
ISSN 0015-4628, Fluid Dynamics, 2019, Vol. 54, no. 3, pp. 374–388. © Pleiades Publishing, Ltd., 2019.
Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 3, pp. 83–97.
Process of the Formation of Internal Waves Initiated
by the Start of Motion of a Body in a Stratified Viscous Fluid

P. V. Matyushin
Institute for Computer Aided Design of the Russian Academy of Sciences, Moscow, Russia

e-mail: pmatyushin@mail.ru
Received April 11, 2018; revised October 16, 2018; accepted October 18, 2018

Abstract—The mechanism of formation of three-dimensional internal gravity waves initiated by the
start of motion of a disk of given diameter and finite thickness in the horizontal direction along the
disk symmetry axis from right to left at a given uniform velocity in an incompressible viscous linearly
density-stratified f luid is first considered in detail. The consideration is carried out on the basis of
numerical solution of the system of Navier–Stokes equations in the Boussinesq approximation and
visualization of the three-dimensional vortex structure of the f low calculated. The obtained fields of
the velocity vectors and pressure perturbations possess horizontal and vertical symmetry planes pass-
ing through the disk symmetry axis. The process of formation of f low in the upper half-space caused
by the shear and gravitational instabilities is described. In this process, two horizontal vortex filaments
are initially formed between the back disk face and the place of pulsed start and then transformed into
legs of the hairpin vortex loop whose head is located to right of the start point. Thereafter, vortex rings
are periodically formed above the start point during half the buoyancy period of fluid. The left-hand
halves of the rings are transformed into half-waves occupying space between the disk and the start point.
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From both practical and theoretical points of view it is of importance to understand physics of complex
three-dimensional processes of generation of spatial internal gravity waves initiated by the motion of bod-
ies in the horizontal direction in a stably stratified viscous continuous medium of the ocean and atmo-
sphere. It is well known that the start of motion of a body is accompanied by emission of time-dependent
internal gravity waves propagating along radius-vectors from the start point Q of the body [1, 2].

In the present study, the complex three-dimensional mechanism of formation of the waves initiated by
the start of motion of a disk of diameter d and thickness h = 0.76d in the horizontal direction along the
axis of symmetry Z from right to left is first considered in detail using the mathematical simulation of f lows
of an incompressible viscous f luid linearly stratified in density and the visualization of the spatial vortex
structure of the f lows calculated. The motion occurs at a velocity U for 0.5 < Fr < 4 and Re = 50, where
Fr = UTb/(2πd) is the internal Froude number, Re = Ud/ν is the Reynolds number, and Tb and ν are the
buoyancy period and the kinematic viscosity coefficient of f luid, respectively. In [3] the initial stage of this
mechanism in the vertical plane of symmetry of f low is described for Fr = 1 and Re = 500 at T < 0.5, where
T is time passed from the disk start and nondimensionalized by means of the Tb.

Traditionally, the experimenters when investigating stratified viscous f luid f lows consider the internal
gravity wave pattern and the wake behind traveling bodies (spheres and cylinders) [2, 4–7] or obstacles on
the ground surface [8] only in the vertical plane, whereas the mathematical simulation gives the three-
dimensional vortex structure of the internal waves [3, 9–11]. The mechanism of formation of this struc-
ture is not investigated experimentally. In [10] a classification of stratified viscous f luid f lows past a sphere,
which is in adequate agreement with the experiment [6], is given at 0.005 < Fr < 100 and 1 < Re < 500. The
results [12] for the sphere at Re = 200 and 0.125 < Fr < 100 are in adequate agreement with the experiment
[6] at 0.25 < Fr < 100. When Fr < 0.25 in [6] time-dependent periodic f low was observed in the sphere
wake, while in [12] steady-state f low was observed. In [11] the f low regimes in the neighborhood of a disk
of thickness h = 0.76d were classified for 0.05 < Fr < 100 and 50 < Re < 500.

The problem of f low induced by diffusion on a sphere placed in a continuously stratified viscous f luid
at rest [13] can be used to obtain the initial representation on the three-dimensional mechanism of forma-
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tion of spatial internal gravity waves. The f low axisymmetric about the vertical straight line q through the
center Q of the sphere was considered. The calculated velocity vector field is also symmetric about the hor-
izontal plane through the point Q. When T ≤ 0.5 an axisymmetric vortex ring which occupies the entire
upper half-space is generated here. When T > 0.5 a new vortex ring which decreases the vertical dimen-
sions of the rings generated earlier is generated during each ∆T = 0.5 in the neighborhood of the straight
line q above the sphere. Each pair the vortex rings forms a single internal gravity wave. The group velocity
of these waves is perpendicular to their phase velocity and directed along the radius-vector from each of
two effective wave-formation centers, namely, the sphere poles [13]. The wave energy propagates in the
radial directions from the sphere poles at the group velocity in parallel to the wave crests. With time, at
large distances from the body the phase surfaces with constant angular velocity tend to horizontal planes
passing through the wave–formation centers. When T > 500 only two vortex rings remain in the neighbor-
hood of these planes. Such vortex rings strongly oblate in the vertical direction are observed experimen-
tally [13].

The two-dimensional problem of uniform motion of an infinitely long horizontal cylinder in the hor-
izontal direction from right to left perpendicularly to its axis of symmetry Z (for Re < 200 and Fr < 1) [2,
3, 9, 10] can also be used to understand the spatial mechanism of formation of internal gravity waves.
Here, as in the experiment [13], two wave-formation centers appear in the neighborhood of the point Q
at which the cylinder starts to move. In this case, the velocity vector field will be symmetric about the hor-
izontal straight line through the point Q. A new internal wave is generated during each ∆T = 1 in the upper
and lower half-planes to right and left of the vertical straight line q through Q [3, 9, 10]. The waves to left
of straight line q moves to left together with the cylinder and the waves to right of straight line q remain on
the same place being compressed vertically under the action of the waves generated later. The horizontal
density gradient isoline patterns in the neighborhood of the square cylinder obtained as a result of the
mathematical simulation in [3, 9, 10] at Fr = 0.1 are in very good agreement with the shadow schlieren
“vertical slit–Foucault knife” images of f lows in the neighborhood of the circular cylinder obtained
experimentally [2] at Fr = 0.094.

The present study is the logic continuation of author’s studies [3, 9, 10, 13] devoted to an analysis of
the mechanism of formation of internal gravity waves.

1. FORMULATION OF THE PROBLEM AND NUMERICAL METHOD

We will consider homogeneous f low of incompressible viscous f luid linearly stratified in density in the
horizontal direction Z from left to right at a velocity U. At a certain instant of time a disk of diameter d and
thickness h = 0.76d which has the horizontal axis of symmetry Z (Fig. 1a) is instantaneously introduced
in this f low and the problem of change in the f low pattern arises. To solve this problem we place the origin
of the stationary Cartesian coordinate system (X, Y, Z), where the X axis is vertical, at the geometric center
of the disk. The f luid density  is nondimensionalized by means of
the density ρ0 at the level of disk center and the coordinates X, Y, Z are nondimensionalized by means of

d/2; N = 2π/Tb and  are the f luid buoyancy frequency and scale,  is the scale ratio, g
is the gravity acceleration, and S is the salinity perturbation nondimensionalized by means of ρ0 which is
equal to zero in the beginning of calculations. The values of the parameter A > 100 were taken to satisfy
the conditions N ≈ 1 s–1 and 0.1 cm < d < 10 cm implemented in the experiment.

To simulate mathematically the above problem we solve the system of Navier–Stokes equations in the
Boussinesq approximation written in the cylindrical coordinate system (Z, R, ϕ): Z = Z, ,

. In the Cartesian coordinate system this system of equations takes the following form:

(1.1)

(1.2)

(1.3)

where  is the velocity vector, p is the pressure perturbation nondimensionalized by means

of , t is time (nondimensionalized by means of ), Sc = ν/κ = 709.22 is the
Schmidt number, κ is the salt diffusion coefficient, and ∇ and Δ are the Hamilton and Laplace operators.
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Fig. 1. (a) Formulation of the problem of f luid f low past a disk. (b–m) Visualization of steady-state f low at Fr = 0.5,
Re = 50, A = 981.6, and T = 11.46 (Сd = 2.649) in space (b, c), in the vertical plane X–Z (d–j), and on the disk (k–m):
(b, c) isosurfaces for β = 0.02; (d) β-isolines in steps of 0.01, (e, f) Sz-isolines in steps of 4 × 10–5 and 10–5, (g) S-isolines
in steps of 10–5; (h–j) streamlines in the stationary (h, i) and moving (j) Cartesian coordinate systems; and (k–m)
skinfriction patterns of the leading (k), lateral (l), and rear (m) disk surfaces in the stationary Cartesian coordinate system.
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The solve this problem we used the MERANZh numerical method of splitting in physical factors [14]
successfully used for simulation of both incompressible viscous f luid f lows past spheres, cylinders, and
disks [3, 9–11, 13, 15, 16] and f lows with the free surface [14].

The cylindrical computational grid [Z, R, ϕ] =  =  occupying the domain
[–13 < Z < 50, 0 < R < 30, 0 < ϕ < 2π] was used. The grid is concentrated towards all the disk surfaces and

[ ]× ×I J K [ ]× ×240 110 40
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the Z axis so that five grid cells fell on the velocity boundary layer. As the distance from the body surface
increases along the Z and R directions, the lengths of the grid cell sides increase monotonically along the
Z and R directions, respectively, in accordance with the polynomial law up to a certain maximum and then
they do not vary. At Re = 50 the minimum (maximum) grid cell dimensions along the Z and R directions
are equal to 0.036 and 0.035 (0.41 and 0.67), respectively.

The staggered grid was used so that the variables S and p were determined at the centers of the compu-
tational cells and the velocity components at the centers of their faces; the variables S and p were not deter-
mined on the body surface.

We will describe the algorithm of calculations for the Cartesian coordinate system. At the initial instant

 a certain initial f low was specified in the neighborhood of the disk. Let at , where τ is the

time step and n are the numbers of steps (n = 0, 1, 2, 3, …), the values of S, , and p be

known. Then the scheme of finding the unknown functions S, v, and p at the instants of time

 can be represented in the form:

(1.4)

(1.5)

(1.6)

(1.7)

where w is an auxiliary intermediate velocity.

Addition of Eqs. (1.5) and (1.7) gives Eq. (1.2). Equation (1.6) can be obtained in multiplying the Ham-
ilton operator in the scalar way by Eq. (1.7) with regard to the continuity equation (1.3).

To approximate the convective terms of Eqs. (1.4)–(1.5) we used the hydride finite-difference scheme
for which the second order of approximation in spatial variables, the minimum artificial viscosity and dis-
persion, workability over a wide Re and Fr range, and monotonicity are characteristic [14]. The central
differences were used to approximate other spatial derivatives in Eqs. (1.4)–(1.7).

We will now consider the approximation of the Poisson equation (1.6) at the inlet of the outer boundary
of the cylindrical computational domain (Z = –13)

(1.8)

where h is the grid step,  and  are the pressures at the centers of the cells “0, j, k” and “1, j, k,”

located to the left and right with respect to the boundary, respectively ( j = 1, 2,…, J; k = 1, 2, …, K). In

(1.8) the boundary values of  and  are unknown.

We will write the expression for  obtained from Eq. (1.7):

Substitute this expression for  in Eq. (1.8)

(1.9)

Thus, instead of Eq. (1.8), on the inlet part of the outer boundary of the cylindrical computational

domain (Z = –13) we can use Eq. (1.9), where already there are no unknown boundary values  and

. Similarly, we can show that there is no need for the boundary conditions for the pressure on all the

remaining boundaries.

On the rigid disk surface we impose the no-slip and no-flow boundary conditions:  = (0,
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drical computational domain (Z = –13) we have v = (1, 0, 0) and . On the lateral part of the

outer boundary (R = 30): v = (1, 0, 0) and . On the rear part of the outer boundary (Z = 50):

, , , and . At infinity from the body S = 0; however, the “free” boundary

conditions  are imposed on the outer boundary by virtue of the finite dimensions of the com-

putational grid. It is natural to impose the “free” boundary conditions  for the third component

of velocity vector on the rear part of the outer boundary. Unfortunately, the formulation of similar “free”
boundary conditions for all the velocity components at Z = 50 leads to abend of the calculation process.

The software created for the mathematical simulation and visualization of three-dimensional stratified
viscous f low flows past the disk was thoroughly tested [3, 11]. For Re = Fr = 50 and A = 9816 the disk drag
coefficient is equal to Сd = 1.923 and the length of the recirculation (stagnant) region D1 downstream of

the disk reckoned from the rear stagnation point on the disk is equal to L/d = 0.741. This is in adequate
agreement with the experiment [17]. The calculations were carried out with the use of computational
resources of Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS).

2. VISUALIZATION OF THE CALCULATION RESULTS

When Fr > 10 the f low past the disk will be equivalent to a homogeneous viscous f luid f low and rep-
resents the body wake in the stationary Cartesian coordinate system. When Fr < 5 generation of internal
gravity waves characterized by the horizontal and vertical planes of symmetry passing through the Z axis
can be observed [3, 9–11].

We will consider steady-state three-dimensional f low field calculated for Fr = 0.5, Re = 50, and А =
981.6 (Fig. 1) [3, 9–11]. By virtue of the presence of the horizontal Y–Z plane of symmetry, the velocity
vector fields of this f low will be analyzed only in the upper half-space.

In Figs. 1k–1m we have reproduced the skinfriction pattern (limiting streamlines) on the disk surface
[15, 16] for X > 0. The f low incoming from left (Fig. 1a) focuses at a certain point on the leading disk side
(nearer to the upper boundary) and then spreads over the leading side in various directions (Fig. 1k). On
the lateral disk sides the f low tends downward towards the Y–Z plane (Fig. 1l). By virtue of existence of
the vertical X–Z plane of symmetry of the velocity vector field of this f low, we can observe streamlines in
the X–Z plane (Figs. 1h–1j). The “sinusoidal” streamline pattern is more visual in the stationary Carte-
sian coordinate system (Figs. 1h–1i). In this case, the wave crests and hollows can be observed. In Fig. 1i
the distance between the first and second wave crests along the Z axis is equal to approximately λ, where

is the length of internal waves in the X–Z plane.

As a rule, the patterns of isolines of various density derivatives are observed in the experiments. For
example, the popular and informative schlieren “vertical slit–Foucault knife” image [2] gives the pattern
of isolines of the horizontal density gradient Sz. Below, for comparison with the experiment, the Sz-iso-

lines in the vertical plane X–Z (Figs. 1e–1f) are constructed. In Fig. 1f the dark (Sz < 0) and light (Sz ≥ 0)

stripes visualize the phase surfaces of internal waves and the crest and hollow lines, clearly seen in Fig. 1i,
are located on their boundaries. In this sense, figures 1f and 1i are similar. At the same time, the field of
Sz-isolines in the neighborhood of the rear disk side (Fig. 1e) gives more the structural f low elements than

the streamline pattern in Fig. 1h. In Fig. 1g the dark (S < 0) and light (S ≥ 0) stripes on the S–isoline pat-
tern visualize the hollow and crest half-waves, respectively.

Since in the experiments the body usually moves with respect to the f luid at rest, we introduce the sec-
ond (moving) Cartesian coordinate system (x, y, z) (the x axis is vertical and the z axis is parallel to the Z
axis) which moves uniformly from left to right at the velocity U with respect to the first (stationary) Car-
tesian coordinate system introduced above (Fig. 1a). When the values of the horizontal components of the
velocity vectors calculated in the first Cartesian coordinate system decrease by unity then we can observe
the streamlines in the moving Cartesian coordinate system (compare Figs. 1h–1i and 1j). The values of
the vertical components of the velocity vectors and the variables S and p are the same in the first and sec-
ond Cartesian coordinate systems.

The instantaneous streamline patterns constructed in the second Cartesian coordinate system visualize
the circulation (vortex) f low cells (Fig. 1j). At t = 0 the origin of the second Cartesian coordinate system

coincides with the center Q of the rear disk side. In time  the

origin of the second Cartesian coordinate system is displaced at the distance  = t = 4πFrT
in the first Cartesian coordinate system.

It can be shown [9] that for steady-state flow the S–isoline pattern in the plane of symmetry X–Z (Fig. 1g)
is similar to the streamline pattern in the second Cartesian coordinate system (Fig. 1j). In this pattern we
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can clearly distinguish the wave-like f luid motion near the Z axis behind the rear disk face which is uni-
formly moving from right to left and a series of elongated circulating cells above it. We will call the part of
f luid in Fig. 1j between the circulating cell of number M and the Z axis by the “base” M of this cell. In the
circulation cell 0, adjacent to the disk in Fig. 1j, f luid circulation occurs clockwise, in the next elongated
“base” 1, adjacent to the cell 0 from right, f luid describes a loop moving counterclockwise; in cell 2, adja-
cent to the base 1 from right, f luid circulation is directed clockwise, etc. In Fig. 1g we have plotted the
numbers of cells 0 and 2–5 and base 1. Thus, in Fig. 1j f luid circulates clockwise in cells 0, 2, and 4 and
counterclockwise in cells 3 and 5 (hollows half-waves). In Figs. 1g and 1j the bases 1, 3, and 5 can be clearly
traced.

The function β was determined at each of the centers of computational grid cell to represent the three-
dimensional vortex f low structure. If at the center of a cell there exist complex conjugate eigenvalues

 of the velocity gradient tensor G, then β = γ > 0, else β = –1. Then, the isosurface β = β0 > 0

is constructed (Figs. 1b, 1c). If at a certain fixed point of f low β > 0, then in the Cartesian coordinate sys-
tem x with the origin at this point which travels at the velocity of this point we can write the ordinary dif-

ferential equation , where v is the f luid velocity in the Cartesian coordinate system x. It

can be shown [16] that in the Cartesian coordinate system x the phase trajectory of a liquid particle is a
plane spiral along which the particle moves around a taken point of f low at the angular velocity β. The
spatial vortex structures of the double-thread wake and the chains of hairpin-shaped vortex loops in the
wake behind a sphere in homogeneous viscous f luid f low obtained with the use of β-visualization in [15,
16] are in a good agreement with the vortex structures obtained experimentally [18, 19] by means of dye
or emulsion visualization.

The pattern of isolines of β > 0 plotted in the vertical plane X–Z in Fig. 1d is similar to the streamline
pattern plotted in the second (moving) Cartesian coordinate system in Fig. 1j. Each of the half-waves in
Figs. 1g and 1j can be put in correspondence to a half-wave in Fig. 1d. Thus, in Fig. 1d we can distinguish
three hollow half-waves in the plane X–Z (corresponding to dark stripes 1, 3, and 5 with S < 0 in Fig. 1g)
and two crest half-waves (corresponding to light stripes 2 and 4).

From Fig. 1d there follows transition from the two-dimensional vortex structure of internal waves in
the plane X–Z to the three-dimensional wave structure in Figs. 1b and 1c in which the U-shaped struc-
tures of the first hollow and crest half-waves, a fragment of the second hollow half-wave, and the V-
shaped structures of the “axial parts” of the first (only in Fig. 1c), second, and third crest half-waves near
the Z axis are shown. The latter are related to one another and to D1 by means of the horizontal vortex
filaments.

3. EVOLUTION of FLUID FLOW AT T ≤ 0.7

When the disk starts in the horizontal direction in a stably stratified viscous f luid with the density

, the liquid particles near the disk leave the state of rest and begin to oscillate at the buoy-

ancy frequency N in the vertical direction. These oscillations in the near-wake dump with time, forming
internal waves (Fig. 1) which propagate from right to left together with the body at the body velocity in the
moving Cartesian coordinate system. In what follows, we will describe the process of formation of these
waves in detail.

When Fr = 4 and Re = 50 laminar f low past the disk is observed in the streamline pattern at T ≤ 0.001
in the stationary Cartesian coordinate system. At T = 0.008 f low separates in the neighborhood of the rear
disk edges and attaches to the rear disk side above the Z axis. Here, the main mechanism of formation of
viscous f luid f low 1k operates (generation of the vortex ring (or semiring) in the neighborhood of the body
surface) [16]. The numeral 1 in the mechanism name 1k means that this mechanism operates in D1.

In Fig. 2 we can observe regions D1 of length L/d = 0.388, 0.565, 0.653, 0.671, and 0.729 at Т = 0.04,
0.08, 0.12, 0.14, and 0.32, respectively. At Т > 0.32 the length L/d does not increase, the thickness of D1
in the rear disk side being equal to 0.928d. When Fr = 4 and Re = 50 the vortex sheet (f low region D2 in
Fig. 2d) and D1 are axisymmetric.

If q is a vertical straight line through the point Q of pulsed start of the center of rear disk side, then this

center moves to left in the second (moving) Cartesian coordinate system at the distance  from
the stationary straight line q. When 0.02 < Т < 0.04 four vortex structures which are symmetric about the
X–Z and Y–Z planes (right half of Fig. 2b) begin to be formed between the right edge of the sheet and the
straight line q at the place of sharp shear of f luid in the neighborhoods of the planes ϕ = π/4 and ϕ = 3π/4.
In Fig. 2 we have reproduced the further development of these structures at 0.06 ≤ Т ≤ 0.32 using both
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Fig. 2. Flow behind the disk at Fr = 4, Re = 50, and А = 2776.4: (a–e) isolines for β > 0 at ϕ = π/4 in steps of 0.2, 0.1,
0.0002, 0.0005, and 0.002 at T = 0.02, 0.04, 0.06, 0.08, and 0.19; (f–i) isosurfaces for β = 0.003 at T = 0.08, 0.16, 0.24,
and 0.32.
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β > 0-isolines in the planes ϕ = π/4 (in the right halves of Figs. 2c–2e) and the β-isosurfaces (Figs. 2f–2i).

When Т ≥ 0.08 these four structures are already similar to vortex filaments. When 0.04 ≤ Т ≤ 0.19 (see

Figs. 2b–2g) the straight line q passes through the right ends of the first group of four filaments. When

0.14 < T < 0.16 the left ends of the first group of four filaments (near D1) induce the second group of four

vortex filaments (Figs. 2e and 2g). (In Fig. 2g the numerals 1 and 2 mark the first and second groups of

four vortex filaments, respectively.)

When 0.22 < T < 0.24 a single head vortex is induced on the right of each pair of the right ends of the

first and second groups of four filaments (Fig. 2h). When 0.3 < T < 0.5 each of the filament pairs including

their head vortex transforms into a hairpin-shaped vortex loop (Figs. 2i and 3a). Thus, the first and second

groups of four vortex filaments transform into the first and second pairs of vortex loops, the legs of the

second pair of the loops contacting the sheet D2. From Fig. 4d it follows that the f luid rotates clockwise

in the cross-section of the head of the first vortex loop by the vertical plane X–Z (cell – 1) when X > 0.
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Fig. 3. Flow behind the disk at Fr = 4, Re = 50, А = 2776.4, and T = 0.72: (a, b) isosurfaces for β = 0.003 and 0.001;
(c) Sz-isolines in steps of 10–7, (d) β-isolines in steps of 0.001, (f) S-isolines in steps of 10–6, and (e) instantaneous
streamlines in the moving Cartesian coordinate system in the vertical plane X–Z.
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Consequently, when X > 0, Y > 0, and Z > 0 the f luid rotates counterclockwise in the vertical cross-section

of leg of the first vortex loop (when looking at the rear disk side).

In accordance with [16], the detailed mechanism of vortex formation at T < 0.5 can be symbolically

written as follows: M1 = {2k–1k–3f–3f–3t/b–3r/l}, where 2k denotes the disk sheet formation, numeral

3 denotes f low D3 outside the sheet (Fig. 2d), 3f denotes the generation of four vortex filaments in D3

(initially, the first group of four filaments and then the second group), 3t/b/r/l is the generation of heads

of vortex loops oriented upward (t), downward (b), to the right (r) and to the left (l). Formation of these

vortex loops (mechanism M1) is caused by the shear and gravitational instabilities of the stratified viscous

fluid initiated by the disk motion.

Dynamics of the patterns of instantaneous streamlines in the moving Cartesian coordinate system and

S- and Sz-isolines in the vertical plane X–Z at 0.01 ≤ T ≤ 0.24 shown in Fig. 4 supplement the above-

described process of vortex loop formation (spatial mechanism M1). At X > 0 the start of disk motion

forms a single large circulation cell 0 in the pattern of instantaneous streamlines in the moving Cartesian

coordinate system, two cells in the pattern of S-isolines (left and right), and three cells in the pattern of

Sz-isolines (Fig. 4a). In the Sz–isoline pattern (Fig. 4, II) the straight line q (black vertical line) passes a

little to right of the boundary between the central and right cells, i.e., the central cell visualizes the path

passed by the body in the moving Cartesian coordinate system. In the S–isoline pattern (Fig. 4, III) the

right cell is also displaced to right at 0.01 < T < 0.24. On basis of S– and Sz–isoline patterns it is not pos-

sible to understand the f low evolution mechanism visually shown by instantaneous streamlines in the

plane X–Z. Intensive clockwise f luid rotation to the left of the straight line q leads to formation of circu-

lation cell 1 to right of q (with counterclockwise f luid rotation in Fig. 4c), which, in its turn, induces

(together with the right ends of the first group of four vortices in Fig. 2h) formation of circulation cell –1

(head of the first vortex loop) near the Z axis to right of q (Fig. 4d).
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Fig. 4. Flow behind the disk at Fr = 4, Re = 50, and А = 2776.4 in the vertical plane X–Z: (a–d) instantaneous streamlines
in the moving Cartesian coordinate system (I), Sz × 106 isolines in steps of 10, 0.1, 0.1, and 1 (II), and S × 106 isolines in
steps of 3, 0.1, 0.1, and 5 (III) at T = 0.01, 0.19, 0.22, and 0.24.

(a) I II III
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000 1

11

�1

�1
When 0.25 ≤ T ≤ 0.7 the disk together with zeroth cell is displaced to left making room for approaching
cell 1 to the Z axis (Fig. 3e), i.e., the first hollow half-wave is formed from cell 1 to left of straight line q
(Fig. 3f).

When 0.4 ≤ T ≤ 0.7 the heavier f luid rises along the straight line q to the equilibrium level for the lighter
fluid on the boundary between circulation cells 1 (with counterclockwise f luid circulation) and –1 (with
clockwise f luid circulation). Therefore, in the neighborhood of line q negative values of S become positive
and when 0.4 ≤ T ≤ 0.7 a certain new light cell with S > 0 (Figs. 3f and 5a–5b (III)) descends along the
straight line q in the S–isoline pattern. In Fig. 4d (III) this cell divides the right cell with S < 0 into cell 1
(to left of q) and cell –1 (to right of q). Thus, in the S–isoline patterns the cells 1 and –1 are formed later
than the circulation cells 1 and –1 in the instantaneous streamline patterns and at 0.4 ≤ T ≤ 0.7 formation
of the first and second pairs of vortex loops is accompanied by formation of the first hollow half-wave.

The same spatial mechanism M1 operates also at Fr = 0.5 (Figs. 5a–5b and 6a–6e). Though at the

same T the path , passed by the disk in the moving Cartesian coordinate system at Fr = 0.5,
will be by 8 times shorter than the path at Fr = 4. We could assume that at Fr = 0.5 the f low patterns can
be obtained from the patterns at Fr = 4 by means of their simple horizontal contraction by 8 times. But in
fact this is not exactly so. For example, when 0.25 ≤ T ≤ 0.6 strong fluid rotation in the circulation cell –1
(head of the first loop) (Figs. 5a–5b (II)) generates the high base 1 of the first hollow half-wave, while the
circulation cell 1 cannot already be seen above the base 1. At the same time, when 0.01 < T < 0.1 the first
group of four vortices is generated adjoining the vortex sheet (Figs. 6a–6b). Therefore, when 0.14 < T <
0.16 the second group of four vortices is already formed in the neighborhood of the lateral disk sides (Fig.
6c).

When 0.24 < T < 0.25, at Fr = 0.5 the heads come into being ahead of the first group of four vortices
(Fig. 6d). At Fr = 0.5 the heads of the second group of four vortices are not seen in Fig. 6d. Thus, when
T ≤ 0.7 the stages of formation of the first pair of vortex loops depend only slightly on Fr at 0.5 ≤ Fr ≤ 4
and are determined by only the instant of time T.

= 4πFrs T
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Fig. 5. Flow behind the disk at Fr = 0.5, Re = 50, and А = 981.6 in the plane X–Z: (a–h) β-isolines in steps of 0.002 (I),
instantaneous streamlines in the moving Cartesian coordinate system (II), and S × 106 isolines in steps of 2, 2, 6, 6, 6, 3,
3, and 3 (III) at T = 0.35, 0.6, 0.7, 0.75, 0.8, 0.9, 1.2, and 1.25.
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4. EVOLUTION OF FLUID FLOW AT T > 0.7

When 0.25 < T < 0.8 the head of the first loop is formed around the straight line q (Figs. 6d and 6e).
In Figs. 5a–5e (II) the head includes the circulation cells 1 and –1. We will consider it as the first vortex
semiring. When 0.6 < T ≤ 0.7 the upward vortex-free f luid motion can be observed on the boundary
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Fig. 6. Flow behind the disk at Fr = 0.5, Re = 50, and А = 981.6: (a) isolines for β > 0 in the plane ϕ = π/4 at T = 0.1 in
steps of 0.1; (b–i) isosurfaces for β = 0.005 at T = 0.1, 0.2, 0.25, 0.7, 0.8, 0.9, 1.3, and 1.5. 
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between the cells 1 and –1 in the neighborhood of the straight line q (Figs. 5b and 5c(II)). When 0.7 < T ≤
0.9 the deformed vortex ring 2 (Figs. 6f and 6g) is formed around the straight line q (Figs. 5d–5f) owing

to the shear and gravitational instabilities. When 0.9 < T ≤ 1.2 this ring is displaced downward (closer to

point Q) and its left half is transformed into the first crest half-wave (Fig. 6h) (circulation cell 2 in Figs. 5f

and 5g). At the same time, the right half of ring 2 (which corresponds to the circulation cell –2 in the
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Fig. 7. Flow behind the disk at Fr = 0.5, Re = 50, and А = 981.6 in the plane X–Z: (a–h) S × 106 isolines in steps of 2, 2,
2, 1, 1, 0.5, 0.5, and 5 at T = 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, and 3.
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X–Z plane in Fig. 5g) remains in the neighborhood of the straight line q. The velocity of f luid rotation in
the circulation cell 2 in Fig. 5g is much higher than in the cell –2; therefore, in Fig. 6h the right half of
ring 2 is not seen. When 1.2 < T ≤ 1.7 ring 3 is formed and displaced to the Z axis (Figs. 5g–5h and 6h–6i)
creating the second hollow half-wave (Figs. 7a and 7b). Thus, when T > 0.7 the process of generation of
vortex rings (spatial mechanism M2 = {3k}) can be periodically observed above point Q during each

. The left halves of the vortex rings are transformed in halves-waves which occupy the space
between the disk and point Q. In this case right halves of the rings become thinner with time under pres-
sure of the newborn right halves-waves which press then from above. The universal mechanism M2 works
also in the case of the disk at rest.

Figures 5g and 5h (II) clearly demonstrate in detail the way of implementation of the gravitational
instability when 1.2 < T ≤ 1.25. When 1.1 < T ≤ 1.15 vortex-free f low is directed downward in the neigh-
borhood of the straight line q on the boundary between cells 2 and –2. When T = 1.2 the velocity along
the right boundary q2 of the circulation cell 2 inclined at a certain small angle to the vertical becomes a
little higher than that near the left boundary of cell –2 due to the fact that the cell 2 is located closer to the
disk moving in the second Cartesian coordinate system. The lighter f luid descends along the straight line

Δ = 0.5T
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Fig. 8. Time-independent f low behind the disk at Fr = 4.0, Re = 50, А = 2776.4, and Т = 1.2 (L/d = 0.729 and Сd = 1.89)
in the space (a), in the planes X–Z (b and d–f) and ϕ = π/4 (c), and on the disk (g–h): (a) isosurface for β = 0.003;
(b) streamlines in the moving Cartesian coordinate system; (c) isolines for β > 0 in steps of 0.002, (d) Sz-isolines in steps
of 5 × 10–8, (e) S-isolines in steps of 10–6, (f) p-isolines in steps of 10–3; and (g–h) skinfriction patterns on the leading
(g) and rear (h) disk surfaces in the stationary Cartesian coordinate system.
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q2 to the level of the heavier f luid. At the same time, the buoyancy forces tend to return the lighter f luid
upward to its level. As a result, when T = 1.25 the streamline q2 becomes wavy and two small vortices are
generated in its neighborhood in the vertical plane X–Z (Fig. 5h (II)). These vortices are two parts of new
vortex ring 3 in the space (Fig. 6i) in its cross-section by the plane X–Z. As a result, at T = 1.25 ring 3 is
generated at “blank” space.

When T > 0.4 a certain new cell descends periodically during each  along the straight line q
in the S–isoline pattern in the vertical plane X–Z in Figs. 5 (III) and 7. This cell divides the cell beneath
it into two cells, namely, the left (new half-wave) and right cells. When T = 3, in Figs. 7h–7g we can clearly
see cells (halves-waves) 1–5 (to left of q), thinner cells from –1 to –5 (to right of q), and the half divided
cell (through which the straight line q passes). From the latter the cells 6 and –6 will be formed at T = 3.2.
At Fr = 0.5 and Re = 50 the S–isoline patterns are very similar when T = 3 and 11.46 (Figs. 7h and 1g),
i.e., the three-dimensional vortex structure of internal waves will be approximately the same at T = 3 as
that shown in Figs. 1b–1c.

We will now turn our attention to the process of formation of f low at Fr = 4 and Re = 50 when T > 0.72.
In Figs. 3a and 3d we can see the beginning of formation of ring 2 at T = 0.72. In Fig. 3b (at the top and
bottom) the vortex structure of the first hollow half-wave is similar to a f lattened vortex loop whose legs
are parallel to the legs of the second pair of vortex loops. When T > 0.995 the path passed by the body is
equal to s = 4πFrT > 50 = zmax, i.e., in the first (stationary) Cartesian coordinate system the straight line

q together with the head of the first loop goes beyond the boundaries of the computational domain. There-
fore, at Fr = 4 and Re = 50 in the steady-state f low formed at T = 1.2 we can observe only the left halves

Δ = 0.5T
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of legs of the first pair of vortex loops (Fig. 8a, to the right). At T = 1.2 the hollow half-wave 1 occupies
almost the entire space between the disk and the right boundary of the computational domain (Figs. 8b–8f).
The hollow line can be seen in the pattern of isolines of the pressure perturbations p in the plane X–Z (at
the center in Fig. 8f) as in the Sz–isoline pattern in Fig. 8d. The steady-state f low at Fr = 4 and Re = 50

in the neighborhood of the rear disk side is quasi-axisymmetric (Fig. 8h).

SUMMARY

As a result of numerical solution of the system of Navier–Stokes equations in the Boussinesq approx-
imation and visualization of the three-dimensional vortex structure of the f low calculated, the process of
formation of three-dimensional internal gravity waves above the point Q of the pulsed start of the center
of the rear side of a disk of diameter d and thickness h = 0.76d propagating in the horizontal direction
along the axis of disk symmetry Z from right to left in a viscous linearly density-stratified f luid at Fr = 0.5
and 4 and Re = 50 is first considered in detail.

The calculated fields of velocity vectors and pressure perturbations possess the horizontal and vertical
planes of symmetry passing through the Z axis. Therefore, the process of f low formation caused by the
shear and gravitational instabilities is described in the upper half-space as follows. Initially, two horizontal
vortex filaments are formed between the rear disk end face and the point Q of the pulsed start of this end
face. Then these filaments are transformed into legs of the hairpin-shaped vortex loop whose head is
located to right of Q. Then vortex rings are periodically formed above the point Q during the time interval
equal to the half-period of f luid buoyancy. The left halves of these vortex rings are transformed into
halves-waves occupying the space between the disk and the point Q. In this case the right halves of the
rings become thinner with time under pressure of newborn right semirings pressing on them from above.

The detailed description and the results of analysis of dynamics of formation of three-dimensional vor-
tex structures in a linearly stratified viscous continuum created by disk-shaped objects that move in the
horizontal direction are given.
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