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Abstract—This paper considers the steady and unsteady swirling axisymmetric f lows of a homoge-
neous viscous incompressible f luid. The possibility of the existence of helical vortex lines on the sur-
face of revolution homeomorphic to a torus is investigated. An example of unsteady flow in which
there are helical vortex lines is given. It is proved that the existence of helical vortex lines lying on the
surface of revolution homeomorphic to a torus is impossible in a steady axisymmetric f low of a viscous
incompressible f luid.
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Swirling axisymmetric f lows are intermediate between 2D and 3D flows. On the one hand, they have
a “3D” interaction of radial-axial (meridional) and circumferential motions. On the other hand, symme-
try imposes additional constraints on motion parameters, which simplifies the study compared to the gen-
eral 3D case. The study of swirling axisymmetric f lows is not only theoretical, but is also of practical inter-
est. Firstly, because some real f lows can be considered axisymmetric, for example, the f lows in pipes and
axisymmetric channels, in tornadoes, nozzles, whirlpools when draining f luid from tanks, in f lowing
around bodies of revolution, etc. Secondly, because the verification of the laws of axisymmetric f lows can
be useful for verifying 3D numerical schemes when calculating axisymmetric f lows. The regularities of
such flows are associated with the shapes of f low lines and vortex lines. Interest in the regularities of the
shape of f low lines was demonstrated in [1–4], in which a number of important results were obtained. This
paper is devoted to the study of the shape of vortex lines.

1. BASIC NOTATION AND MOTION EQUATIONS

Let us consider a laminar axisymmetric f low of a homogeneous viscous incompressible f luid in a
potential field of mass forces. The following dimensionless variables will be used further: V is the speed,

 is the vorticity, p is the pressure related to density, Π is the potential of body forces, and Re is
the Reynolds number. Fluid motion is described by equations in the Gromeka–Lamb form

(1.1)

Let us introduce a cylindrical coordinate system  with the origin at the point O so that the axis Oz
coincides with the axis of symmetry of the f low. Denote by , , and  the right triple of unit vectors in
the radial, circumferential, and axial directions. The velocity vector is V =  =

The functions , , , p, and Π will be considered dependent only on the variables  and t. The
smoothness of velocity and pressure sufficient for research will be assumed as a natural property of these
physical parameters of the f luid.
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Fig. 1.
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2. LINES WITH CLOSED AC-PROJECTION

The point A' with coordinates  obtained as a result of projection along a circle formed by rotating
the point A around the axis of symmetry onto the main meridional half-plane  will be called
a projection along a circle (or AC-projection) of the point A with coordinates  (left panel of Fig. 1).
A line whose AC-projection is the smooth boundary of a bounded simply-connected planar domain
(loop) that lies in the half-plane  will be called a line with a closed AC-projection. Moreover,
different points of the line can have the same AC-projections. The right side of Fig. 1 shows the loop l',
which is a closed AC-projection of the open line l.

Let us consider the line whose AC-projection is a closed loop in more detail. Such a line lies on a sur-
face homeomorphic to a torus formed by rotating the aforementioned loop around the axis of symmetry
(left panel of Fig. 2). The line is “wound” on the surface and can either close on itself after a finite number
of revolutions and have a finite length (right panel of Fig. 2) or not close on itself at any number of revo-
lutions, then it will have infinite length. In any case, it will be helical.

Let us give an example of an unsteady f low in which there are vortex lines with a closed AC-projection.
Consider an axisymmetric vector field.

(2.1)

where  and  are the Bessel functions of zero and first order, respectively.
We define the pressure field for an arbitrary potential  in addition to the velocity field (2.1)

(2.2)

Let us show that formulas (2.1) and (2.2) give an exact solution of Navier–Stokes equations (1.1). Test-

ing of the incompressibility condition in the case of  is not difficult, because  = 

(hereinafter, the prime means differentiation with respect to the argument r). Let us test first equation (1.1). We
have
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Fig. 2.
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(equality  is considered). Hence, . Therefore,  and . Thus,

the test of first equation (1.1) considering the equality  reduces to testing the following equa-

tion

which is satisfied by virtue of Eq. (2.2).

Thus, formulas (2.1) and (2.2) give an exact solution of the Navier–Stokes equations. Since Ω = ,
the vortex lines and the f low lines of this solution coincide. Therefore, the AC-projections of the vortex
lines represent the vector lines of the meridional velocity component

Let us write it in the following form

(2.3)

Let  be the first root of equation . We have the following relations for the first and second
derivatives of the function  at the point 

Therefore, the function  is represented by the Taylor formula

in the meridional half-plane in the vicinity of the point 
Hence, for some sufficiently small  following equation

(2.4)

sets the closed loop  enclosing the point . The first differentials of the coordinates of r and
z points located on the loop  are related by
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which is obtained from Eq. (2.4). Along with equality (2.3), this relation means that the AC-projection of
one of the f low lines, and, hence, the AC-projection of one of the vortex lines, coincides with the loop .

The above example shows that the vortex lines of an unsteady axisymmetric f low of a viscous incom-
pressible f luid can have a closed AC-projection.

Note that solution of (2.1), (2.2) should be considered as an extension to the viscous unsteady case of
the solution obtained by Gromeka for the steady f low of an ideal f luid [5]. Gromeka’s solution is obtained
from expression (2.1) if we drop the unsteady factor . Thus, the vortex lines can have a closed
AC-projection both in unsteady f lows of a viscous f luid and in steady f lows of an ideal f luid.

It will be shown below that in the steady case, if there is viscosity, the existence of such vortex lines is
impossible.

3. MAXIMUM PRINCIPLE FOR CIRCUMFERENTIAL CIRCULATION
Let us proceed to the study of steady f lows of a viscous f luid. The meridional component of the vortic-

ity  is the rotor of the peripheral velocity . The circumferential component of first equa-
tion (1.1) is as follows

We obtain the following equation by multiplying this equality by a scalar vector 

(3.1)

We transform its left side using the cyclicity property of the mixed product of vectors and the expression
for  in a cylindrical coordinate system:

The right side of Eq. (3.1) is as follows

and Eq. (3.1) can be written as

(3.2)

The value of  was called [6] the circumferential circulation. The parameter γ is closely related
to the shape of the vortex lines. This follows from the vector equality that can be easily verified in the cylin-
drical coordinate system

(3.3)

For axisymmetric f lows, equality (3.3) holds for viscous and nonviscous f luids and for compressible
and incompressible f luids. It is true for steady and unsteady axisymmetric f lows. From equality (3.3) it
follows that the gradient γ is orthogonal to the vector lines , i.e., γ retains its value on these lines. How-
ever, the vector lines  on the half-plane  are AC-projections of the vortex lines. Therefore,
the circumferential circulation in axisymmetric f lows of any type is preserved on the AC-projections of the
vortex lines. This fact will be used in the next section.

The last proposition can be illustrated by the example of the exact solution of (2.1), (2.2). In this solu-
tion, the circumferential circulation is . Equation (2.5) is satisfied on a closed loop

, which is a AC-projection of the vortex line, which means the constancy of γ on the loop .
Equation (3.2) is elliptic. The usual means of investigating extremal properties of elliptic equations is

the E. Hopf theorem [7, 8]. This theorem offers different versions of the maximum principle for solutions
of quasilinear elliptic equations depending on the properties of the coefficients of these equations. How-
ever, there is a requirement for the boundedness of coefficients in the conditions of the theorem, and one
of the coefficients in Eq. (3.2) has a feature on the axis of symmetry , and the Hopf theorem cannot
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be applied. This gap has recently been eliminated [9], and the maximum principle for circumferential cir-
culation, in which the region under consideration can have boundary points on the Oz axis, was proved.

Let the axisymmetric laminar flow of an incompressible fluid with nonzero viscosity be steady in the absence
of external mass forces and let  be an arbitrary bounded closed flow region lying in the meridional half-plane

, then either the circumferential circulation is constant, or its minimum and maximum are
reached at the boundary and only at the boundary of the region .

4. VORTEX LINES WITH A CLOSED AC-PROJECTION IN A STEADY FLOW 
OF A VISCOUS INCOMPRESSIBLE FLUID

The maximum principle formulated above allows us to prove the following proposition.
There are no vortex lines with a closed AC-projection, which is the boundary of the simply connected closed

region  which lies entirely inside the flow, in a steady axisymmetric flow of a homogeneous viscous incom-
pressible fluid.

Proof. Assume that the AC-projection of the vortex line is the boundary . Then, the circumferential
circulation  has the same value on the entire boundary of γ according to equality (3.3) (see the text after
formula (3.3)). Therefore, it follows from the maximum principle for circumferential circulation (true
only if the viscosity coefficient is not zero) that the value of γ is constant throughout the region of , and
inside  expression (3.3) gives . Hence, the equality  is also satisfied on the boundary of 
by virtue of smoothness. However, in this case, the vector lines of the field Ω in the form of circles, which
are figures of revolution around the axis of symmetry, pass through the points of the boundary , and this
boundary is not the AC-projection of any one vortex line. The proposition is proved.

If the viscosity coefficient is zero, then the maximum principle and this proof cannot be applied.
Therefore, helical lines are possible in an ideal f luid, which is confirmed by Gromeka’s solution (2.1),
(2.2).

The obtained result means that the existence of helical vortex lines “wound” on such a torus in the
steady case in the axisymmetric f lows of a viscous incompressible f luid is impossible if the entire interior
of the “torus” is filled with f luid.

5. CONCLUSIONS
We have shown that there cannot be helical vortex lines that lie on such a homeomorphic to a torus

surface of revolution around the axis of symmetry which covers the region that lies entirely inside the f low
in a steady axisymmetric f low of a homogeneous viscous incompressible f luid. This effect is significantly
associated with stationarity, which is confirmed by the above example of unsteady f low in which the said
vortex lines exist.
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