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Abstract—The results of numerical simulation of the processes of two-phase flow through a porous
medium in three-dimensional digital models of the porous space of three natural sandstone samples
are given. The calculations are carried out using the lattice Boltzmann equations and the digital field
gradient model over a wide range of the capillary numbers and the viscosity ratios of injected and
displaced fluids. The conditions of flow through a porous medium with capillary fingering, viscous
fingering and with stable displacement front are revealed.
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The problems of two-phase fluid flows through porous media are topical in many branches of science
and technics; among them we can note hydrogeology, pedology and soil sciences, underground water
dynamics, and oil- and gas-field developments. Together with the gravity, the viscous, capillary, and
inertia forces control two-phase fluid flow dynamics in the porous space. The paper by Lenormand
et al. [1] is one of the first widely known experimental studies on the investigation of two-phase fluid
flows in the pore-scale using artificially constructed two-dimensional models of porous media. In that
investigation it was demonstrated that in the process of draining the distribution of two fluids in pores is
controlled by two dimensionless parameters. These are the capillary number Ca defined as the ratio of
the viscous and capillary forces and the viscosity ratio of non-wetting (injected) and wetting (displaced)
phases M: Ca = μnwunw/(σ cos θ) and M = μnw/μw, where μw and μnw are the dynamic viscosities
of the wetting and non-wetting phases, respectively, unw is the injection velocity of the non-wetting
fluid, σ is the surface tension, and θ is the interfacial angle (wetting contact angle). In view of low
velocities of flow through the porous medium and, respectively, low Reynolds numbers, the inertia forces
are insignificant in the problems of this type.

In subsequent years, the authors of [2–7] identified three types of flows with reference to two-
dimensional homogeneous and heterogeneous models, namely, these are flows with capillary fingering,
viscous fingering, and with stable displacement front. The ranges of the parameters Ca and M were
determined for each of the types of flow and the model of porous medium. The distinguishing features of
the flow types were revealed on the basis of visual analysis of dynamics of the fluid distributions and it
was also found that for intermediate values of Ca and M numbers both capillary and viscous fingerings
are simultaneously formed in the sample (crossover zone [8]). The results of all these investigations
contain the fundamental bases of two-dimensional flows on the pore scales; nevertheless, the structure
of the porous space in these models is not natural. At present, it was carried out a few similar tests on
the real three-dimensional samples, in particular, on the carbonate fractured types of porous media and
the available results are given only in several studies of recent years [9–12].

The difficulty of the investigation of multiphase flow in 3D space consists in specifics of visualization
and methods of nondestructive testing of the displacement of phase interface. One of the ways of “in
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situ” visualization of the fluid distribution in pores when carrying out the laboratory experiment on flow
through porous medium was complemented using the fast synchrotron X-ray CT method with the time
step of the order of 10 s [13, 14]. Such experiments are very expensive, require high-technology tools,
and have limitations in the spatial-temporal resolution and the choice of the displacement parameters.
Another way (see, e.g., [15, 16]) implies carrying out the computational filtration experiment using a
high-resolution (at least 5 μm) digital model of the porous medium, obtained by means of the X-ray
microtomography, which assigns to the real sample. This way makes it possible to carry out multivariant
calculations over a wide range of the two-phase flow parameters.

The aim of our investigation is to study dynamics of two-phase flow of immiscible incompressible
fluids using three-dimensional digital models of the porous space of natural sandstones with various
seepage-capacity properties at various flow velocities, surface tensions, and phase viscosities over wide
ranges of the parameters Ca and M. We intend to reveal the characteristic features of the flows with
formation of capillary fingers, viscous fingers, and with the stable displacement front and estimate the
displacement effectiveness in each of the flow regime on the basis of numerical description of the motion
of the phase interface and three-dimensional visualization of fluid distribution dynamics.

1. MATERIALS AND METHODS OF INVESTIGATION

1.1. Justification of the Choice of Mathematical Model

By present time, the great experience on the investigation of multiphase flows in the calculation
domains with an arbitrary arrangement of impermeable zones is accumulated. Two approaches are the
most frequently encountered in the mathematical simulation of such processes. The first of them is based
on solution of the Navier-Stokes equations with addition of source terms, which characterize the phase
interaction, and the continuity equation. Depending on the method of description of the phenomena
on the phase interface, the level set method [15], the volume-of-fluid method [16], and the phase-field
model [17] can be distinguished. The above-mentioned methods acquired a reputation in simulation
of two-phase flows including the digital models of porous media [18]. Nevertheless, these methods are
characterized by both the labor-consuming numerical implementation and the long-time duration of
calculations on large grids (greater than 1 million nodes).

The second approach is based on using the lattice Boltzmann method (LBM). As compared with
the first approach, the LBM implies the simpler numerical implementation and the good adaptation
ability in employing the parallel computing technologies and it acquired a reputation in solving the
filtration problems [2, 3, 6, 9–11]. The Shan-Chen model [20], the color-gradient method [21], and the
free-energy method [22] are the most widespread in the LBM for description of the phase interaction.
As distinct from the color-gradient method, the Shan-Chen and free-energy models have numerical
instability and can give incorrect results when the viscosity and density ratios for the considered fluids
are greater than 10.

In the present study we have chosen the lattice Boltzmann equations and the color-gradient method
as the most optimum methods for solving the formulated problems. Within the framework of the
LBM the flow is considered from the viewpoint of dynamics of an particle ensemble with a given
finite number of possible velocities. The flow domain is divided by a grid with cells, as a rule, of
quadratic or cubic shape. The set of these cells composes the lattice. In time step Δt the particles
can perform one act of transition between the neighboring lattice nodes without interaction one another.
As the variables which describe the state of system at each of the grid nodes we use the one-particle
distribution functions f(r,u, t). This function shows the fraction of particles at an instant t located
in the neighborhood of the end of a radius-vector r(x, y, z) in which the points have the coordinates
from (x, y, z) to (x+Δx, y +Δy, z +Δz) and the velocities vary over the range from u(ux, uy, uz) to
u(ux +Δux, uy +Δuy, uz +Δuz) [19].

In the study we will consider the three-dimensional case. As the possible directions for displacement
of the particle ensemble we will use the set D3Q19 which is specified as follows:

e1 = c · (0, 0, 0), e2 = c · (1, 0, 0), e3 = c · (−1, 0, 0), e4 = c · (0, 1, 0), e5 = c · (0,−1, 0),

e6 = c · (0, 0, 1), e7 = c · (0, 0,−1), e8 = c · (1, 1, 0), e9 = c · (−1, 1, 0), e10 = c · (1,−1, 0),

e11 = c · (−1,−1, 0), e12 = c · (1, 0, 1), e13 = c · (−1, 0, 1), e14 = c · (1, 0,−1),
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e15 = c · (−1, 0,−1), e16 = c · (0, 1, 1), e17 = c · (0,−1, 1),

e18 = c · (0, 1,−1), e19 = c · (0,−1,−1),

where c = Δl/Δt is the basic velocity (Δl is the grid step).

A distribution function fi(r, t) is put in correspondence to each of the velocity vectors of this set ei
(i = 1, . . . , 19).

The dynamics of the particle ensemble of each of the fluids can be described in several stages. The
first stage is the streaming step. In this stage the particles are displaced to neighboring nodes in time Δt
so that the directions of the particle velocities do not change. In the second stage the process of particle
collisions is considered (“collision step”). As a result of this stage, the particle distribution function
tends to the equilibrium state. In the third stage the interaction between the fluids on the interface, as
well as the interaction with the solid phase, is described. The time and space evolution of the distribution
functions of each of the fluids is described by the equation

fk
i (r + eiΔt, t+Δt) = fk

i (r, t) + (Ωk
i (r, t))

1 + (Ωk
i (r, t))

2, (1.1)

where k = 1, 2 denotes the type of the liquid, i.e., the wetting and non-wetting phases, respectively.

Depending on the form of the collision operator (Ωk
i )

1 in Eq. (1.1), two models, namely, the single
relaxation time model (SRT-model) [23] and the multi relaxation time model (MRT-model) [24], are
distinguished. From comparison with the analytical solutions it follows that the accuracy of the results
obtained using the MRT-model is significantly higher than that of SRT-model [23]; therefore, in the
present study we use the MRT-model.

The relaxation parameter τk is crucial in the LBM. It controls the kinematic viscosity μk and is
connected with it by the following relation:

μk =

(
2τk − 1

6

)
Δl2

Δt
.

In the LBM the equations are solved in the “density–velocity” variables. The macroscopic density
and velocity components of each of the fluids in cells are calculated from the formulas

ρk(r, t) =
19∑
i=1

fk
i (r, t),

uk(r, t) =
1

ρk

19∑
i=1

eif
k
i (r, t).

In the LBM the pressure pk created by each of the fluids is connected with its density by the following
relation: pk = ρkc2/3 [19].

For describing the phenomena on the interfaces between the fluids and the fluids and the solid
surfaces, in the present study we use the color-gradient method [21]. It consists of three stages. The
first stage represents calculations of the gradient of the color field g whose components are calculated
from the formula

g(r, t) =

19∑
i=1

ei
(
f2
i (r + eiΔt, t)− f1

i (r + eiΔt, t)
)
.

Traditionally, red color is put in correspondence to one of the fluids and blue color to the other. On
the interface between two liquids and the solid phase the wetting contact angles (interfacial angles) are
specified by means of assigning values of the density to the cells related to the skeleton of the porous
medium. In the second stage it is assumed to describe the effects of surface tension on the interface
between the liquids and between the liquids and the rigid surfaces as follows:

(Ωk
i )

2 =
A

2
|g|

(
2 cos2(αi)− 1

)
,
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where A is the parameter which controls the surface tension and αi is the angle between the vector g
and the direction of ei. The third stage is the modification of the function fk

i after solving Eq. (1.1) with
regard to the operators (Ωk

i )
1 and (Ωk

i )
2:

(f2
i )

∗ =
ρ2

ρ
fi + β

ρ1 · ρ2
ρ

f eq
i cos(αi), (1.2)

(f1
i )

∗ =
ρ1

ρ
fi − β

ρ1 · ρ2
ρ

f eq
i cos(αi), (1.3)

where ρ = ρ2 + ρ1, fi = f1
i + f2

i , and f eq
i is the equilibrium distribution function [19, 23] calculated for

the density ρ and zero velocity

f eq
i (ρ,u) = wiρ(r) ·

(
1 + 3

(ei · u)
c2

+ 4.5
(ei · u)2

c4
− 1.5

u2

c2

)
.

The weight coefficients are equal to w1 = 1/3, w2−8 = 1/18, and w9−19 = 1/36. These numerical
values of the weight coefficients are due to the fact that, since fi(r, t) is the probability characteristic,

then the condition
n∑

i=1
wi = 1, where n is the number of possible directions, must be satisfied for any set

of possible directions (for example, D2Q9, D3Q15, D3Q17, or D3Q27).
In Eqs. (1.2) and (1.3) the parameter β controls the thickness of the interface between the liquids. In

the present study its value is equal to 0.8 and cannot be greater than unity.
As the boundary conditions on the rigid inner and outer impermeable boundaries of the flow region,

we use the “bounce back” conditions [19] which are analogs of the no-flow and no-slip conditions for
liquid in the classical hydrodynamic formulation of the problem. The fluid pressure and the velocity
components normal to the boundary (equal to zero) are assumed to be known on the inlet and outlet
boundaries. In the LBM such conditions are specified using the Zou and He relations [25].

The mathematical model described above was implemented numerically on the Intel Fortran pro-
gramming language in the Visual Studio 2010. The calculations were carried out on a computing
station containing two Intel Xeon processors, each of them has 20 logic cores, with the use of the
OpenMP parallel computation technology. The calibration of the numerical parameters controlling the
phase interface thickness, the surface tension, and the angles of wetting with respect to the theoretical
values of these quantities is given in [21, 26].

The numerical results obtained on the basis of the program code were compared with the known
analytical solutions and results of other authors. As the first example, we have considered the problem
of laminar stratified flow of two immiscible liquids in a cylindrical pipe for various relations of the
viscosities μ1 and μ2 in the absence of the effects of wetting and interphase tension. In this formulation,
the streamwise velocity components of each of the fluids can be described by the following analytical
dependences [26]:

u1x(y) =
ΔP · r2
2μ1L

(
−

(y
r

)2
+

y

h

(
μ1 − μ2

μ1 + μ2

)
+

2μ1

μ1 + μ2

)
, −r ≤ y ≤ 0, (1.4)

u2x(y) =
ΔP · r2
2μ2L

(
−

(y
r

)2
+

y

h

(
μ1 − μ2

μ1 + μ2

)
+

2μ2

μ1 + μ2

)
, 0 ≤ y ≤ r. (1.5)

In Eqs. (1.4) and (1.5) the coordinate y is perpendicular to the flow direction, ΔP = 10 Pa is the
pressure difference between the inlet and outlet boundaries, r = 125 μm is the pipe radius, L = 372.5 μm
is the pipe length, μ2 = 1 mPa s, and μ1 = 2, 10, and 25 mPa s. In Fig. 1 we have compared the
numerical and analytical solutions. The mean relative deviation of the numerical calculations from the
analytical dependence is not greater than 0.4%.

As the second example, we have considered the problem of displacement of a wetting phase from
a cylindrical pipe, saturated with the wetting phase at the initial instant of time, by injecting a non-
wetting liquid. The calculation results were compared with the numerical solutions of the identical
problem considered in [27]. The grid dimension was 200 × 20 nodes, the grid step was equal to 3 μm,
σ = 20 mN/m, θ = 60◦, and ΔP = 1500 Pa. At the initial instant of time the region 0 < x < 0.05L,

FLUID DYNAMICS Vol. 53 No. 5 2018



658 ZAKIROV et al.

0.2

III

II

I

ux, m/s
1

2

0.1

�100 �50 0 50 100 y, �m
0

Fig. 1. Distribution of the streamwise velocity component of stratified flow of two immiscible liquids in the cylindrical
channel. Comparison of the analytical and numerical solutions: curves 1 and 2 correspond to the numerical and
analytical solutions, respectively; μ1/μ2 = 2/1 (I), μ1/μ2 = 10/1 (II), and μ1/μ2 = 25/1 (III).
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Fig. 2. Time variation in the saturation of the cylindrical pipe with the non-wetting phase Snw: M= 1 (a) and M = 0.1
(b); curves 1 and 2 correspond to the numerical and analytical solutions, respectively (borrowed from [27]).

where L is the pipe length, was occupied by the non-wetting phase. The problem was solved for
M = 1 and 0.1. In Fig. 2 we have compared the calculation results. In accordance with Fig. 2, the
agreement of the results can be taken to be satisfactory. In this figure t is the current instant of time and
t∗ characterizes the instant of time at which the flow region does not contains any wetting liquid at all.

1.2. Samples of Investigation

As the samples nos. 1–3 of porous media, we used oil-saturated sandstones with various filtration-
capacity properties taken from the Bobrikov horizon (depth of 1535.2–1535.4 m) of the Eastern-Birlin
oil-field located in the Ul’yanovsk region. The X-ray microtomographic scannings of the sample nos. 1
and 3 with resolution of 3.2 μm and the sample no. 2 with resolution of 1.5 μm were carried out to
construct the 3D digital models. In Figs. 3a–3c we have reproduced the digital model of the sample
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Fig. 3. Digital microtomographic models: 3D model of the sample no. 1 (a); slice of the sample no. 1 in the XY plane
(b); the same slice after binarization, the dark blue and black colors correspond to the pore and the skeleton, respectively
(c); porous space of the sample no. 2 (d); porous space of the sample no. 3 (e).

no. 1. In Figs. 3a and 3b the grey shades characterize the intensity of X-ray attenuation by various
sections of the sample, namely, the light-gray shades correspond to the sandstone granules and the
black tones to the porous space. To construct the digital model of the computing grid the image was
binarized, i.e., it was divided into cells which belong to either the porous space or the skeleton (Fig. 3c).
The images were processed using the AVIZO Fire programm (Visualization Sciences Group). The
methods and types of the image segmentations were described in [28]. In Figs. 3d and 3e we have
reproduced the structure of the porous space of the sample nos. 2 and 3, respectively.
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Table 1.

No. of the
sample

Porosity,
rel. units

Principal components
of the permeability tensor

Size distribution
of the open pores

kXX , μm2 kY Y , μm2 kZZ , μm2 mean pore diameter
in μm

root-mean-square
deviation in μm

1 0.217 0.523 0.607 0.553 16.1 6.5

2 0.239 0.194 0.195 0.241 4.2 1.5

3 0.221 1.33 1.395 1.084 20.8 8.1

1.3. Formulation of the Computational Experiments

At the initial instant of time the porous space is entirely occupied by the liquid wetting the skeleton.
In the calculations the angle of wetting was equal to 0◦. The injected phase is supplied to the
conventionally left-hand face of the sample, which is perpendicular to the OX axis, with a given
constant flow velocity in each of the cells; the fluids flow out across the conventionally right-hand
face of the sample, which is perpendicular to the OX axis, on which the pressure is maintained
constant in the course of the experiment. The remaining four external faces of the computation domain
are assumed to be impermeable. The calculations were carried out over a wide flow velocity range:
(0.1, 0.15, 0.25, 0.35, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0) × 10−3 m/s; σ = 2, 20, and 40mN/m (the last value
is used only in a single variant of the calculations to decrease Ca when M = 0.1); the viscosity of the
phases are 1 and 10 mPa s so that M = 0.1, 1, and 10. For these parameters Ca varies over the range
from −5.6 to −1.7.

The choice of dimensions of a sample is based on the representativeness of its filtration characteristics
(so-called representative elementary volume or REV), at least, on the lab-scale (tens of millimeters).
According to the methods described in [29, 30], it was revealed that the digital image of the model of
cubic shape, used in the present study, of dimension more than 200 cells (or greater than 0.6 mm) is
representative for measuring the porosity coefficients and the component of the absolute permeability
kXX . However, the estimations of the REV for two-phase flow characteristics carried out in [31]
with the use of the Fontainebleau sandstone (Basin Parisienne, France), that is standard for testing,
showed that the topically small samples of 2–3 mm dimensions used in the X-ray tomography scanning
are not representative. For this reason, in view of the large calculation volume, the verification of
representativeness of the samples tested in the present study for the two-phase flow characteristics
was not carried out. Nevertheless, this fact is not the obstacle for revealing the features inherent
in various types of flows, while the question of rescaling the multiphase flows requires an individual
consideration. The restriction on the model dimension is also due to adequacy of the time expenditures
on the calculations. The grids of the input binarized digital core samples contain about 800 × 106 cells
from which the fragments of dimensions of 300× 150× 150 cells were cut. In Table 1 we have presented
the filtration-capacity properties of the digital samples.

The distribution of the permeable (or open) pores over the cross-section diameters was estimated on
the basis of the capillary pressure drainage curves using the Laplace formula.

2. RESULTS AND DISCUSSIONS. CLASSIFICATION OF THE FLOW PATTERNS

Figure 4 illustrates the non-wetting phase distribution patterns in the porous channels of the sample
no. 1 at the instant of its breaking through the output cross-section for Ca = 2× 10−3 (Fig. 4a),
2.5× 10−5 (Fig. 4b), 1.2 × 10−5 (Fig. 4c), and 2.5 × 10−6 (Fig. 4d) when M = 0.1. We can clearly
see that the regime of the filtration experiment affects significantly the fluid distribution structure in the
pores. Different values of Ca correspond to different systems of porous channels saturated by the injected
phase. Moreover, even a relatively small change in the value of the parameter Ca from 2.5 × 10−5 to
1.2× 10−5 (Figs. 4b and 4c) leads to a considerable flow redistribution in the sample. As distinct from
the two-dimensional images, frequently, in the case of three-dimensional images it is fairly difficult to
analyze visually the displacement of fluid in pores. In the present study, the two-phase flow dynamics
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Fig. 4. Distribution of the non-wetting phase in the porous space of the sample no. 1 at the instant of its breaking
through the output cross-section for various displacement parameters; flows: with viscous fingering (a); in the
crossover regime (b, c); with capillary fingering (d); log10 Ca = −2.7 (a), −4.6 (b), −4.9 (c), −5.6 (d); log10 M =
−1 (a–d).

are proposed to describe numerically in the form of the graph of the saturation of a sample by the non-
wetting liquid as a function of the cell coordinate along the OX axis, where the phase interface is located,
which is nearest to the output cross-section or the leading front (Fig. 5).

2.1. Flows in the Capillary Fingering Regime

We will consider the displacement regimes which correspond to the values of the parameters Ca and
M in Fig. 5a with low flow velocities and high surface tensions (corresponding to given regimes for
each of the samples). In Fig. 6 we have shown the Ca and M numbers. For the given parameters the
capillary forces predominate the viscous forces and are crucial for displacement of the phase interface
in the porous space. The given fluid flow rate is maintained by the pressure difference between the inlet
and outlet faces of the sample, the displacement being occurred through the channels which ensure its
minimum value for the current fluid distribution. In this regime the pores with the maximum transverse
cross-sections are priority for the motion of the phase interface.

The dynamics of the phase interface displacement in the porous space characteristic of such a force
relation, shown in Figs. 5a and 7 for the sample no. 1 in the case of log10 Ca = −5.6 and log10 M = −1,
have a series of distinctive features. From Figs. 7a–7e we can see that the coordinate of the leading front
along the OX axis did not vary in the current time interval and is equal to 206 cells. In analyzing the
fluid distributions corresponding to Figs. 7a–7c, we estimated the dimensions of channels in which the
leading front is localized and the phase interface is moving. It is found that the front stopped in the pore
with the cross-sectional dimension of approximately 10 μm (Fig. 7a), while the front continues to move
through two wider channels, namely, of the cross-sectional dimensions 18 and 15 μm (these regions
are distinguished in Figs. 7b and 7,c by the white frames). In accordance with Fig. 5a, the events
of stopping the leading front in the course of the computational experiments occur repeatedly and its
movement in the direction to the output cross-section is stepwise. During the time while the coordinate
of the leading front is steady, the wetting phase continues to be displaced behind the front (Figs. 7b–7e).
Partially owing to such a mechanism, the effectiveness of the porous space filling by the non-wetting
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Fig. 5. Saturation of a sample by the non-wetting phase Snw as a function of the coordinate of the leading front xf

along the OX axis, constructed for samples of flows with capillary fingering (a), with viscous fingering (b), with the
stable displacement front (c), and in the crossover zone (d): the sample no. 1 (curves 1, 4, and 5), the sample nos. 2 and
3 (curves 2 and 3); log10 Ca = −4.3, −3.9, −4.3, −4.6, and −5.6 (curves 1–5, respectively); log10 M = 1 (curves 1
and 3), 0 (curves 2 and 4), −1 (curve 5) (a); the sample no. 1 (curves 2 and 3), no. 2 (curve 4), and no. 1 (curve 3);
log10 Ca = −2.7 (curves 1 and 3), −3 (curve 2), and −3.3 (curve 4); log10 M = −1 (curves 1–4) (b); the sample no. 1
(curve 1), no. 2 (curve 3), and no. 3 (curve 2); log10 Ca = −2, −2.3, and −1.7 (curves 1–3, respectively); log10 M = −1
(curves 1–3) (c); and the sample no. 1 (curves 1 and 5), no. 3 (curves 2 and 3), and no. 2 (curve 4); log10 Ca = −3.6
(curve 1), −3.3 (curves 2 and 4), −4 (curve 3), and −4.6 (curve 5); log10 M = 1 (curves 1 and 2), 0 (curves 3 and 4),
and −1 (curve 5) (d).

−2

−1 0

(a) (b) (c)

1 −1 0 1 −1 0 1

−3

−4

−5

−6

log10Ca

log10M

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Fig. 6. Phase diagrams of the flow regimes in the coordinates log10 M− log10 Ca: the samples no. 1 (a), no. 2 (b),
and no. 3 (c); symbols 1–4 correspond to viscous fingering, crossover, capillary fingering, and stable displacement,
respectively; and lines 5 correspond to the boundaries of the flow regimes.
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fluid, as compared with the viscous fingering regime (Fig. 5b), is significantly higher. The distinctive
feature of flows with formation of capillary fingers shown in Fig. 7 is their development non only in the
direction of the created pressure difference along the OX axis, but also in different directions, including
opposite directions. The coordinate of the leading front is displaced in the time interval between the
images reproduced in Figs. 7e and 7f. In analyzing Fig. 7f, we have revealed that the location of the
phase interface, which is the leading front in Figs. 7a–7e in the previous instants of time, remains the
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Fig. 7. Dynamics of the non-wetting fluid distribution in the porous space of the sample no. 1 in the capillary fingering
regime: log10 Ca = −5.6 and log10 M = −1; (a, b) show the slices in which the phase interfaces are localized; (c) show
the slice in which there is a porous channel occupied by the non-wetting fluid and its thickness is given; (d, e) show the
displacement of the wetting fluid behind the leading front; and (f) shows the movement of the leading front through a
new system of porous channels.
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Fig. 8. Non-wetting fluid distribution over the porous space in the viscous fingering regime: sample no. 1, log10 Ca =
−3.0, and log10 M = −1 (a–c); sample no. 2, log10 Ca = −2.7, and log10 M = −1 (d); and sample no. 3, log10 Ca =
−2.7, and log10 M = −1 (e); the separate volumes of the non-wetting phase are shown in round frames.

same. Respectively, the movement of the new leading front in the direction toward the outlet cross-
section occurs already through another system of porous channels. Similar flow specifics for which the
following features are characteristic: stepwise motion of the leading front, formation of capillary fingers
in the directions different from the direction of the created pressure difference, episodes of stopping the
front, and priority of channels of the wider cross-section for movement of the interphase front,—is also
observed for the samples nos. 2 and 3 (Fig. 5a) which have other filtration-capacity properties.

2.2. Flows in the Viscous Fingering Regime

At present, the problem of instability of the interphase front is frequently investigated with reference
to the Hele–Shaw cell [32]. In accordance with the investigations, viscous fingering develops only when
M < 1 at low capillary resistances. Relying on these regularities, in this section we will consider flows
at high velocities and low surface tensions. In Fig. 6 we have shown the Ca numbers corresponding to
given regimes for each of the samples. In Fig. 5b we have reproduced the growth of viscous fingering
and the dynamics of the leading front: for the sample no. 1 when log10 Ca = −3.0 and log10 M = −1
(Figs. 8a–8c); for the sample no. 2 when log10 Ca = −2.7 and log10 M = −1 (Fig. 8d); and for sample
no. 3 when log10 Ca = −2.7 and log10 M = −1 (Fig. 8e). In analyzing the images in Fig. 8, for all
three samples we revealed that in the neighborhood of the inlet boundary the majority of the porous
channels of various cross-sections, as distinct from the capillary fingering regime (Fig. 7), are occupied
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Fig. 9. Distribution of two liquids in their combined flow in the cylindrical channel; the white and black colors
correspond to the non-wetting and wetting phases, respectively. The flow parameters: unw = 0.01 m/s and σ =
0.2 mN/m (a); unw = 0.05 m/s and σ = 0.2 mN/m (b); and unw = 0.1 m/s and σ = 0.2 mN/m (c).

by the injected fluid. The formation of viscous fingers is owing to different velocities of the movement
of the interphase front in pores due to heterogeneity of the porous space structure. As can be seen in
Fig. 8, in each of the samples there are several filtration channels with the higher velocity of the non-
wetting phase. In such pores the regions occupied by the injected fluid are viscous fingers. As distinct
from the capillary fingering regime, the viscous fingers are predominantly formed in the direction to the
outlet cross-section. Since the displacement is especially expressed only in a small volume of the porous
space, then the effectiveness of its filling with the non-wetting phase is low. According to Fig. 5b, it is
only 15–25% at the instant of breakthrough. No episodes of stopping the front and deviations of streams
in opposite direction are observed. The monotonic character of the curves in Fig. 5b testifies this fact.
In view of the weak interphase tension and high velocities, the formation of isolated volumes of injected
fluid (in Fig. 8 they are distinguished by round frames) with various geometric shapes is characteristic
of this type of flow. This phenomenon is the indication of formation of emulsions.

A comparison of Figs. 7 and 8 makes it possible to note that the viscous fingers are thinner as
compared with the capillary fingers. To explain this phenomenon we carried out a series of calculations of
displacement of the wetting liquid from the cylindrical pipe of dimensions 100× 20 cells with the grid step
of 3.2 μm at various velocities and constant interphase tensions (M = 0.1 in all the variants). In Fig. 9
we have reproduced the fluid distributions at the saturation by injected fluid of 52%. In accordance with
these distributions, an increase in the flow velocity leads to an increase in the area of the phase interface
and formation of a viscous finger (Fig. 9c) elongated toward the outlet cross-section. In this case a
significant part of the wetting liquid is localized between the pipe walls and the interface between two
phases. This can partially explain the low effectiveness of displacement in these regimes.

2.3. Flows with Stable Displacement Front

As in Section 2.2, we will consider flows at high velocities and low capillary resistances but for
M = 10. In Fig. 6 we have shown the Ca numbers corresponding to given regimes. In each of the
samples the velocity of the leading front is close to constant (linear nature of the curves in Fig. 5c);
however, as distinct from the viscous fingering regime, more than 59% of the wetting liquid are displaced
from the porous space. In Fig. 10 we have plotted the non-wetting fluid distributions over the transverse
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Fig. 10. Saturation of a sample by the non-wetting phase Snw as a function of the distance from the inlet cross-
section xf at various instants of time: the sample no. 1, log10 Ca = −2.0, and log10 M = 1 (a) and the sample no. 2,
log10 Ca = −2.3, and log10 M = 1 (b); curves 1–5 correspond to 1× 105Δt, 2× 105Δt, 3× 105Δt, 4× 105Δt, and
5× 105Δt, respectively.

cross-sections of a sample at various instants of time: (a) for the sample no. 1 (log10 Ca = −2.0 and
log10 M = 1) and (b) for the sample no. 2 (log10 Ca = −2.3 and log10 M = 1). We will compare two
curves for the sample nos. 1 and 2, for example, at t = 3× 105Δt and 4× 105Δt. On the first curves we
can distinguish cross-sections behind which the displacement is weakly expressed and the saturation
by injected fluid is greater than 65−70% (in Fig. 10 such cross-sections are distinguished by vertical
lines). Consequently, almost all the set of mobile phase interfaces is located in the zone ahead of such a
cross-section and their collection forms the displacement front which is “smeared out” lengthwise and
amounts to 190 and 140 μm for the first and second samples, respectively. The same flow pattern can be
also observed for the sample no. 3 for which the front thickness amounts to 210 μm. It should be noted
that in the case of homogeneous porous media in the stable displacement regime the interphase front is
the plane surface perpendicular to the direction of motion, while in the heterogeneous medium the front
can be considered to be plane quite relatively.

2.4. Flows in the Crossover Zone

In the case of intermediate values of Ca (Figs. 5d and 6) the viscous friction and capillary resistance
forces are commensurable quantities. In such regimes both capillary and viscous fingers are simultane-
ously formed in the sample (Figs. 4b and 4c). As in the two-dimensional models (Fig. 5d), it is difficult
to reveal the features of combined displacement characteristic of given parameters. Such flows can be
observed in each of the samples, they develop for all the M numbers and form the transition crossover
zone.

3. PHASE DIAGRAMS OF THE FLOW REGIMES. ESTIMATION
OF THE EFFECTIVENESS OF DISPLACEMENT

By analogy with Lenormand’s study [1], we have schematically illustrated the investigation results
for each of the samples in the phase diagram log10 Ca− log10 M (Fig. 6). The geometric symbols denote
the regimes with formation of capillary fingers (diamonds), viscous fingers (circles), with conditionally
stable interphase front (triangles), and the crossover zones (squares). In Fig. 6 the broken lines denote
the boundaries of each type of flows and the domains inside these lines are transition domains. The
investigations whose results are given in Section 2 showed that each flow regime (except for crossover
regime) has a set of distinctive features which manifest themselves similarly in each of the samples
and make it possible to identify the type of two-phase flow in the class of porous media of the similar
type regardless of their properties. In the qualitative analysis of the diagrams it was noted that, on
the one hand, the shapes of the crossover zones and, correspondingly, of the remaining flow regimes
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Fig. 11. Saturation of a sample with the non-wetting phase Snw for various Ca at the instant of its breaking through
the output cross-section for all three samples: log10 M = 1, 0, −1 (a–c), respectively); curves 1–3 correspond to the
samples no. 1–3, respectively; I correspond to the capillary fingers, II to the crossover zone, III to the stable front, IV
to the viscous fingers, and V show the boundaries of the flow regimes.

separated from them have similar contours, while the transition domains have different thicknesses.
On the other hand, the ranges of the Ca numbers which correspond to different flow regimes shown
in Fig. 6 are significantly different for each of the samples. Comparing with the filtration-capacity
characteristics given in the Table 1, we can conclude that there is no correlation between them and the
boundary numbers Ca. This means that for given parameters the specifics of unsteady two-phase flow
depends mainly on heterogeneity of the porous space which is not determined by the integral parameters
of the porous space (porosity and absolute permeability). Consequently, it is not possible to forecast
the development of some flow regime for the known flow characteristics only on the basis of averaged
properties of the sample without carrying out multivariant calculations.

The investigations carried out have the applied significance for estimating the effectiveness of
displacement for various two-phase flow parameters. In Fig. 11 we have plotted the curves of the sample
saturation by the non-wetting phase at the instant of its breaking through the output cross-section
for various Ca and for each of the samples investigated, namely, for log10 M = 1, 0, −1 (Figs. 11a–
11c, respectively). In these figures broken lines denote the boundaries of the flow regimes, shown
also in Fig. 6. Comparing the graphs, we can conclude that growth in the viscosity of injected phase
leads to increase in the saturation. When log10 M = 1 (Fig. 11a) growth in Ca leads to increase in the
effectiveness of displacement in each of the samples; however, there is a small decrease in the saturation
at the flow velocities 2× 10−3 m/s and σ = 2 mN/m. When log10 M = −1 (Fig. 11c) the effectiveness of
filling is significantly higher in the capillary fingering regime than that in the viscous fingering regime. In
both regimes, increase in the capillary number leads to monotonic decrease in the saturation. The results
which are the most problematic for interpretation are obtained when log10 M = 0 (Fig. 11b). Increase
in Ca leads to decrease in the effectiveness of displacement for the sample no. 1; however, the opposite
situation takes place for the sample nos. 2 and 3. Obviously, there is no correlation dependence.

Summing up the estimates of the effectiveness of displacement for all the samples, we can conclude
that the saturations in each of them are different for various Ca and M. They are determined by
heterogeneity of the microstructure of porous space. The stable displacement front is the most favorable
regime, while the viscous fingering regime is the least favorable; it is not possible to detect the
dependence of the saturation on the number Ca in the crossover regimes for any M.

In all the computational experiments the calculations were carried out till the amount of injected
fluid reaches a single porous volume. In accordance with the results obtained, in the capillary fingering
regime the sample contains no more than 5% of the mobile wetting liquid at the instant when injected
fluid breaks through the output cross-section. In this case, from the viewpoint of the effectiveness the
least favorable situation is observed at log10 M = −1 since the saturations are at the level of only 20–
30%.
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SUMMARY

Dynamics of two-phase flow of immiscible incompressible liquids are studied in the three-
dimensional digital models of the porous space of three samples of natural sandstones over wide
ranges of variation in the parameters Ca and M. The distinctive features of the capillary fingering,
viscous fingering, and stable displacement front regimes are revealed. It is shown that the indications
corresponding to a particular type of flow make it possible to determine its regime in the class of porous
media of similar type regardless of its properties. The phase diagrams of flow regimes are constructed
for each of the samples. It is found that they are determined by heterogeneities of the structure of porous
space and there is no correlation with the integral (volume average) filtration-capacity properties. The
quantitative estimates obtained can be used in designing full-scale experiments and for the choice of the
effective displacement regimes.

The work is performed according to the Russian Government Program of Competitive Growth of
Kazan Federal University and with support from the Russian Science Foundation (RSCF) under the
grant no. 15-11-10015.
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