is known as the transition zone or transition length. At very low free-stream
turbulence levels the transition is characterized by the Tollmien—Schlichting (TS) wave mechanism. The
process of transition initiates with the random amplification of small disturbances. The standard proce-
dure to predict the transition onset is to compute the growth of the small disturbances within the laminar
region. The instability/growth of the small disturbances is the very first step of the transition process.
Many factors are known to affect the transition process, e.g., free-stream turbulence, streamwise pressure
gradient (PG), streamwise curvatures, surface roughness, etc. Knowledge of the transition process is ben-
eficial, where the turbulence is necessary to be avoided, but also where the turbulence might be desirable
to promote, for instance, better f luid mixing to manage turbulence efficiently. There is a strong relation
between transition and flow separation, which is a non-desirable phenomenon in most of engineering
applications. Therefore, understanding the transition can lead to a better control of f low separation. The
study of the PG effect on the f low instability is of specific interest because it is one of the passive f low con-
trol devices. The previous studies of the effect of PG showed that FPG increases the critical Reynolds
number of incompressible boundary layers, whereas APG has an opposite effect. Flows through turbo-
machinery and airplane wings are the engineering applications, where the streamwise PG exists. The lin-
ear stability analysis of parallel f lows shows that disturbances amplify more rapidly in the case of boundary
layers with adverse pressure gradients (APG). Sometimes, transition can happen within the zone of a
favorable pressure gradient (FPG), for example, in f lows past low-pressure turbine and compressor blades
at high free-stream turbulence level.
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822 BHORANIYA, NARAYANAN
Obremski et al. showed that a FPG stabilizes an incompressible boundary layer, whereas the APG
effect is opposite [1]. The f light test data reported by Driest [2] indicate that an increase in FPG increases
the transition Reynolds number. The f low with very strong APG is known to have an inflection point and
is inviscidly unstable. In inviscid f lows, velocity profile with inflection point can always be shown to be
unstable with respect to the Rayleigh criterion. The streamwise PG crucially affects the growth of small
disturbances. A FPG leads to a fuller velocity profile with a relatively lower shape factor and thus has a
stabilizing impact, whereas an APG results in more significant amplification rate of disturbance waves.
Saxena and Bose [3] investigated that the FPG stabilizes the f low and APG destabilizes the f low.

A strong APG promotes boundary layer separation and speeds up the process of transition to turbu-
lence. Such boundary layers are much more unstable than the f lat-plate boundary layers. Corke and Gru-
ber [4] experimentally studied the resonant growth of a triad of instability waves consisting of a plane TS
mode and a pair of oblique modes with the same and opposite wave angles, which are undergoing sub-
harmonic transition in Falkner—Skan boundary layers with the APG parameter in the range 0 ≥

. Although large instabilities did not occur in their experiments, the transition process was
observed to differ considerably from the Blasius case in many aspects. For example, the streamwise extent
of the amplitude saturation was extremely short compared to the Blasius layer and the maximum ampli-
tudes reached by the sub-harmonic modes in their cases were twice as large as those in the Blasius layer
with comparable initial conditions. The simulations of Liu and Maslowe [5] revealed that the sub-har-
monic three-dimensional waves are most dangerous in the APG. Here also, amplification rates are found
to be much greater than in the Blasius f low. Consequently, transition sets in at a considerably lower Reyn-
olds number in the decelerating boundary layers. The transition zone is much shorter and transition onset
is upstream in the APG boundary layers. Abu-Ghannam and Gostelow et al. [6, 7] found experimentally
higher spot inception and spreading rates in the decelerated f lows. Vinod and Govindarajan [8, 9] showed
that there exists a direct connection between the pattern of breakdown of turbulent spots and the laminar
instability characteristics in the strong APG boundary layers. Narasimha and Seifert and Hodson [10, 11]
experimentally found that the growth of the turbulent spots in the downstream direction is self-similar
irrespective of the type of PG. It maintains an arrowhead shape in the top view and follows self-similar
growth of the spot size. Maslowe and Spiteri [12] reported the behavior of the eigen-solutions of a contin-
uous spectrum for a boundary layer subjected to a PG in the f low direction. They found larger disturbance
amplitudes compared to the Blasius f low in an APG boundary layer. The possibilities of the secondary
instabilities are higher close to the edge of boundary layer because of massive shear rate. The spatial ampli-
fication rate  is also smaller than that of the Blasius f low. The magnitude of eigenfunctions could be
larger than in the Blasius f low even when the PG is favorable. However, the transition Reynolds number
is higher and thus  is also large. Zurigat et al. [13] in their investigation of compressible boundary layers
found that FPG has a stabilizing and APG has a destabilizing effect on the 2D second waves. The effec-
tiveness of the FPG reduces at hypersonic Mach numbers. It is clear that FPG pressure gradients are sta-
bilizing, whereas APG are destabilizing in boundary layers. Thus, boundary layers subjected to FPG and
APG are stable and unstable, respectively. The band of frequencies widens to amplify the disturbances
with APG for incompressible boundary layers. Franko and Lele [14] found completely different transition
eventualities with APG for high-speed boundary layers. They applied APG through free-stream condition
and found that APG fails to essentially modify the transition pattern. However, it quickens transition and
ends up in the upper rate for first and second mode instabilities. The transition was analogous to ZPG for
the soft APG boundary layers. Zhang et al. [15] performed a global stability computation for 2D flow past
an inclined triangular cylinder. They found that the spatial structure of the disturbances is nearly similar
for  and the temporal growth rate is sensitive to near wake f low, whereas for  there are
exceptional transverse growth and streamwise elongation of the disturbances and the growth rate is sensi-
tive to far-wake f low.

Kimmel [16] experimentally found that the transition zone length was 1.7 to 2.0 times shorter for FPG
compared to ZPG in hypersonic boundary layers. The APG promoted earlier transition and the Reynolds
number at the end of the transition zone was higher than in the ZPG case. The transition zone length
trends are opposite to subsonic trends. Itoh [17] investigated the PG effect in two directions and the effect
of the sweep angle of a wing on the stability of three-dimensional boundary layers. It was found that in the
region of streamwise FPG an appropriate choice of the PG can restrain the cross-flow on a very weak
level, thus stabilizing the boundary layer by a higher critical Reynolds number. Johnson and Pinarbasi [18]
numerically studied the effect of ZPG, FPG, and APG on the receptivity of the 3D boundary layers. It
was found that the boundary layer is receptive only in a narrow band of spanwise wavelengths ranging from
one to four times the local boundary layer thickness. The receptivity of APG is twice as large as that of
FPG. The significant TS wave activity was found for APG only. However, it was also detected for ZPG.
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GLOBAL STABILITY ANALYSIS OF SPATIALLY DEVELOPING BOUNDARY LAYER 823
Masad and Zurigat [19] investigated the effect PG on the first mode instability of the subsonic and super-
sonic compressible boundary layers at Mach numbers from 0 to 7. Variations of maximum growth rate for
different levels of FPG and APG with different edge Mach numbers have been computed. The FPG has
a stabilizing effect on the first mode. However, at high edge Mach numbers the FPG effect is less stabi-
lizing. The frequency and spanwise and streamwise wave numbers corresponding to the maximum growth
rate decrease with increase in the FPG. Tumin and Ashpis [20] found that FPG reduces the non-modal
growth, while APG leads to an increase in the amplification. Gostelow and Blunden [21] developed an
intermittancy meter that permits the online monitoring for about 100 s. The results of four different tur-
bulence levels for ZPG were well confirmed by the previous results. The transition region length was found
to be long without any PG while for APG strong reduction in transition length was found. The turbulent
spot formation rate increased. Igarashi et al. [22] experimentally investigated that for half included angle
of 3.6° the transition process was different from the case of ZPG. The amplification rate for  was
found almost one order higher than that for θ = 0. This suggests that transition of boundary layer to tur-
bulent state is a consequence of the instability of the laminar boundary layer. It was observed that the fre-
quency spectrum at transition was white for θ = 0 and nonwhite for large APG. Govndarajan and Nara-
simha [23] presented a new formulation for the boundary layer stability with the existence of PG. They
assumed that the disturbance wavelength and eigenfunction vary no more rapidly than the boundary layer
thickness. A strong APG has a significant destabilizing effect on the boundary layer. The effect of non-
parallelism on the high frequencies can be significant at low Reynolds number. Walker and Gostelow [24]
reviewed all existing transition models and deficiencies in the prediction of the transition length under
APG. They proposed a new model for transition which included the effect of both Reynolds number and
APG with the experimental validation. They found that, as the APG increases from zero to separation val-
ues, TS waves evolve from random to periodic behavior and the transition length progressively reduces.
Chonghui [25] performed direct numerical simulation (DNS) of spatial instabilities with the normal
mode for the Falkner—Skan velocity profiles (APG). He found the maximum streamwise disturbance
velocity amplitudes are 10–20% higher towards the downstream end of the domain than that in the exper-
imental measurement of Corke et al. [4]. For small APG, , the disturbances were not shown
to exhibit explosive instability. However, for , the disturbances were shown to amplify dramat-
ically. The reason was that the critical layer is farther away from the wall with larger APG. Corbett and
Bottaro [26] studied the algebraic growth mechanism in the Falkner—Skan boundary layer using the
direct-adjoint technique. The APG was found to increase the resulting growth of the disturbances and
reverse for FPG. It was found that disturbances producing maximum amplification over a shorter period
are generally oblique and can experience significant transient growth. The main aim of this paper is to
study the impact of the streamwise PG on the global instability of boundary layers. The PG impact on the
boundary layers was studied in the past using the local stability approach in which the streamwise variation
of the base f low is neglected and disturbance amplitudes are functions of wall normal direction only. The
global modes were computed for ZPG boundary layers in the past by some investigators [27—29].
Bhoraniya and Vinod [30—32] in their study on axisymmetric boundary layers found that the transverse
curvature and FPG have a stabilizing effect. Thus, this was the first attempt to compute the global modes
of the two-dimensional boundary layers subjected to streamwise PG.

1. FORMULATION OF THE PROBLEM

We will consider an incompressible f low over a symmetric wedge with different values of  for FPG
and APG. Thus, the incoming f low has some incident angle with the symmetry line of the wedge. The
base f low is two-dimensional and non-parallel. The standard procedure is adopted to derive Navier—
Stokes equations for disturbances. The governing stability equations are normalized using  and δ*. The
Reynolds number is based on the δ* value at the entry of the domain , as shown in Fig. 1. The two-
dimensional eigenvalue problem is solved for an instability analysis of the 2D boundary layer. In the pres-
ent analysis, two-dimensional disturbances considered.

The Reynolds number

(1.1)

The flow quantities are split into the base f low and perturbations as follows:

(1.2)
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824 BHORANIYA, NARAYANAN

Fig. 1. Spatially developing incompressible boundary layer on an inclined flat plate. The incident angle  develops PG
in the streamwise direction. A positive value of  measured in the counterclockwise direction gives FPG, while its neg-
ative value results in APG.
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where , , and  are the instantaneous values of the parameters, Ub, , and  are the baseline f low
parameters, and , , and  are disturbances.

We assume normal mode form of the disturbances with the amplitudes varying in the wall normal 
and streamwise  directions

(1.3)
The linearized Navier—Stokes equations for an instability analysis are as follows:

(1.4)
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where
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1.1. Boundary Conditions

The  and  disturbances have zero magnitudes (no slip and no penetration) on the solid surface
because of the viscous effect

(1.8)
The disturbance amplitudes decay exponentially and vanish in the far field, away from the wall. Thus,

all disturbance velocity components and pressure are taken to be zero in the far field.

(1.9)
We will study the growth or decay of the small disturbances within the considered f low domain under

the effect of PG. Thus, all disturbance velocity components have zero magnitudes at the inflow boundary
of the domain. This is consistent with the Theofilis suggestion [33]
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At the exit boundary we may apply the boundary conditions based on the wave information [34]. These

conditions are more restrictive in nature because they impose the wave-like behavior of the disturbances.
Physically it is not a good condition for the instability analysis. The streamwise wave-number  is not
known initially for the global stability analysis. An alternative way is to impose numerical boundary con-
ditions which extrapolate the information from the interior of the computational domain. Linear extrap-
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GLOBAL STABILITY ANALYSIS OF SPATIALLY DEVELOPING BOUNDARY LAYER 825
olated conditions are considered by several investigators at the outflow boundary. A review of the literature
on global stability analysis suggests that linearly extrapolated boundary conditions are the most suitable
boundary conditions [27, 33, 35]. Thus, we will consider the linear extrapolated conditions at the outflow
boundary

(1.11)

where xn, , and  are the most exterior grid points at the outlet of domain and  is the streamwise
disturbance velocity component. Similarly, one can write extrapolated boundary conditions for the wall-
normal disturbance components . The compatibility conditions applied for the pressure at the solid wall
derived are from the stability equations themselves [33]

(1.12)

(1.13)

The primitive variable approach was applied in the derivation of the stability equations. The advantage
of the primitive variable formulation over the high-order numerical approach is that only the first deriva-
tives of the base f low and the second derivatives of the disturbance f low quantities appear. The lower-
order derivatives give smaller discretization errors at the modest resolution. The governing equations (1.4)
and (1.5) are discretized using the Chebyshev polynomials in both spatial directions. The Chebyshev poly-
nomials generate non-uniform grid points with a greater of collocation points towards both ends.

(1.14)

(1.15)

The gradients of the disturbance amplitude functions are very large in the wall region within the thin
boundary layer, which requires a large number of grid points to increase the spatial resolution. Grid
stretching is applied via the following algebraic equation [36]

(1.16)

In the above grid stretching method, half number of the collocation points are concentrated within the
 distance from the lower boundary. The nonuniform nature of the collocation point distribution in the

streamwise direction is undesirable. The maximum and minimum distances between the grid points are
at the center and at the end, respectively. Thus, it makes a poor resolution at the center of the domain and
a very small distance between the grids at the end gives rise to the Gibbs phenomenon. To improve the
resolution and to minimize the Gibbs oscillations in the solution, the grid mapping is implemented in
streamwise direction using the following algebraic equation [37]

(1.17)

The value of  is selected carefully to improve the spatial resolution in the streamwise direction. A
very small value of  keeps the grid distribution similar with the Chebyshev distribution, while a near-
unity value provides an almost uniform grid. For the detail description of the grid mapping, readers are
suggested to refer [37]. To incorporate the effect of physical dimensions of the domain [ , ] along with
grid stretching and mapping it is required to multiply the Chebyshev differentiation matrices by the proper
Jacobean matrix. The linear operator of the discretized LNS system forms the matrices K and M. These
matrices are square, real and sparse in nature and formulate general eigenvalue problem
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826 BHORANIYA, NARAYANAN
where K and M are the square matrices of size   ,  is an eigenvalue, and  is the vector of
unknown amplitudes of the disturbance f low quantities , , and . The above-mentioned boundary
conditions are properly incorporated in the matrices K and M. The numerical solution of Eq. (1.18) is per-
formed using Arnoldi’s iterative algorithm. Readers are suggested to refer [31, 32] for detailed description
of the eigenvalue problem solution.

2. BASE FLOW SOLUTION

The Falkner—Skan velocity profile is used as the base velocity profile. The value of  decides whether
the f low is accelerating (   0) or decelerating (   0).

(2.1)

The base velocity is computed by solving Eq. (2.1), together with the boundary conditions
(2.2)

The streamwise and normal velocity components are computed as follows:

(2.3)

The numerical solution of the Eq. (2.1) is obtained using the fourth-order Runge—Kutta method.
Here, the incident angle  resembles the f lat-plate boundary layer with ZPG;  develops

FPG and  develops APG in the streamwise direction. Figures 2a, 2b, and 2c present the compari-
son of , , and  for FPG, ZPG, and APG at the same streamwise location  m.
The magnitude of the first derivative ( ) is higher in the case of FPG that accelerates the f low. The
magnitude of the second derivative ( ) is found to be negative for FPG and positive for the APG.
The negative value of  with the FPG, whereas the positive value of  increases with
the APG. We note that the negative  have stabilizing and positive  have a destabilizing
effect.

3. RESULTS AND DISCUSSION
In the present stability analysis the f lat-plate boundary layer with the existence of streamwise PG is

considered. The semi-wedge angles  equal to 0.022, 0.0444, and 0.0667 are considered, which in turn
develop PG in the direction of f low. We consider both positive (FPG) and negative (APG) values of angle

. Three values of Reynolds number, 340, 416, and 480, are considered based on the δ* at the inflow
boundary. The linear dimensions in both directions are normalized by the δ*. The domain height in the
wall-normal direction is taken as 20δ*, that is, twenty times the δ* at the inflow boundary. It is sufficiently
large value and has no influence on the results [27]. The number of collocation points considered in the
direction of f low and the normal direction are 251 and 61, respectively. The temporal and spatial charac-
teristics of the least stable eigenmodes are studied. The convergence of the solution was additionally tested
with lower spatial resolution.

3.1. Code Validation

Two-dimensional stability problem was solved with one wavelength ( / ) domain size in the
streamwise direction and the same velocity profile at every streamwise location to validate the numerical

code written for the global instability analysis. Thus,  and V = 0. A ZPG ( ) boundary layer

with the critical Reynolds number based on the displacement thickness  = 580 and the streamwise
wave-number  were taken to validate the approach [38]. To impose the wavelike behavior of the
disturbances in the streamwise direction Robin’s (Eq. (3.1)) and periodic (Eq. (3.2)) boundary conditions
were applied. The same boundary conditions were applied in the wall normal direction for the local and
global stability analyses [30]
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Fig. 2. Variation of  (a),  (b), and  (c) for the FPG, APG, and ZPG at streamwise location  m. The

positive value of  develops FPG and its negative values results in APG.
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Figures 3a, 3b, and 3c present the comparison of the eigenspectrum and eigenfunctions for 
and  for the global and local stability analyses. The eigenspectra and eigenfunctions computed
using the global stability approach are found to be in excellent agreement with the local stability results of
Mack [38]. Moreover, similar comparisons were done for the boundary layer instability for FPG with

= 0.066 and APG with . The comparison of the eigenspectra shown in Figs. 4a and 4b
shows good agreement between the global and local stability analyses. The eigenfunctions of both
approaches also are in good agreement (not shown here). Thus, the global stability results obtained using
the Robin and periodic boundary conditions are in good agreement with the local stability approach.

3.2. Grid Convergence Study
To verify the independence and accuracy of the solutions for various grid sizes a test was performed.

The numerical values of the two least stable eigenmodes computed for  and the axisymmetric
mode using completely different three grid sizes are shown in Table 1 The relative errors were computed
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Fig. 3. Comparison of the eigenspectra (a), the streamwise eigenfunctions u (b), and the wall-normal eigenfunctions v (c)
in the global and local stability analyses of 2D flat-plate boundary layers for  and  with ZPG. Here,

 is the critical Reynolds number for the local stability analysis.
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global and local stability approaches in the cases (a) of FPG ( ) and (b) APG ( ).

0.2 0.4

(а) (b)

0.6 0.8
−1.0

−0.8

−0.6

−0.4

−0.2

0

 

 

0.2 0.4 0.6 0.8 1.01.0
−1.0

−0.8

−0.6

−0.4

−0.2

0

Cr

CiCi

Cr

 

 

Global stability
Local stability

Global stability
Local stability

=Re 580 α = .0 178r
β = .0 0667H β = − .0 0667
for the real and imaginary parts of the eigenvalues. The greatest computed error is considered. An increase
in the spatial resolution shows monotonic convergence of the eigenvalues. The relative error for mesh # 1
is well within the limit and it is used for all the results reported here. The domain height  is suffi-
cient in the wall normal direction to impose free-stream condition [27].

3.3. Effect of Streamwise Domain Length

The instability analysis of an open shear f low, like f lat-plate boundary layer, in a finite domain length
(truncated numerical domain) needs appropriate conditions at the exit of the domain. One should take

= 25yL
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Table 1. The least stable eigenvalues  and  computed for various grid size at  and . The
streamwise and wall-normal domain sizes are  and . The successive grid refinement rate adopted
was 1.1412

Mesh n  m Error, %

1 251 × 61 0.07049 – 0.01998i 0.07707 – 0.02009i 3.450
2 193 × 53 0.07045 – 0.01937i 0.07706 – 0.01942i 6.353
3 171 × 47 0.07043 – 0.01822i 0.07703 – 0.01826i –

ω1 ω2 =Re 340 β = .0 044H
= 420xL = 20yL

× ω1 ω2
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Fig. 5. Comparison of the eigenspectra for three different domain lengths for FPG with  and  (a)
and comparison of the two-dimensional spatial structures of the real parts of  for  (b), 657 (c), and 876 (d).
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care that the artificial boundary conditions should not affect the instability dynamics of such truncated
domain. The global spectra of the truncated domain found in the open literature, such as boundary layers
[28, 29], cylinder wakes [39, 40], and jets [41, 42], are highly dependent on the type and location of the
exit conditions. To understand the effect of the streamwise domain length, we carried out a study for three
different domain lengths.

Figure 5 shows the comparison of discrete parts of eigenspectra for three different domain lengths: 438,
657, and 876. The length is non-dimensionalized by the δ* at the inflow boundary of the domain. The
comparison shows that the difference of the spectra depends on the streamwise domain length. The tem-
poral growth rate increases with increase in the domain length for a given Reynolds number. In other
words, the increased domain length increases the outflow Reynolds number which affects the temporal
growth rate . The distribution of the frequency  also depends on the streamwise domain length .
The distance between two consecutive frequencies  reduces with increased domain length. Ideally, this
distance reduces to zero, when the streamwise domain length is infinite. Thus, the eigenspectra presented
here are functions of the numerical domain size. Figures 5a, 5b, and 5c show the two-dimensional spatial
structure of the streamwise disturbance amplitudes,  for  and  with ZPG for =
438, 657, and 876. The disturbances oscillate periodically and grow in size and magnitude in the f low
direction while moving downstream.

3.4. Effect of Favorable PG

The spectra obtained from the solution of 2D eigenvalue problem for  and FPG are shown in
Fig. 6a. The discrete part of the eigenspectrum is shown here for different angles of incidence . The least
stable eigenmodes are marked by rectangles for different angles . The global modes are found to be sta-
ble, since the imaginary parts of the least stable eigenmodes are negative. Figure 6a presents the compar-
ison of the discrete parts of the eigenspectra corresponding to Tollmien—Schlichting (TS) waves with
ZPG and FPG. It is found that an increase in the FPG increases the damping rate or reduces the temporal
growth rate  of the eigenmode having the greatest value of , which makes the global mode temporally
more stable. This behavior is similar with the results of the parallel stability analysis. However, the distri-
bution of the frequency for TS waves is not affected by the PG. It suggests that the FPG in the streamwise
direction has an overall stabilizing effect. The least stable temporal eigenmodes  were selected to study
the spatial structure of the two-dimensional eigenmodes.

Figures 6d and 6e show the variation of the disturbance amplitudes in the f low direction at 
and  with different values of parameter  (FPG) for the least stable eigenmodes marked by rect-
angles in Fig. 6a. This eigenmode is oscillatory in nature because . The variation of the disturbance
amplitudes,  and , in the f low direction, as shown in Figs. 6d and 6e, are similar; however, the mag-
nitude of the amplitudes reduces with the increased FPG (positive ). The wavelet structure of  and

 disturbance amplitudes can be observable. The growth of disturbances takes place, while moving

ωi ωr xL
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Fig. 6. Comparison of the eigenspectra (a), the variations of  (b) and  (c) in the y direction and the variations of 
(d) and  (e) in the f low direction for different  at  and  for FPG. Here,  is for ZPG and

, , and  are for FPG. The symbols: , ,
, .
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downstream with the base f low. It suggests that the f low is convectively unstable. The spatial structure of
the disturbances was found to be similar with ZPG and FPG for boundary layer. The disturbances grow
in size and magnitude when moving downstream. The disturbance magnitudes decrease with increase in

 from 0.0222 to 0.0666. The development of the FPG reduces the disturbance amplitudes and, thus,
the increased FPG has a stabilizing effect on the spatial growth of the disturbances.

Figures 6b and 6c show the variation of the  and  velocity disturbance amplitudes in the y direction
at the streamwise location . The nature of the variation for the ZPG and FPG is found almost
similar. At the wall, the disturbance amplitudes are zero due to the viscous effect, then it gradually
increases in the y direction, and finally vanishes in the far field. It can be seen in Fig. 6 that the magnitudes
of the  and  disturbances in the streamwise direction reduce with increase in PG. Thus, FPG also
helps in spatially stabilizing the f low.

The growth or decay of the spatial eigenmodes takes place in the f low direction. To determine the
growth/decay of all the disturbances in the f low direction, the spatial growth rate  was computed as fol-
lows:

(3.3)

where the asterisks denote the complex conjugate values.

βH

pu v p

= 461x

pu v p

xA

= , , + , ,
max

0

* *( ( ) ( ) ( ) ( )) ,
y

x p p p pA u x y u x y x y x y dyv v
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Fig. 7. Variations of the spatial amplification rate  for FPG in the f low direction for different values of  at 
(a) and  (b). The value of  is calculated for the least stable global mode.
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Figures 7a and 7b show the variation of the spatial amplification rate  for the velocity disturbances
at different values of  and Reynolds numbers. The spatial growth rate  increases in the f low direction,
as shown Fig. 7. It can be seen in Fig. 7 that, as the parameter  increases from  (ZPG) to 
(FPG),  reduces in the f low direction. It proves that the development of the FPG in the streamwise
direction reduces the spatial growth of the disturbances and hence it has overall stabilizing or damping
effect on the spatial growth of the disturbances. It was also found that, as the Reynolds number increases
from the 340 to 480, for the same PG the spatial growth rate reduces.

3.5. Effect of Adverse PG

We performed the global stability analysis for boundary layers with different adverse pressure gradient
values. The eigenspectra of the boundary layer for different  values and  with APG are shown
in Fig. 8. The discrete parts of the eigenspectra are shown in Fig. 8a for different values of . The least
stable eigenmodes are marked by rectangles for each value of  and they are found to be negative. This
implies that all global eigenmodes are temporally stable. This observation is in line with findings of [27],
where the imaginary parts of the global modes are negative. Figure 8 presents the comparison of discrete
parts of the eigenspectra corresponding to Tollmien—Schlichting (TS) waves for APG ( ). The tem-
poral growth rate of the most unstable eigenmode increases with increase in . It suggests that the APG
in the f low direction has an overall destabilizing effect on the boundary layer. However, the distribution
of the frequency is unchanged under the effect of PG. To study the spatial evolution of the two-dimen-
sional disturbance amplitudes, the least stable eigenmodes were selected.

Figures 8b and 8c show the variation of the real parts of the  and  disturbance amplitudes for
 at  for different  values (APG). The least stable eiegenmodes with  were

selected to study the spatial growth of the disturbance amplitudes. The least stable global modes are found
to be globally stable, when , while the dimensionless frequency is almost the same for all the least
stable global modes at different  values. It shows that the disturbance magnitudes increase, as they
move downstream in the f low direction. The disturbance amplitudes have periodic nature in the f low
direction. The magnitudes of the disturbance amplitudes increase, as the plate angle  varies from 0 to

. It proves that the development in the APG increases the spatial growth rate of the disturbance
amplitudes. Thus, the APG has a destabilizing effect on the boundary layer.

Figure 9 shows the variation of spatial amplification rate  of the velocity disturbance amplitudes for
different plate angles  and Reynolds numbers. The spatial amplification rate  increases in the f low
direction and with increase in APG. The APG has an overall destabilizing effect on the disturbance
amplitudes and, therefore, on the boundary layer as a whole.
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Fig. 8. Comparison of the eigenspectra (a), the streamwise disturbance amplitudes  (b), and the wall-normal distur-
bance amplitudes  (c) for different  at  and . Here,  is for ZPG and ,

, and  are for APG. Symbols: , ,
, .
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Fig. 9. Variation of the spatial amplification rate  for APG in the f low direction for different values of  at 
(a) and  (b). The value of  is calculated for the least stable global mode.
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SUMMARY

The global stability analysis is performed for an incompressible boundary layer developed on an
inclined f lat plate in the presence of streamwise PG. The various incident angles  considered are
0.0222, 0.0444, and 0.0667. The two-dimensional eigenvalue problem is solved numerically using
Arnoldi’s iterative algorithm. The computed global modes are stable because the largest imaginary parts
of the eigenvalues  are found to be negative. The spatial structure of the disturbance amplitudes shows
that they grow in size and magnitude as they move downstream. The frequency distribution remains

βH

ωi
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almost the same for negative and positive pressure gradients. As the positive angle  increases from 0 to
0.0667, the temporal growth rate  and the spatial growth rate reduce, which makes the global modes
more stable. Thus, FPG makes the f low temporally and spatially more stable. As the negative value of 
increases from 0 to –0.0667, the temporal growth rate  increases and the global modes become less sta-
ble. The spatial growth rate  also increases in the streamwise direction. Thus, the development of the
APG makes the global modes less stable. Overall, FPG has a damping and APG has an amplifying effect
on the disturbances. Thus, the disturbances amplify when subjected to APG and decay when subjected to
FPG. The effect of domain length is also studied in the analysis; it is found that the global stability strongly
depends on the streamwise domain size.
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