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Abstract—We present a new exact solution of the Navier-Stokes equations in the Oberbeck-Boussin-
esq approximation describing a plane-parallel advective f low in a plane horizontal layer of an incom-
pressible f luid with solid boundaries. At the boundaries, a linear temperature distribution is defined in
the presence of an internal heat source that is linear with respect to the horizontal coordinate. Exam-
ples of such solutions are given. The possibility of an analytical determination of the velocity and tem-
perature of such flows is demonstrated. The velocity profile has not a cubic profile, which is usual for
advective f lows, but a more complex form depending on the source type.
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Specific convective f lows arise in the presence of an internal heat source while some of them can be
analytically described. There is an overview of studies of such flows [1] in a vertical layer [2–4], an
inclined liquid layer [5] with internal heat sources distributed uniformly throughout the volume, as well
as with a heat source whose density decreases exponentially with distance from boundaries. Such a distri-
bution can occur when passing across a layer of light f lux, the absorption of which in the liquid occurs
according to Burger’s law and all absorbed energy is released in the form of heat [6]. Thermocapillary con-
vection was studied in the presence of an internal heat source in the liquid layer under conditions of
weightlessness [7]. The effect of distributed point heat sources on the dynamics of a convective f low in a
vertical cylinder was analytically analyzed [8]. The problem of the response of a stably stratified liquid
(gaseous) medium to the effect of heat sources and the momentum extended along the vertical harmoni-
ously varying with time is analytically solved [9].

Advective f lows arise in a f lat horizontal liquid layer under the action of a longitudinal temperature
gradient [1]. They lack the vertical velocity component, i.e., the velocity vector in the f low is oriented per-
pendicular to the buoyancy force, which is the main cause of the motion. This property does not change
under various boundary conditions for the velocity [10]. In the case when the temperature at the bound-
aries of the layer is a linear function of the longitudinal coordinate proportional to the constant horizontal
temperature gradient at the boundaries of the layer, the f low is described analytically as an exact solution
of the Navier-Stokes equations [11, 12]. There is an overview of such plane-parallel advective f lows [13–
15] under various boundary conditions. The f lows are stationary and, as a rule, closed, with zero con-
sumption. A procedure is given for obtaining exact solutions of the Navier-Stokes equations describing a
wide class of closed advective f lows in a rotating plane layer of an incompressible f luid [16]. It was noted
that analytical solutions can be found in the case of both a linear temperature distribution and a linear dis-
tribution of the heat f lux on the horizontal boundaries of the layer. Moreover, one of these solutions was
presented (in the absence of rotation) [17]. It was shown [18, 19] that analytical solutions describing
advective f lows can be used to develop quasi-two-dimensional models used in technological and geophys-
ical applications [20]. A new class of exact solutions describing the distribution of temperature and con-
centration at the boundaries of the liquid layer according to a quadratic law is presented [21].

1. Mathematical model. Let us consider a plane infinite horizontal layer of an incompressible f luid with
a width of 2h with solid boundaries in a homogeneous gravitational field. The f luid motion is described
by the convection equations in the Boussinesq approximation [1] in the Cartesian coordinate system Oxyz
(z is the vertical coordinate, and x and y are the horizontal coordinates). In the layer, there is a heat source
linearly varying along the x coordinate.
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Selecting h, , , , and  (where  is the kinematic viscosity,  is the coefficient
of thermal expansion,  is the acceleration of gravity, and  is the average density) as measurement units
of the length, time, velocity, temperature, and pressure, we obtain the initial equations in the following
dimensionless form:

(1.1)

where v is the velocity vector, T is the temperature, p is the pressure, depending on time and spatial coor-
dinates x, y, z, Gr is the Grashof number, Pr is the Prandtl number, χ is the coefficient of thermal diffu-
sivity, and the f(z) function describes the behavior of the thermal source along the vertical. On solid
boundaries:

(1.2)

2. Advective flow. Taking into account the boundary conditions (1.2) and the incompressibility condi-
tion for the f luid (the second equation of system (1.1)), we seek the exact solution of the problem in the
following form:

(2.1)

which leads to a system of the following equations with boundary conditions:

(2.2)

(2.3)

Note that this  is the f luid temperature at x = 0.
Taking into account the linear dependence of the right-hand side of the last equation (2.2) on x, we

conclude that this equation is divided into two equations:

(2.4)

When boundary conditions are taken into account, we find:

(2.5)

Differentiating the first equation (2.2) with respect to x and the second equation with respect to z, we
eliminate the pressure and obtain the boundary-value problem for the velocity:

(2.6)

the general solution of which has the following form:

(2.7)

Taking the boundary conditions of the problem (2.6) into account, we obtain an expression for the
velocity:

(2.8)
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Now, solving the boundary-value problem

we find

(2.9)

At Pr = 0, this solution coincides with the solution [12] describing the advective plane-parallel f low in a
horizontal layer with solid boundaries.

Let us consider the simplest examples of f lows. In all examples, .
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Fig. 1. 
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In all four examples, the liquid moves from right to left in the upper half of the layer, and the liquid
moves from left to right in the lower half of the layer (a middle column of the figure fragments). The 
temperature component is positive in the upper half of the layer and negative in the lower half of the layer
(right fragments). At small values of the Prandtl number, the velocity reaches its extreme values at 
while the extremum points move insignificantly toward the layer center with increasing Prandtl number.
Obviously, the maximum  increases linearly with increasing Prandtl number while  increases
according to the quadratic law. In each following example, the velocity and temperature modules
decrease.
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