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Abstract—The problem of a two-dimensional steady flow of a fluid in a flat channel with a free
boundary when the surface tension coefficient depends linearly on the temperature is considered. On
the channel bottom, a fixed temperature distribution is maintained. The temperature in the fluid is
distributed in accordance with the quadratic law, which is consistent with the velocity field of the
Xiemenz type. The arising boundary-value problem is strongly nonlinear and inverse with respect to
the pressure gradient along the channel. The application of the tau-method shows that this problem
has three different solutions. In the case of a thermally insulated free boundary, only one solution
exists. Typical flow patterns are studied for each solution.
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The interest in studying the influence of capillary forces on the equilibrium and motion of a fluid
under low gravity is associated with the development of space technologies [1, 2]. To mention just a
few, the technological applications of capillary effects include crystal growth, manufacture of composite
materials with new properties in weightlessness, and obtaining high-purity metals and glasses as a
result of thermocapillary deposition of droplets and bubbles of a foreign phase in space conditions. The
temperature dependence of the surface tension coefficient is one of the important factors which determine
the diversity of phase interface dynamics in the presence of a nonuniform temperature field.

The authors of [1–3] considered the problem of thermocapillary convection of a weightless fluid in
a flat layer with a free thermally insulated surface and a heated bottom using the Navier-Stokes and
thermal conduction equations when the surface tension coefficient is a quadratic function of temperature.
In the case of a half-space, this problem was investigated in [4] but, unlike [1, 3], a linear temperature
distribution was maintained on the free boundary.

The present study aims at finding the solutions of the steady-state problem describing a two-
dimensional flow of a viscous heat-conducting fluid in an open flat channel. The flow is induced by the
thermocapillary forces applied along the free surface, which cause Marangoni convection. In contrast
to [1, 3, 4], the surface tension coefficient is assumed to be a linear function of temperature. Such
convection may be predominant in microgravity conditions or in thin-film flows.

1. FORMULATION OF THE PROBLEM

A two-dimensional steady-state flow of a viscous heat-conducting fluid in the absence of external
forces is described by the equations:

u1u1x + u2u1y +
1

ρ
px = ν(u1xx + u1yy),

u1u2x + u2u2y +
1

ρ
py = ν(u2xx + u2yy),

u1x + u2y = 0,
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u1θx + u2θy = χ(θxx + θyy). (1.1)

Here, u1(x, y), u2(x, y) are the velocity vector components; p(x, y) is the pressure; θ(x, y) is the
temperature; ρ > 0, ν > 0, and χ > 0 are constant density, kinematic viscosity, and thermal conductivity
of the fluid, respectively.

Let u1 = w(y)x, u2 = v(y), p = p(x, y), θ = θ(x, y) be the solution of system (1.1). This representa-
tion of the velocities is called the velocity field of the Hiemenz type [5]. The substitution of this solution
in the first three of Eqs. (1.1) leads to the relations:

w + vy = 0,

vwy + w2 = f + νwyy,

1

ρ
p = d(y)− fx2

2
,

dy = νvyy − vvy. (1.2)

Here, f is an arbitrary constant.
The last equation in (1.1) for temperature takes the form

wxθx + vθy = χ(θxx + θyy).

Among the solutions of this equation, there is a quadratic one with respect to the variable x:

θ = a(y)x2 +m(y)x+ b(y). (1.3)

In what follows, for simplicity, we assume that m(y) ≡ 0. This means that the temperature field has
an extremum at x = 0: a maximum if a(y) < 0 or a minimum if a(y) > 0 for all y ∈ [0, 1], including the
solid wall y = 0. To describe the flow of a viscous heat-conducting fluid in a flat channel with a fixed solid
bottom wall y = 0 and an upper free surface y = l = const > 0, we will use a solution in the form (1.2)–
(1.3). Then, for 0 < y < l the unknown functions w(y), v(y), a(y), and b(y) satisfy the equations:

vwy + w2 = νwyy + f,

w + vy = 0, vvy + dy = νvyy,

2wa + vay = χayy, vby = χbyy + 2χa. (1.4)

It is assumed that the surface tension coefficient σ depends linearly on the temperature:

σ(θ) = σ0 − κ(θ − θ0).

Here, σ0, κ, and θ0 = const > 0. On the free boundary y = l, the conditions are satisfied [6]:

v(l) = 0, wy = −2κa(l), (1.5)

kθy + γ(θ − θgas) = Q. (1.6)

Conditions (1.5) follow from the kinematic and dynamic conditions, respectively. In the heat contact
condition (1.6), k > 0 is the thermal conductivity coefficient, Q(x) is the given heat flux, and γ ≥ 0 is the
interphase heat transfer coefficient; in what follows γ = const. From the condition for normal stresses,
it turns out that the free surface remains flat. This assumption can be realized, for example, due to the
action of a sufficiently large capillary pressure (the value of σ0 is sufficiently large) [7]. In accordance with
the representation of temperature (1.3), in condition (1.6), in a general case, it is necessary to assume
that

θgas = a1x
2 + a2, Q = b1x

2 + b2.

Here, the constants ak, bk, k = 1, 2 are assumed to be given. Accordingly, the following conditions for
a(y) and b(y) are satisfied on the free boundary:

kay(l) + γa(l) = b1 + γa1, (1.7)

kby(l) + γb(l) = b2 + γa2. (1.8)
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The boundary conditions on the solid wall take the form

w(0) = 0, v(0) = 0, a(0) = a10, b(0) = b10 (1.9)

with known constants a10 and b10.

It is worth to note the following features of the problem formulated above. The problem is nonlinear
and inverse, since the constant f is to be found. Indeed, if we eliminate v(y) from the mass conservation
equation, we obtain a problem for the functions w(y) and a(y). The problem for the function b(y)
(with the known v(y) and a(y)) is separated. The function d(y) is found by integration from the third
equation (1.4), accurate to a constant.

Remark 1. If the solution of problem (1.4)–(1.6), (1.9) is sought in the form

w = εw(1) + ε2w(2) + ..., v = εv(1) + ε2v(2) + ...,

a = a(1) + εa(2) + ..., b = b(1) + εb(2) + ..., f = f (1) + ε2f (2) + ...,

where ε is a small parameter (Marangoni number), then substituting these expressions into the
corresponding equations and boundary conditions and taking the limit as ε → 0, we obtain a linear
problem for w(1), v(1), a(1), b(1), and f (1). The solution of this problem (at small Marangoni numbers)
can be interpreted as a creeping two-dimensional motion of a viscous heat-conducting fluid located on
a heated substrate. The problem of two-dimensional creeping motion of two viscous heat-conducting
liquids with a linear dependence of surface tension on temperature is studied in [8].

2. DERIVATION OF THE SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS

We will now give the complete formulation of the obtained nonlinear problem for the functions w(y),
a(y), and the constant f in dimensionless form, taking into account that from the second of Eqs. (1.4)
we have:

v(y) = −
y∫

0

w(y)dy. (2.1)

This problem formulation is as follows:

L1(W,F ) ≡ PrWξξ +Wξ

⎛
⎝

ξ∫

0

W (z)dz

⎞
⎠−W 2 + F = 0, 0 < ξ = y/l < 1, (2.2)

L2(W,A) ≡ Aξξ +Aξ

⎛
⎝

ξ∫

0

W (z)dz

⎞
⎠ − 2AW = 0, 0 < ξ < 1, (2.3)

W (0) = 0, A(0) = 1, Wξ(1) = −2MA(1), (2.4)

Aξ(1) + BiA(1) = 0,

1∫

0

W (z)dz = 0. (2.5)

Here, W (ξ) = w(y)l2/χ, A(ξ) = a(y)/a10, F = fl4/χ2, Pr = ν/χ is the Prandtl number, M =

κa10l
3/χμ is the Marangoni number (see above), and Bi = γl/k is the Biot number. The integral

condition in (2.4), obtained from the first of Eqs. (1.5) with account of (2.1), is an additional condition for
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Fig. 1. Profiles of the dimensionless function W (ξ) (1) and transverse velocity V (ξ) (2) for F1 (a), F2 (b), and F3 (c).

determining the constant F . The linear problem describing the creeping motion of a fluid (see Remark 1)
has a unique nontrivial solution:

A0(ξ) = − Bi
1 + Bi

ξ + 1, W0(ξ) =
F0

6Pr

(
2ξ − 3ξ2

)
, F0 =

3MPr
1 + Bi

. (2.6)

In the papers [1, 3], the problem of fluid flow in a flat channel with a given temperature distribution on the
bottom and the thermally insulated free surface (Bi = 0) was considered. As a result of the separation
of variables, a nonlinear two-point boundary-value problem was obtained. This problem describes the
motion of a fluid in a layer where the constant F plays the role of an eigenvalue and the Prandtl and
Marangoni numbers are parameters. The non-uniqueness of the solution of this problem (from one
to three solutions) depending on the parameter M was established (Pr = 0, i.e. the limiting case of a
perfectly heat-conducting fluid was considered). In the present study, to solve the problem (2.2)–(2.5),
we use the tau-method, which is a modification of the Galerkin method [9]. The approximate solution is
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Fig. 2. Profile of the dimensionless function A(ξ) and the streamlines in the layer for F1 (a, b) and F3 (c, d).

sought in the form of sums

Wn(ξ) =

n+1∑
k=0

W kRk(ξ), An(ξ) =

n+1∑
k=0

AkRk(ξ). (2.7)

Here, Rk(ξ) are shifted Legendre polynomials. The unknown coefficients W k, Ak and the constant F

are found from the system of Galerkin approximations
1∫

0

L1(Wn, F )Rm(ξ)dξ = 0,

1∫

0

L2(Wn, An)Rm(ξ)dξ = 0, m = 0, ..., n − 1 (2.8)

and transformed boundary conditions (2.4), (2.5)

n+1∑
k=0

(−1)kW k = 0,
n+1∑
k=0

(−1)kAk = 1,
n+1∑
k=0

W kRk
′(1) = −2M

n+1∑
k=0

Ak,
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Fig. 3. Profiles of the dimensionless function W (ξ) (1) and transverse velocity V (ξ) (2) for F1 (a), F2 (b), and F3 (c),
M = −10.

n+1∑
k=0

AkRk
′(1) + Bi

n+1∑
k=0

Ak = 0, W 0 = 0. (2.9)

The last of Eqs. (2.9) is obtained from the integral condition (2.5), taking into account the orthog-
onality of the Legendre polynomials on the interval [0, 1] with weight 1 [10]. Thus, Eqs. (2.8) and (2.9)
form a closed system of nonlinear algebraic equations for the coefficients W k, Ak, and the constant F .

3. NUMERICAL RESULTS

The calculations were carried out for Pr = 0.2, Bi = 2, M = 10 ( a10 > 0, i.e., the temperature at the
point x = 0, y = 0 was minimal) and n = 17. Three different values of the dimensionless constant F
were found: F1 = 14.1397, F2 = 4.5359, and F3 = 4.4877. The difference between the values obtained
for n = 16 and 17 is of the order 10−11, 10−14, and 10−6 for F1, F2, and F3, respectively. This indicates a
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Fig. 4. Streamlines in the layer for F1 (a) and F2 (b), M = −10.
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Fig. 5. Profile of the dimensionless function A(ξ) and the streamlines in the layer for F = 3.97 and M = −10.

good convergence of the τ-method in solving this boundary-value problem. It is also worth noting that
for M � 1 the solutions tend to the unique solution of the linear problem (2.6) describing the creeping
motion in the layer. For example, for M = 0.01 we found that |F0 − F1,2,3| ≈ 10−6. Figure 1 shows
the profiles of the dimensionless function W (ξ) and the transverse velocity V (ξ) (2.1) for the values F1,
F2, and F3, respectively. The profiles for F1 and F2 are similar, but it should be noted that the flow
corresponding to the parameter F1 is more intense, thus max

ξ∈[0,1]
|W (ξ, F1)| = 4.65, max

ξ∈[0,1]
|V (ξ, F1)| =

0.9, and max
ξ∈[0,1]

|W (ξ, F2)| = 2.37, max
ξ∈[0,1]

|V (ξ, F2)| = 0.4. Figure 2 shows the profile of the function A(ξ)

and the velocity field for F1 and F3. In the first case, the function A(ξ) on the free boundary ξ = 1 is
positive, hence the temperature at x = 0 is minimal and increases in the direction of the x-axis. Since
the fluid travels in the direction of larger surface tension, near the free surface a recirculated flow zone
shown in Fig. 2a arises. In the second case, A(1) < 0 and the temperature at x = 0 attains a maximum.
Accordingly, near the free surface the fluid travels towards the x-axis (Fig. 2b). It is clear that in both
cases a more intense motion is formed near the free surface ξ = 1.
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In the case when M = −10 (a10 < 0 and the temperature at x = 0, y = 0 is maximal), for the
parameter F we obtained the values F1 = 50.08, F2 = −1.3368, and F3 = 4.271. In Fig. 3, we present
the profiles of the dimensionless functionW (ξ) and the transverse velocity V (ξ) for the valuesF1, F2, and
F3, respectively. The profiles for F = 4.271 are similar to those for M = 10, F = 4.4877 (see Fig. 1c);
therewith max

ξ∈[0,1]
|W (ξ, F = 4.4877)| = 43.962, max

ξ∈[0,1]
|V (ξ, F = 4.4877)| = 2.44, and max

ξ∈[0,1]
|W (ξ, F =

4.271)| = 45.174, max
ξ∈[0,1]

|V (ξ, F = 4.271)| = 2.476.

Figure 4 shows the streamlines in the layer for F1 and F2. It is clear that the flow corresponding to
the parameter Z1 is the most intense one. In both cases, the most intense motion is formed near the free
boundary ξ = 1.

In the case of a thermally isolated free boundary (Bi = 0), we obtained the single value of the
dimensionless constant F = 3.97. For small Marangoni numbers, this solution also tends to the unique
solution of the linear problem (2.6). Figure 5 shows the profile of the variable function A(ξ) and the
streamlines in the layer. Since A(1) < 0, near the free surface the fluid moves in the direction of the
x-axis. It is clear that the most intense flow is formed near ξ = 1, i.e., the free boundary.

We should also comment on the influence of the governing parameters on the intensity of arising
flows: with increase in the Marangoni number M, the flow velocity increases, and with increase in the
Prandtl number Pr the velocity decreases.

Remark 2. To evaluate the accuracy of the solutions, one can use the following relations:

W (1)W ′(1)−
1∫

0

(W ′)2dξ − 3

2Pr

1∫

0

W 3dξ = 0

Pr
[
W ′(0) −W ′(1)

]
+ 2

1∫

0

W 2dξ − F = 0. (3.1)

The first relation in (3.1) is obtained by the multiplication of Eq. (2.2) by W (ξ) and the integration
over ξ ∈ [0.1] with account of the first condition (2.4) and the integral condition (2.5). The second
relation follows from the integration of Eq. (2.2) over the domain of definition. Thus, substituting the
solutions obtained for all the cases considered above in equalities (3.1), we obtained that these equalities
are satisfied to an accuracy of about 10−10 and 10−50, respectively.

SUMMARY

The problem of two-dimensional steady-state fluid flow in a flat channel with a free boundary is
studied in the case when along the free boundary the surface tension coefficient is linearly dependent
on temperature and on the bottom a given temperature distribution is maintained. The non-uniqueness
of the solution of this problem is established: for Bi �= 0 three different solutions are found, and for Bi = 0
only one solution exists. All solutions found for small Marangoni numbers tend to a unique nontrivial
solution of a linear problem describing the creeping motion of a fluid in an open channel. For each
solution, the typical flow patterns are constructed.
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