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Abstract—The macroscopic model of long-term deep-bed filtration flow of a monodisperse sus-
pension through a porous medium with size-exclusion particle-capture mechanism and without
retained-particle mobilization is considered. It is assumed that the pore accessibility and the
fractional particle flux depend on the deposit concentration and at the initial time the porous medium
contains a nonuniformly distributed deposit. The aim of the study is to find the analytical solution in
the neighborhood of a mobile curvilinear boundary, namely, of the suspended-particle concentration
front. The property of having fixed sign is proved for the solution. The exact solution of the filtration
problem on the curvilinear front is found in explicit form. The sufficient condition of existence of
the solution on the concentration front is obtained. An asymptotic solution is constructed in the
neighborhood of the front. The time interval of applicability of asymptotics is determined from the
numerical solution.
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front, analytical solution.

DOI: 10.1134/S0015462819010063

The investigation of filtration of a suspension in a porous medium is an important problem for many
fields of science and technology. The filtration process is accompanied by formation of a deposit in pores
which changes the structure and properties of the porous medium [1]. This leads to decrease in the well
productivity in oil and gas recovery, industrial filter clogging, deterioration of portable and sewage water
purification, bacteria and viruses transport through aquifers, and soil salinization [2–7].

Certain particles precipitate on the porous medium frame during particle transport by fluid flow. The
mechanical interaction, diffusion, viscosity, and the electrostatic and gravity forces can play a significant
role in the particle retention depending on the properties of suspension and porous medium [8–11]. If
the particle and pore sizes are of the same order, then in many cases the size-exclusion particle-capture
mechanism is predominant. Solid particles pass freely through the pores of large diameters and are
blocked in the pores whose diameters are less than the particle dimension [12]. Complex topology
of porous channels and variable dimensions of the pore holes lead to the fact that particles may be
captured in the places of pore narrowing far from the filter inlet. In the case of long-term deep-bed
filtration the deposit is formed over the entire porous medium but not only in its surface layer [13–15].
With the injection of a suspension of constant concentration, certain particles are transported by fluid
flow throughout the porous medium, while the other are captured in narrow pores and form the deposit
(Fig. 1).

The traditional mathematical model of one-dimensional deep-bed filtration of incompressible
monodisperse suspension in the porous medium with the size-exclusion particle-capture mechanism
relates the suspended and retained particle concentrations by a system of two partial differential
equations. The mass balance equation for the suspended and retained particles is an analog of the
continuity equation; the kinetic equation determines growth in the deposit concentration [16]. More
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Fig. 1. Cross-section of a porous medium with suspended and retained particles.

complex filtration models constructed for particles and pores of various dimensions on the basis of
balance between the suspended and deposited particles were described in [17–22].

The exact solutions of the problem of filtration with pores completely accessible for the suspended
particles were obtained in [23, 24]; in this case the characteristics of the system are straight lines.

Introduction of the pore accessibility function and the particle flow through accessible pores (frac-
tional flux factor) leads to curvilinear characteristics. The exact solutions become much more com-
plex [25, 26]. The asymptotic solutions, in which the distance from the concentration front is used as
a small parameter, cover the time ranges of the filtration processes occurring in the laboratory and field
studies [18].

The models of filtration with a clean porous frame assume that at the initial instant there are no
suspended and retained particles in the porous medium [23–26]. In the present study the more generic
case is considered, namely, the porous medium contains a deposit and pure water before the beginning
of filtration. The model considers suspension filtration in alternating the suspension flow and the reverse
pure water flow. The deposit is accumulated in the porous medium during filtration of forward suspension
flow. Mobilization and washing-out of retained particles take place in reverse water flow. Such problem
appear in the oil-producing industry and the industrial filter maintenance [4, 6, 27, 28].

In what follows, we will assume that incomplete particle mobilization takes place in the displacement
of suspension by pure water which moves in the opposite direction and the deposit remains partially
in the porous medium. The initial nonuniformly-distributed deposit affects the filtration process of
forward suspension flow. In [29] the numerical solution of the problem with initial deposit was obtained.
However, so far there are no analytical solutions of this problem.

In the present study filtration of a suspension which displaces pure water from the porous medium
with initial deposit is considered. The moving boundary is the concentration front of suspended particles
in the suspension. The dependence of the initial deposit on the coordinate in the model which takes into
account the dependence of the porosity and the fractional flux on the accumulated deposit leads to the
curvilinear boundary. The exact solution of the problem on the concentration front is obtained for the
initial deposit nonuniformly distributed in the porous medium. The asymptotic solution is constructed in
the neighborhood of the concentration front; its principal term coincides with the exact solution on the
front. A similar solution of the problem without initial deposit in the presence of the rectilinear boundary
was obtained in [18] and the asymptotics were constructed for a small deposit in [30].

1. MATHEMATICAL MODEL. GENERAL PROPERTIES OF THE SOLUTION

The model supposes insignificant diffusion/dispersion. Small concentrations of suspended and
confined particles have no effect on the volume balance of general flow [16, 17, 28]. The high particle
concentrations obey the Amagata law of additivity of specific volumes in mixing (see [17, 28]):

ρ(c) = cρr + (1− c)ρw,

where ρ, ρw, and ρr are the brine, water, and rock densities, respectively. The rock and solvent
components are incompressible and, consequently, ρw and ρr are constant.
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The filtration equation can be applied to capture of particles in small pore throats and confinement
of fine particles [3–5, 7–11, 13–16]. The model uses only the size-exclusion capture mechanism for
the individual particles and rules out formation of arched bridges by several particles at the entry in
large pores. The deposit formation rate is proportional to the advective particle flux. It is assumed
that the retained particles do not separate from the porous medium frame. Other assumptions include
incompressibility of any suspension component, namely, both the suspended and retained particles and
water. The fluid that transports the particles is Newtonian.

It is assumed that flow is single-phase and the suspension injected in the porous medium contains the
same water as the reservoir water initially saturating the rock. The linear one-dimensional suspension
flow which corresponds to the laboratory investigations or brine injections in broken wells is considered.

From the above-mentioned assumptions there follows the system of equations of long-term deep-bed
filtration which consists of the balance equation for the suspended- and retained-particle concentrations
c and σ, the kinetic deposit growth equation, and Darcy’s law:

∂(ϕa(σ)c)

∂T
+ U

∂(fa(σ)c)

∂X
+

∂σ

∂T
= 0, (1.1)

∂σ

∂T
=

1

l
fa(σ)fn(σ)Uc, (1.2)

U = −k(σ)

μ

∂P

∂X
. (1.3)

Here, ϕa is the admissible porosity, fa is the fractional flow through the accessible pores, fn = 1− fa
is the fractional fluid flow through the unaccessible pores, l is the characteristic microlength of the porous
medium, U is the flow velocity, k is the permeability coefficient, μ is the dynamic viscosity, P is the
pressure. The system is considered in the domain {(X,T ) : 0 < X < L, T > 0}, where L is the length
of the porous medium.

The detailed derivation of the macroscopic system (1.1)–(1.3) from the microlevel equations is given
in [13–15, 17]. In [1, 3–5, 7–9, 11, 16] this system is derived phenomenologically.

In what follows, we will solve the problem using a given and constant injection rate U . Due to
incompressibility of general flow U(X,T ) = const. In this case equations (1.1) and (1.2) form the closed
system.

We introduce the dimensionless variables

x =
X

L
, t =

UT

ϕL
, C =

c

c0
, S =

σ

ϕc0
, g(S) =

ϕa(ϕc
0S)

ϕ
,

f(S) = fa(ϕc
0S), Λ(S) =

L

l
fafn(ϕc

0S),

where ϕ is the porosity and c0 is the concentration of the suspended particles of the injected suspension.
Equations (1.1) and (1.2) take the form:

∂(g(S)C)

∂t
+

∂(f(S)C)

∂x
+

∂S

∂t
= 0, (1.4)

∂S

∂t
= Λ(S)C. (1.5)

Here, C(x, t) and S(x, t) are the dimensionless concentrations of the suspended and retained
particles; the accessibility factor g(S), the accessible fractional flux factor f(S), and the filtration
coefficient Λ(S) are given positive continuous differentiable functions.

It is assumed that the suspension with a constant suspended-particle concentration is injected to the
filter inlet x = 0; at the initial time t = 0 there are no suspended particles in the porous medium and there
is a deposit s0(x) unevenly distributed over the filter. The corresponding initial and boundary conditions
take the form:

C
∣
∣
x=0

= 1, (1.6)

C
∣
∣
t=0

= 0, (1.7)
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S
∣
∣
t=0

= s0(x), (1.8)

where s0(x) is a nonnegative continuous differentiable function.
The conditions (1.6)–(1.8) determine the unique solution of the problem in the domain Ω =

{(x, t) : 0 < x < 1, t > 0}. The solution has a discontinuity since the conditions (1.6) and (1.7) are
not adjusted in the origin. In what follows, it will be shown that the curve of discontinuity Γ is specified
by the equation

tΓ(x) =

x∫

0

g(s0(x))

f(s0(x))
dx. (1.9)

The curve Γ divides the domain Ω into two subdomains

Ω0 = {(x, t) : 0 < x < 1, 0 < t < tΓ(x)}, ΩS = {(x, t) : 0 < x < 1, t > tΓ(x)}.

Suspension filtration takes place in the domain ΩS ; there are no suspended particles in the domain
Ω0 and the retained particle concentration is independent of time. The suspended-particle concentration
front propagates through the porous medium along the curve Γ with the velocity

v =
f(s0(x))

g(s0(x))
. (1.10)

Theorem 1. The solution of the problem (1.4)–(1.8) is

1) constant in the domain Ω0: C(x, t)
∣
∣
(x,t)∈Ω0

= 0 and S(x, t)
∣
∣
(x,t)∈Ω0

= s0(x);

2) positive in the domain ΩS : C(x, t)
∣
∣
(x,t)∈Ω0

> 0 and S(x, t)
∣
∣
(x,t)∈Ω0

> s0(x).

Proof. Using (1.5), we can write Eq. (1.4) in the form:

g(S)
∂C

∂t
+ f(S)

∂C

∂x
+ g′(S)

∂S

∂t
C + f ′(S)

∂S

∂x
C + Λ(S)C = 0. (1.11)

The characteristic system corresponding to Eq. (1.11) is written in the form:

ṫ = g(S), ẋ = f(S), (1.12)

Ċ +

(

g′(S)
∂S

∂t
+ f ′(S)

∂S

∂x
+ Λ(S)

)

C = 0, (1.13)

where the dot denotes differentiation with respect to the parameter τ along the characteristic.
We will consider two families of the characteristics t(τ), x(τ), C(τ). In the domain Ω0 (ahead of the

concentration front) the characteristics go out from the points (x0, 0) on the coordinate axis OX. For
the system (1.12), (1.13) the initial conditions can be specified as follows:

t(0) = 0, x(0) = x0, C(0) = 0. (1.14)

In the domain ΩS (behind the concentration front) the characteristics go out from the points (0, t0)
on the time axis. We specify the conditions

t(0) = t0, x(0) = 0, C(0) = 1. (1.15)

a) In the domain Ω0 equation (1.13) with condition (1.14) has the solution C(τ) = 0. Then from
Eq. (1.5) there follows ∂S/∂t = 0 and S(x, t) = s0(x). In the plane (x, t) equations (1.12) with
conditions (1.14) determine the characteristics

t =

τ∫

0

g(s0(x))dτ =

x∫

x0

g(s0(x))

f(s0(x))
dx. (1.16)

The characteristic (1.16) taken at x0 = 0, which coincides with the curve Γ specified by the
relation (1.9), is the boundary of the domain Ω0.
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b) In the domain ΩS the solution of the problem (1.13), (1.15) can be written in the form:

C = e
−

τ∫

0

(g′(S)∂S/∂t+f ′(S)∂S/∂x+Λ(S))dτ
. (1.17)

From (1.17) there follows the inequality C(τ) > 0. Then from Eq. (1.15) we obtain

∂S

∂t
> 0 (1.18)

and S(x, t) > s0(x). Theorem 1 is proved.
As will be shown below, the system of partial differential equations (1.4), (1.5) can be reduced to a

first-order ordinary differential equation for the deposit concentration S(x, t).
In fact, the expression for C(x, t) obtained from Eq. (1.5)

C =
∂S/∂t

Λ(S)
(1.19)

after its substitution in Eq. (1.4) yields

∂

(

g(S)
∂S/∂t

Λ(S)

)

∂t
+

∂

(

f(S)
∂S/∂t

Λ(S)

)

∂x
+

∂S

∂t
= 0. (1.20)

We introduce the notation

a(S) =
g(S)

Λ(S)
, b(S) =

f(S)

Λ(S)
.

Then
∂
(

b(S)∂S/∂t
)

∂x
= b′(S)

∂S

∂x

∂S

∂t
+ b(S)

∂2S

∂t∂x
=

∂
(

b(S)∂S/∂x
)

∂t
. (1.21)

Substitution of (1.21) in Eq. (1.20) leads to the equation

∂ (a(S)∂S/∂t)

∂t
+

∂ (b(S)∂S/∂x)

∂t
+

∂S

∂t
= 0. (1.22)

Integration of both sides of Eq. (1.22) with respect to the variable t yields

a(S)
∂S

∂t
+ b(S)

∂S

∂x
+ S = K(x). (1.23)

The integration function K(x) can be determined from the conditions (1.7) and (1.8) at t = 0. We
obtain

K(x) = b(s0)s
′
0 + s0. (1.24)

Using (1.24), we can write Eq. (1.23) in the form:

a(S)
∂S

∂t
+ b(S)

∂S

∂x
+ (S − s0 − b(s0)s

′
0) = 0. (1.25)

For uniqueness of the solution of Eq. (1.25) it is necessary to impose a condition at x = 0. From the
condition (1.6) it follows that at x = 0 equation (1.5) takes the form:

∂S

∂t
= Λ(S). (1.26)

Dividing both sides of Eq. (1.26) by Λ(S) and integrating it with respect to the variable t over the
interval [0, t] with the initial condition (1.8), we obtain

S(0)(t)∫

s0(0)

dS

Λ(S)
= t; S(0)(t) = S(x, t)

∣
∣
x=0

. (1.27)
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Thus, the deposit concentration S(x, t) must satisfy Eq. (1.25) with the condition (1.27).
Consequence 1 from Theorem 1. Let s′0(x) ≤ 0. Then in the domain ΩS

∂S

∂x
< 0. (1.28)

Proof. We will consider the terms on the left-hand side of Eq. (1.25). In accordance with Theorem 1

and inequality (1.18), the expressions a(S)
∂S

∂t
and S − s0 are positive in the domain ΩS . Since

s′0(x) ≤ 0, then the inequality (1.28) follows from Eq. (1.25). Consequence 1 is proved.
In accordance with Consequence 1, the deposit concentration decreases with increase in the x

coordinate, if the initial deposit s0(x) does not increase with x.
In what follows, the problem (1.4)–(1.8) will be considered on the boundary Γ and in its neighborhood

in the domain ΩS .

2. EXACT SOLUTION ON THE CONCENTRATION FRONT

We will determine the suspended-particle concentration on the front Γ. For this purpose it is
necessary to express the value of the partial derivative ∂S/∂x on Γ. It should be noted that when
(x, t) ∈ ΩS the limiting value of ∂S/∂x|Γ is not equal to s′0(x) since the derivatives of the functionS(x, t)
are discontinuous on the boundary.

Statement 1. In the domain ΩS the solution S(x, t) of the problem (1.4)–(1.8) must satisfy the
relation

∂S

∂x

∣
∣
∣
∣
Γ

= s′0(x)−
g
(

s0(x)
)

f
(

s0(x)
)
∂S

∂t
. (2.1)

Proof. Let l be the tangential vector to curve Γ at a certain point M(x, t). The partial derivative of
the function S(x, t) in the direction l is equal to

∂S

∂l
=

∂S

∂t
sinϕ+

∂S

∂x
cosϕ, (2.2)

where ϕ is the angle between the vector l and the OX axis (Fig. 2).
On the other hand, by definition

∂S

∂l
= lim

M1→M
MM1∈l

S(M1)− S(M)

|M1M | . (2.3)

Denote a = |MMx| = |MM1| cosϕ. If the curve of the boundary Γ is convex downwards on the
segment (x, x+ a), then the point M1(x+ a, t+Δt) ∈ Ω0 (Fig. 2a). Since the concentration S(x, t) =
s0(x) in the domain Ω0, then

S(M1) = s0(x+ a). (2.4)

If the curve of the boundary Γ is convex upwards on the segment (x, x+ a), then the point M1 ∈ ΩS

(Fig. 2b) and |M1M2| = o(a) by definition of the tangent. (The function β = o(a) if lim
a→0

β/a = 0.)

From Eq. (1.5) it follows that the derivative ∂S/∂t is continuous and the estimate holds

S(M1) = S(M2) + o(a) = s0(x+ a) + o(a). (2.5)

Substituting (2.4) and (2.5) in the limit (2.3), in both cases we obtain

∂S

∂l
= s′0(x) cosϕ. (2.6)

From equating (2.2) and (2.6) there follows the expression for the derivative ∂S/∂x

∂S

∂x

∣
∣
∣
∣
Γ

= s′0(x)−
∂S

∂t
tanϕ. (2.7)
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Fig. 2. Convexity of the boundary Γ downwards (a) and upwards (b).

From (1.9) we have

tanϕ =
dt

dx

∣
∣
∣
∣
Γ

=
g
(

s0(x)
)

f
(

s0(x)
) . (2.8)

Statement 1 follows from formulas (2.7) and (2.8).

Theorem 2. On the concentration front Γ the suspended-particle concentration takes the form:

C(x, t)
∣
∣
t=tΓ(x)

=
u(x)

1 + v(x)
, (2.9)

where

u(x) =
f(s0(0))

f(s0(x))
e
−

x∫

0

Λ(s0(z))
f(s0(z))

dz
, v(x) =

x∫

0

(

g
(

s0(y)
)

f
(

s0(y)
)

)′

S

Λ(s0(y))u(y) dy. (2.10)

Proof. Using (2.1) and (1.5), equation (1.11) on the boundary Γ can be represented in the form:

g(s0)
∂C

∂t
+ f(s0)

∂C

∂x
+

(

f ′(s0)s
′
0(x) + Λ(s0)

)

C +

(

g′(s0)− f ′(s0)
g(s0)

f(s0)

)

Λ(s0)C
2 = 0. (2.11)

The change of variables τ = t− tΓ(x), x = x reduces (2.11) to the ordinary differential equation

f(s0)
∂C

∂x
+

(

f ′(s0)s
′
0(x) + Λ(s0)

)

C +

(

g′(s0)− f ′(s0)
g(s0)

f(s0)

)

Λ(s0)C
2 = 0. (2.12)

The formulas (2.9) and (2.10) specify the solution of the Bernoulli equation (2.12) with the condi-
tion (1.6). Theorem 2 is proved.

Consequence 2. The sufficient condition of existence of the solution on the concentration front is

∂

∂S

(
g(S)

f(S)

)∣
∣
∣
∣
S=s0(x)

≥ 0 (2.13)

or

∂v

∂S

∣
∣
∣
∣
S=s0(x)

≤ 0. (2.14)

Proof. The denominator of the solution (2.9) may not vanish. Since the functions Λ(s0(y)) and
u(y) are positive, the condition (2.13) ensures positiveness of the denominator in (2.9). In accordance
with (1.10), the inequality (2.14) follows from (2.13).
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3. ASYMPTOTICS IN THE NEIGHBORHOOD OF THE CONCENTRATION FRONT

Let the coefficients of the system (1.4), (1.5) admit the expansion in the Taylor formula with the
coefficients dependent on x

g(S) = g0 + g1(S − s0) +
g2
2
(S − s0)

2 +
g3
6
(S − s0)

3 +O(S − s0)
4,

f(S) = f0 + f1(S − s0) +
f2
2
(S − s0)

2 +
f3
6
(S − s0)

3 +O(S − s0)
4,

Λ(S) = Λ0 + Λ1(S − s0) +
Λ2

2
(S − s0)

2 +O(S − s0)
3. (3.1)

Here, the subscript 0 denotes the value of the function for S = s0(x) and the nonzero subscript
j = 1, 2, and 3 of the functions g, f, and Λ denotes the corresponding derivative of the jth order taken
at S = s0(x).

In the neighborhood of the concentration front Γ the asymptotic solution can be sought in the domain
ΩS in the form:

S(x, t) = s0(x) +

n∑

i=1

(

t− tΓ(x)
)i

i!
si(x) +O

(

t− tΓ(x)
)n+1

, (3.2)

C(x, t) = c0(x) +
n∑

i=1

(

t− tΓ(x)
)i

i!
ci(x) +O

(

t− tΓ(x)
)n+1

. (3.3)

The expansions (3.2) and (3.3) make it possible to represent the solution of the system of two partial
differential equations which depends on two variables in the form of Taylor series in powers of the small
parameter t− tΓ(x). The series coefficients ci(x) depend on a single variable x and must satisfy a system
of first-order ordinary differential equations. The asymptotics make it possible to obtain the local solution
in the explicit form with the necessary accuracy.

We substitute the expansions (3.1)–(3.3) in Eqs. (1.4) and (1.5) and equate the terms of the same
power of (t− tΓ(x)). For the first terms of asymptotics there follow the algebraic relations

s1 = Λ0c0, (3.4)

s2 = Λ0c1 + Λ0Λ1c
2
0, (3.5)

s3 = Λ0c2 + 3Λ0Λ1c0c1 + (Λ2Λ0 + Λ2
1)Λ0c

3
0

and the recurrent system of differential equations

(f0c0)
′ + Λ0c0 + βΛ0c

2
0 = 0, (3.6)

(f0c1)
′ + Λ0(3βc0 + 1)c1 + (βΛ1 + γΛ0)Λ0c

3
0 + (f1Λ0c

2
0)

′ + Λ0Λ1c
2
0 = 0, (3.7)

(f0c2)
′ + Λ0(4βc0 + 1)c2 + (f2Λ

2
0c

3
0)

′ + (f1Λ0Λ1c
3
0)

′ + 3(f1Λ0c0c1)
′ + (Λ0Λ

2
1 + Λ2

0Λ2)c
3
0

+ (βΛ2
0Λ2 + βΛ0Λ

2
1 + 3γΛ2

0Λ1 + δΛ3
0)c

4
0 + (3Λ0Λ1 + 6γΛ2

0c0 + 6βΛ0Λ1c0)c0c1 + 3βΛ0c
2
1 = 0.

(3.8)

Here, α = g0/f0, β = g1 − αf1, γ = g2 − αf2, and δ = g3 − αf3.
From (1.6) we obtain the conditions for finding the unique solutions of ordinary differential equa-

tions (3.6)–(3.8)

c0
∣
∣
x=0

= 1,

c1
∣
∣
x=0

= 0, c2
∣
∣
x=0

= 0. (3.9)

For the next terms of the asymptotics the equations and the initial conditions can be similarly
constructed.

Equation (3.6) for the principal term of the asymptotics coincides with Eq. (2.12) on the concentration
front; the solution is given by the formulas (2.9) and (2.10).
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Example 1. Let g(S) = g0 = 1 and f(S) = f0 = 1. Equation (3.6) takes the form:

f0c
′
0 + Λ0c0 = 0. (3.10)

The solution of Eq. (3.10) under the condition (3.9) is

c0 = exp

⎛

⎝−
x∫

0

Λ
(

s0(z)
)

dz

⎞

⎠ .

For the constant filtration coefficient Λ(S) = Λ0 = const the exact solution of the problem (1.4)–
(1.8) in the domain ΩS coincides with the principal terms of the asymptotics (3.2), (3.3)

C(x, t) = c0 = e−Λ0x; S(x, t) = s1(t− x) = Λ0e
−Λ0x(t− x).

Example 2. s0 = k = const. In this case the coefficients of expansions (3.1) are independent of x.
The solution of Eqs. (3.6) and (3.7) takes the form:

c0 =
1

(1 + β)eΛ0/f0x − β
, (3.11)

c1 =

(

0.5γΛ0(1 + eΛ0/f0x) + (1 + β)σeΛ0/f0x
)

(1− eΛ0/f0x)
(

(1 + β)eΛ0/f0x − β
)3 . (3.12)

Here, σ = Λ1 − 2f1/f0.
The terms of asymptotics of the deposit concentration s1 and s2 can be determined from the algebraic

equations (3.4) and (3.5)

s1 =
Λ0

(1 + β)eΛ0/f0x − β
, (3.13)

s2 =

Λ0

(
1

2
γΛ0(1 + eΛ0/f0x) + (1 + β)σeΛ0/f0x

)

(1− eΛ0/f0x)

(

(1 + β)eΛ0/f0x − β
)3 +

Λ0Λ1
(

(1 + β)eΛ0/f0x − β
)2 . (3.14)

Substituting (3.11)–(3.14) in the expansions (3.2) and (3.3), we obtain the asymptotic solution in
the neighborhood of the concentration front t = tΓ(x)

C(x, t) =
1

(1 + β)eΛ0/f0x − β
+

(
1

2
γΛ0(1 + eΛ0/f0x) + (1 + β)σeΛ0/f0x

)

(1− eΛ0/f0x)

(

(1 + β)eΛ0/f0x − β
)3 (t− tΓ(x))

+O(t− tΓ(x))
2,

S(x, t) = s0(x) +
Λ0

(1 + β)eΛ0/f0x − β
(t− tΓ(x))

+ Λ0

(
1

2
γΛ0(1 + eΛ0/f0x) + (1 + β)σeΛ0/f0x

)

(1− eΛ0/f0x) + Λ1

(

(1 + β)eΛ0/f0x − β
)

(

(1 + β)eΛ0/f0x − β
)3 (t− tΓ(x))

2

+O(t− tΓ(x))
3.

4. NUMERICAL SIMULATION

For calculations we used the values of the coefficients of Eqs. (1.4) and (1.5) for particles of three
dimensions calculated by Z. You on the basis of the experimental data [18] (see Table 1).

The numerical calculation of the problem was carried out using the finite-difference method by means
of the explicit TVD-scheme with the SUPERBEE limiter function [31] for the linear distribution of the
initial deposit

s0(x) = (1− 0.1x). (4.1)
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Fig. 3. Concentration fronts: r1 = 1.5675 (a); r2 = 2.179 (b); and r3 = 3.168 (c); curves 1 and 2 correspond to the
numerical solution and asymptotics, respectively.
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Fig. 4. Particles with r1 = 1.5675: C(x, t)
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(d); curves 1
and 2 correspond to the numerical solution and asymptotics, respectively.

For the problem with deposit the relation between the time and coordinate steps was taken from the
Courant convergence condition [29].

In Fig. 3 we have plotted the graphs of the concentration fronts for particles of three types.
As a result of smallness of the coefficients of powers of S (see Table 1), all three calculated curves 1

have almost no deviation from straight lines 2 given by the formula t = g(0)x/f(0).
In Figs. 4–6 we have plotted the graphs of the concentrations of suspended and retained particles

of three types as functions of the spatial coordinate x at t = 0.5 and time t at the outlet of the porous
medium at x = 1.

The graphs of the numerical solution and asymptotics almost coincide at t = 0.5.
At t = 0.5 the graphs of the suspended particles concentrations are discontinuous on the concen-

tration front Γ (Figs. 4a–6a) and the graphs of the retained particles concentrations have a break

Table 1

Particle radius, μm Coefficients of equations

g(S) = 0.9987 + 9.1× 10−13S − 3.73× 10−8S2 + 6.1× 10−5S3

r1 = 1.5675 f(S) = 0.9999 + 1.8× 10−5S − 2.05× 10−7S2 + 2.848× 10−4S3

Λ(S) = 0.11− 0.01351S + 4.49× 10−5S2 + 1.163× 10−3S3

g(S) = 0.9743− 8.88× 10−14S + 1.27× 10−11S2 − 1.24× 10−9S3

r2 = 2.179 f(S) = 0.9947 + 6.27× 10−5S − 2.9× 10−8S2 + 6.21× 10−10S3

Λ(S) = 0.51− 5.956× 10−3S + 2.29× 10−6S2 + 1.35× 10−8S3

g(S) = 0.7635 + 2.44× 10−15S + 3.2× 10−14S2 + 3.6× 10−13S3

r1 = 3.168 f(S) = 0.9075 + 2.315× 10−4S + 2.27× 10−8S2 − 3.42× 10−8S3

Λ(S) = 1.551− 3.467× 10−3S − 1.16× 10−6S2 − 1.16× 10−7S3
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Fig. 7. Three-dimensional graphs of C(x, t) and S(x, t); r1 = 1.5675 (a), r2 = 2.179 (b), and r3 = 3.168 (c).

(Figs. 4b–6b). The points of discontinuity and break can be determined from the relation (1.6) at
tΓ(x) = 0.5 for the initial deposit (4.1): x1 = 0.50, x2 = 0.51, and x3 = 0.59 (see also Fig. 3).

The graphs of the concentrations at x = 1 (Figs. 4b–4d) show the time interval of applicability of
asymptotics at the outlet of the porous medium. Depending on the type of particles, the asymptotics are
similar to the numerical solution on the time intervals from 0.5 to 200.

In Fig. 7 we have reproduced the three-dimensional graphs of the concentrations of suspended and
retained particles (numerical solution).

SUMMARY
The one-dimensional problem of monodisperse suspension deep-bed filtration in a porous medium is

considered. Incompressible Newtonian single-phase flow, namely, water with solid particles which are
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not subjected to molecular diffusion and physicochemical forces of interaction with the porous medium
frame, displaces pure water from the porous medium with nonuniformly distributed deposit. The size-
exclusion particle-capture mechanism is considered in the absence of deposited-particle mobilization.
As distinct from the standard model, the pore accessibility and the fractional solid-particle flow are
assumed to vary with accumulation of deposit. In this case the boundary of the concentration front
Γ of suspended particles is curvilinear.

It is proved that the solution of the filtration problem must satisfy the natural physical conditions,
namely, the retained-particle concentration is constant in time ahead of the concentration front and
increases with time behind the front; the suspended-particle concentration is equal to zero ahead of the
front and is positive behind the concentration front.

The exact solution on the curvilinear concentration front specifies the suspended-particle concentra-
tion on the mobile boundary of water and suspension. The sufficient condition of existence of the solution
on the concentration front is obtained.

It is shown that the process of suspension filtration in the porous medium without initial deposit
proceeds more intensively near the inlet; the deposit is nonuniformly distributed and its concentration
decreases with increase in the spatial coordinate. If the incomplete retained-particle mobilization is
assumed to be proportional to the deposit concentration during reverse pure water pumping, then the
retained deposit also decreases with increase in x. The problem of the periodic change of suspension
injection and reverse water flow with regard to particle mobilization is more complex and should be
studied later.

The asymptotic solution whose principal term coincides with the exact solution on the boundary Γ is
constructed behind the concentration front. The numerical calculation of the problem showed that the
asymptotics and the numerical solution are similar. Depending on the type of the suspended particles in
suspension, the asymptotic solution has acceptable accuracy at the porous medium outlet up to time of
50–200.

The exact and asymptotic solutions of the filtration problem give the concentrations of suspended and
retained particles as functions of the external parameters in the explicit form. This makes it possible to
predict the experimental results and reduce the amount of laboratory studies intended to optimize the
filtration process [32].
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