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Abstract—It is known that turbulence is characterized by intermittence which is closely related to
the development of unsteady nonisotropic intense small-scale vortex structures. In this study, small
fluid particles from the inertial range of isotropic turbulence are considered. It is shown that the
phenomenon of rotation intensification and stretching of the particles can be analyzed theoretically.
In recent experimental and numerical studies, where this phenomenon was called “the pirouette
effect”, its significance in the mechanism of the intense small-scale structures generation was
discussed. In this study, a linear stochastic Lagrangian model for the effect is developed. In this
model, the kinetic equation for the distribution function of the squared cosine of the angle between
the vorticity and the eigenvector of the strain rate tensor of a fluid particle is derived and time history
asymptotics of this quantity are analytically calculated at large and small times. The results are
in good agreement with the recent experiments and numerical calculations. An analysis made in
this study shows that the linear processes probably play the crucial role in certain processes in
the isotropic turbulence, which is known to be a principally nonlinear phenomenon. The model
developed makes it possible to analyze the statistics of the Lagrangian dynamics of small fluid
particles in the inertial range which can be useful in some computational approaches to turbulence.
Keywords: intermittence, homogeneous and isotropic turbulence, inertial range, vorticity, strain
rate tensor, Gaussian process, Furutsu–Novikov formula.
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The notion of homogeneous and isotropic turbulence introduced by Taylor [1] and then developed
and generalized by Kolmogorov [2–4] is not only of an obvious theoretical interest, as an example
of turbulence simplest for a theoretical analysis, but also of a practical importance, due to certain
reasons. Firstly, as predicted by Kolmogorov’s theory and confirmed by experiments, in an arbitrary
developed turbulent flow small-scale disturbances have an universal locally-isotropic structure [4, 5].
This makes it possible to use the results of theory of isotropic turbulence for any arbitrary small-scale
turbulence. Secondly, a near-isotropic turbulence is attained in the atmosphere, laboratory experiments,
and numerical calculations [6], which allows one to find new nontrivial phenomena in the isotropic
turbulence, which can be universal. For example, one of these universal properties is intermittence [4, 5]
which, is closely related to the presence of rare, very intense, wormlike vortex structures. Precisely these
structures determine the statistical characteristics of a turbulent flow [4, 5, 7], thus making it possible
to theoretically substantiate the statistic properties of developed turbulence [8, 9] and to develop the
quadrupole source model in the correlation theory of subsonic jet noise [10].

Till recently, under laboratory conditions the isotropic turbulence has been realized and measured
only in grid flows [1, 11, 12]. The presence of high mean velocity in the turbulent flow behind the
grid (relative to the laboratory) makes difficult the measurement of the Lagrangian characteristics of
the isotropic turbulence. At the same time, the Lagrangian models of isotropic turbulence are used
for closing the equations for the probability density [5, 13] which, for example, finds application in
considering the turbulent combustion problems [14, 15]. A device developed in [16] produced “motion-
less” stationary isotropic turbulence in a small region between rotating disks, which made it possible
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to perform Lagrangian measurements in isotropic turbulence invoking high-precision measurement
methods. The particle image velocimetry (PIV) made it possible to measure in an analogous setup a
new fine Lagrangian effect of rotation intensification and stretching of fluid particles from the inertial
range [17] called the pirouette effect.

We will consider this effect in more detail. We will introduce the designation for the vorticity, or the
curl of the flow velocity v(r, t)

ω(r, t) = [∇,v(r, t)].

In the experiments and numerical calculations [17, 18] a fluid particle studied was confined by a
tetrahedron at whose vertices there were four test particles. Measuring the particle velocities at a
tetrahedron vertex one can estimate the flow vorticity according the so-called minimal model [18, 19].
For the fluid particles from the viscous (Kolmogorov) interval this model gives the true vorticity value at
the point. For fluid particles from the inertial range the vorticity considerably varies in the fluid particle
from one point to another and the model gives the effective, “large-scale” vorticity ω(t), whose direction
will be measured with respect to the eigenvectors of the large-scale strain rate tensor bij(t) obtained
using the same minimal model from the equation

bij(r, t) =
1

2
(∂ivj(r, t) + ∂jvi(r, t)),

where ∂i = ∂/∂ri is the partial derivative with respect to coordinate i. The motion of a fluid particle
of the Kolmogorov scale can be decomposed into rotation about the vorticity vector and deformation
along the eigenvectors of the strain rate tensor [20]. For a particle from the inertial range the large-
scale vorticity and strain rate tensor determined from the minimal model also qualitatively respond
this decomposition. By virtue of incompressibility, the three eigenvectors of the strain rate tensor will
necessarily include the one, along which the particle stretches (with the maximum eigenvalue), the one,
along which it compresses (with the minimum eigenvalue), and the intermediate vector, along which
either compression or stretching can occur. Following the designations of studies [17, 18], we will
designate the vector e1(0) as the stretching vector, the vector e2(0) as the intermediate vector, and
the vector e3(0) as the compression vector.

The experiments and calculations [17] showed that at small times a decrease in the angle between
the ω(t) and e1(0) vectors is observable in the typical experimental realization. This means the temporal
growth of the quantity α2

t , that is, the squared cosine of the angle between the ω(t) and e1(0) vectors
averaged over the ensemble of experimental realizations

α2
t =

〈(
ω(t)

|ω(t)| , e1(0)
)2〉

.

Here, the angular brackets mean the averaging over the ensemble of the realizations, while the
conventional parentheses mean the scalar product of vectors. In this case, we mean the product of the
unit vectors aligned with the vorticity ω(t) and the stretching extension vector e1(0). The phenomenon
of increase in α2

t at small times was named the pirouette effect by analogy with the effect of an increase
in the angular velocity of a figure skater making rotation about his own axis and thus diminishing the
moment of inertia about this axis. It should be noted that qualitatively this effect is a consequence
of the Helmholtz theorem [20] but the quantitative assessment of α2

t made in this study requires the
consideration of the system dynamics in more detail. In the other study [18] the authors determined
the time dependences of the squared cosines of the angles between ω(t) and e2(0) and ω(t) and
e3(0)

β2
t =

〈(
ω(t)

|ω(t)| , e2(0)
)2〉

, γ2t =

〈(
ω(t)

|ω(t)| , e3(0)
)2〉

.

In [17, 18] various qualitative considerations explaining the pirouette effect are presented, while in [21]
the effect is explained by means of modeling the dynamics of the velocity gradient tensor. In those studies
the fluid dynamic nonlinearity plays a significant role. The results of this study show that this effect can
be explained within the framework of the linear model.
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In this study, we formulate a simple theoretical model which reduces the problem of the fluid
particle dynamics in the inertial range to the linear stochastic problem. The main idea of the approach
developed in the study is that the large-scale vorticity and strain rate tensor are assumed to be
statistically independent. The foundation for this supposition is given by the absence of vortex self-
action demonstrated in [8], that is, that small-scale fluctuations have almost no effect on the vorticity
dynamics concentrated in narrow tubes. Another supposition of the model concerning the Gaussian
nature of the processes and random quantities determining the fluid particle dynamics is a simplification
of the real process, since it is known that turbulent flow is non-Gaussian in nature [4, 5]. However,
the suppositions formulated above make it possible to evaluate the pirouette effect characteristics in the
linear stochastic model applying the mathematical apparatus of the theory of random processes [22].
Since the asymptotic time dependences of the correlators α2

t , β2
t , and γ2t derived in this study are in

agreement with the experimental and numerical results [17, 18], this suggests that the non-Gaussian
nature of these processes does not play a crucial role in the effect under consideration.

Thus, the study is devoted to the quantitative explanation of the effect of fluid particle stretching
along the vorticity line in the inertial range [17, 18] using the linear stochastic model in which the large-
scale strain rate tensor may be assumed to be an external source of the vorticity dynamics. Using
this approach the effect characteristics can be evaluated to validate the Lagrangian model by means
of comparing the estimates obtained with the experimental and numerical results [17, 18].

The study is organized as follows. In Section 1 the basic equation of the linear stochastic model is
obtained which plays the role of the Langevin equation. In Section 2 the behavior of the correlators α2

t ,
β2
t , and γ2t is studied in the isotropic delta-correlated Gaussian model at large times and their exponential

decay is obtained, in agreement with [17, 18]. In Sections 3 and 4 the natural Gaussian delta-correlated
stochastic model of the strain rate tensor is developed to consider the effect not only in the large time
limit. In Sections 5 and 6 it is shown that in the large time limit the model constructed in Sections 3
and 4 coincides with the isotropic model considered in Section 2; moreover, in Section 6 the relationship
between the correlation constants of the two models is established. In Section 7 the behavior of the
correlators α2

t , β2
t , and γ2t in the stochastic model of the strain rate tensor is analyzed at small times and

expressions for the linear asymptotics of the temporal behavior of the correlators are derived. However,
these expressions require also the averaging over the ω(0) direction in the (e1(0), e2(0), e3(0)) basis,
which is made in Section 8. In Section 9 the results of the present theoretical analysis are compared
with the data [17, 18]. It is shown that in the theoretical model the correlator α2

t growth (pirouette effect)
is in general determined by only the mean value of the square of the flow vorticity. The corresponding
estimates show the satisfactory agreement between the theory and the experiment. Finally, the main
results of the study are formulated in Section 10.

1. DYNAMICS OF LARGE-SCALE VORTICITY

In a developed turbulent flow (in considering the structures, whose scales are much greater than
the Kolmogorov scale) viscosity can be neglected. Then the vorticity dynamics are determined by the
following equation

∂tω + (v∇)ω = (ω∇)v.

In the reference frame fitted with a fluid particle the vorticity behavior can be brought into the form [3]:

dω(ρ, t)

dt
= B(ρ, t)ω(ρ, t). (1.1)

Here, ρ is the coordinate in the reference frame fitted with a certain point in the fluid particle, while
ω(ρ, t) and B(ρ, t) are the vorticity and the strain rate tensor in this coordinate system. Here, in contrast
to the designation of the tensor B(ρ, t), its components will be denoted by small letters; the same rule
will be applied for most of tensors and matrices considered below.

We will consider an intense locally-nonisotropic structure (vortex worm) within the fluid particle.
As shown in [23], at the center of the fluid particle the strain rate tensor can be decomposed into the
small-scale and large-scale components determined by the velocity fields within and outside the particle,
respectively. Since within the vortex worm and in its proximity the strain rate tensor is orthogonal to the
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vorticity (see [8, Appendix 1]), in considering its dynamics in Eq. (1.1) the tensor B(ρ, t) may be replaced
by the large-scale tensor B(t)

dω(ρ, t)

dt
= B(t)ω(ρ, t).

Since for fairly small fluid particles the large-scale vorticity ω(t) is determined by the most intense
structure within the fluid particle [4, 9, 24], the latter equation can also be considered as an equation
of the dynamics of a small fluid particle from the inertial range1) replacing ω(ρ, t) by the large-scale
vorticity ω(t) of the entire particle

dω(t)

dt
= B(t)ω(t). (1.2)

The energy of a three-dimensional turbulent flow is transferred from the large to the small scales; for
this reason, the large scale dynamics determine the dynamics of the smaller scales and, contrariwise,
the small scale dynamics have only a small effect on the dynamics of the larger scales. Thus, it may be
supposed that the tensor B(t) enters into Eq. (1.2), as an external random source independent of ω(t).
The applicability of this approach was numerically demonstrated in [24]. For the sake of simplicity we
will consider the source B(t) as Gaussian. The considerations presented after Eq. (1.2), together with
Eq. (1.2) itself, provide the foundation of the theoretical consideration of the problem. This equation can
be considered as the linear model of the effect.

2. DECAY OF THE CORRELATORS α2
t , β2

t , AND γ2t AT LARGE TIMES

Basing on Eq. (1.2) we will consider the decay of initial disturbances in a nondistinguished basis (at
large times (e1(0), e2(0), e3(0)) becomes such a basis) which can be compared with the decay found
in [17, 18].

In the problem under consideration all the five independent components bij(t) can be regarded as
random processes determining the dynamics of ω(t). If these random processes are assumed to be
Gaussian, then, as is known [25], it is sufficient to know pairwise correlations of the processes to describe
their statistical properties. For the sake of simplicity we will assume that the bij(t) process is delta-
correlated [22]

〈bij(t)bkl(t′)〉bαβ(τ) = Dijklδ(t− t′). (2.1)

Here, t ≥ 0 and t′ ≥ 0 are certain moments of time, δ(t − t′) is the delta function [26, 27], and Dijkl

is the correlation tensor. The index bαβ(τ) of the averaging brackets means that the averaging is made
over the ensemble of realizations of all the five independent processes. These processes are defined
at τ ∈ [0,+∞]. Under the assumptions made above and using Eq. (1.2) and the Furutsu–Novikov
formula [22] the following equation for the vorticity distribution function f(t,ω) can be obtained

f(t,ω) = 〈δ(ω −ω(t))〉ω(τ) ,

∂f

∂t
= Dijkl

∂

∂ωi

{
ωj

∂

∂ωk
(ωlf)

}
. (2.2)

By virtue of the statistical homogeneity and isotropicity and the flow incompressibility, the correlation
tensor Dijkl depends only on one constant D

Dijkl = D

(
δikδjl + δilδjk −

2

3
δijδkl

)
. (2.3)

This fact considerably simplifies Eq. (2.2), in which it is convenient in this case to pass to spherical
coordinates

ω1 = ω cos θ = ωμ,

1)Such particles are considered in [17, 18].
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ω2 = ω sin θ cosφ = ω cosφ
√

1− μ2,

ω3 = ω sin θ sinφ = ω sinφ
√

1− μ2.

Thus, substituting expression (2.3) into Eq. (2.2) and making in it the change of variables, after some
transformations we can obtain

∂f

∂t
=

D

2

{
4

3ω2

∂

∂ω

(
ω4 ∂f

∂ω

)
+

∂

∂μ

(
(1− μ2)

∂f

∂μ

)
+

1

1− μ2

∂2f

∂φ

}
.

Thus, multiplying this equation by μ2 and integrating it over the ω space we can obtain an ordinary
differential equation for an unknown quantity, whose role can be played by both α2

t , and β2
t , and γ2t

d〈μ2(t)〉ω(τ)

dt
= 2D(1 − 3〈μ2(t)〉ω(t)).

Let 〈μ2(0)〉ω(t) be an initial disturbance. Then the solution

〈μ2(t)〉ω(τ) =
1

3
+

(
〈μ2(0)〉ω(t) −

1

3

)
exp(−2Dt). (2.4)

An important property of this solution is the presence of the stationary point 〈μ2(t)〉ω(t) = 1/3. The
existence of this solution could be supposed beforehand, since the nondistinguished basis must conserve
the direction isotropy. Expression (2.4) represents the asymptotics of α2

t , β2
t , and γ2t at large times. In

fact, the exponential decay at large times is observable in [17, 18].

3. STRAIN RATE TENSOR IN THE BASIS OF ITS EIGENVECTORS

We will consider the large-scale strain rate tensor bij(t) in the basis of its eigenvectors e1(t), e2(t),
and e3(t), where the form it takes is simplest

Beig(t) = beigij (t) =

⎛
⎜⎜⎜⎝
λ1(t) 0 0

0 λ2(t) 0

0 0 λ3(t)

⎞
⎟⎟⎟⎠ .

Here, the eigenvalues λ1(t), λ2(t), and λ3(t) of the strain rate tensor represent random processes.
From the flow incompressibility condition we have

λ1(t) + λ2(t) + λ3(t) = 0.

We will now so put in order the eigenvectors e1(t), e2(t), and e3(t) that the vector e1(t) shall be
always associated with the greatest eigenvalue λ1(t), the vector e2(t) with the intermediate value λ2(t),
and the vector e3(t) with the least value λ3(t)

λ1(t) > λ2(t) > λ3(t). (3.1)

In the case of the Gaussian-distributed velocity field the strain rate tensor is also normally distributed
(as the derivative of the Gaussian field)2). Moreover, assuming that the velocity field has the same
spectral characteristics as in an isotropic turbulent flow, we can determine the strain rate tensor
distributions in an explicit form [29, 30]. From it the mathematical expectations of the eigenvalues can
in turn be found

〈λ1(t)〉λ(τ) = λ, 〈λ2(t)〉λ(τ) = 0, 〈λ3(t)〉λ(τ) = −λ, λ = 3

√
3〈ω2〉
10π

. (3.2)

2)An important “non-Gaussian” feature of a turbulent velocity field is the on-average positivity of the intermediate
eigenvalue 〈λ2(t)〉λ(τ) > 0 [6, 12, 18, 28, 29], which characterizes the irreversibility of the cascade process of energy
transfer from the large to the small scales. Since in this study we use the Gaussian approximation, this effect is not taken
into account. We are planning to take account for it in the future.
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490 ZYBIN, KOPYEV

Here, 〈ω2〉 is the mean value of the squared vorticity of a fluid particle. The last averagings are
made over the ensemble of realizations of the random process λ(τ) = (λ1(τ);λ2(τ);λ3(τ)). We will
analyze the dependence of 〈ω2〉 on the fluid particle size r0. Obviously that 〈ω2〉 tends to zero with
fluid particle enlargement. On the other hand, when the particle scale is of the order of the Kolmogorov
scale, 〈ω2〉 is independent on its size and is determined according to the well-known formula 〈ω2〉 =
ε/ν = (ε/λ2

Kolm)
2/3, where ε is the energy deviation rate, ν is kinematic viscosity, and λKolm is the

Kolmogorov scale [4]. In the inertial range the viscosity effect is unimportant; for this reason, from
theory of dimensions we obtain 〈ω2〉 ∼ (ε/r20)

2/3. Sewing these two dependences together we obtain

〈ω2〉 =

⎧⎪⎨
⎪⎩

ε
ν , r0 ≤ λKolm,(

ε
r20

)2/3

, r0 > λKolm.
(3.3)

The process beigij (t) can be subdivided into the time-constant random part beigij (0) (initial conditions)

and the process beigo ij(t) with zero mathematical expectation

Beig(t) = Beig(0) +Beig
0 (t) =

⎛
⎜⎜⎜⎝
λ1(0) + λ1o(t) 0 0

0 λ2(0) + λ2o(t) 0

0 0 λ3(0) + λ3o(t)

⎞
⎟⎟⎟⎠ ,

〈Beig(t)〉λ(t) =

⎛
⎜⎜⎜⎝
λ 0 0

0 0 0

0 0 −λ

⎞
⎟⎟⎟⎠ , 〈Beig

o (t)〉λ(t) =

⎛
⎜⎜⎜⎝
0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎠ . (3.4)

We will assume the processes λ1o(t), λ2o(t), and λ3o(t) (process λo(t)) to be Gaussian noises against
the background of the mean values3). For the simplicity of the analysis it can be assumed that they
are independent delta-correlated Gaussian noises with the same statistical characteristics. Then the
pairwise correlations of the random processes λ1o(t), λ2o(t), and λ3o(t) can be defined as follows:

〈λ1o(t)λ1o(t
′)〉λ(τ) = 〈λ2o(t)λ2o(t

′)〉λ(τ) = 〈λ3o(t)λ3o(t
′)〉λ(τ) = Λδ(t − t′).

From the incompressibility condition we can determine cross-correlations in the form:

〈λio(t)λjo(t
′)〉λ(τ) =

⎛
⎜⎜⎜⎝

1 −0.5 −0.5

−0.5 1 −0.5

−0.5 −0.5 1

⎞
⎟⎟⎟⎠Λδ(t − t′) = Λijδ(t− t′), (3.5)

where Λij is the correlation matrix4) of the process λij(t).

4. STRAIN RATE TENSOR IN THE BASIS OF ITS ORIGINAL EIGENVECTORS

As shown in Sect. 1, Eq. (1.2) holds true in the reference frame executing translational motion
together with a fluid particle (TRF). The reference frame rigidly fitted with the own basis of the strain
rate tensor (ORF) is not such a system. We will choose as a TRF a coordinate system, whose axes
e1(0), e2(0), and e3(0) originally coincide with the ORF axes e1(t), e2(t), and e3(t). In the following

3)Actually, this procedure is not completely correct. Even in the case of a Gaussian distributed matrix its eigenvalues are
distributed in essentially non-Gaussian way [29, 31]. However, for estimations this process can be regarded as Gaussian.
Moreover, we shall see that the correlatorα2

t (t) is actually independent of the statistical propertiesλo(t) but is determined
by the initial mean values.

4)From this matrix it can be readily shown that the eigenvalues are linearly dependent, in agreement with the flow
incompressibility condition.
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considerations the ORF can conveniently be regarded as fixed. As a result of rotation of the TRF about
the ORF the strain rate tensor is transformed as follows

B(t) = RTBeig(t)R(t). (4.1)

Here, R(t) is the time-dependent matrix of the TRF rotation about the ORF and B(t) is the same
vector that enters into Eq. (1.2). Generally, it is known that the matrix R(t) can be determined from the
following differential matrix equation [32]

dR

dt
= R(t) ·O(t). (4.2)

Here, O(t) is the antisymmetric matrix of the angular velocities of the TRF rotation about the ORF

O(t) =

⎛
⎜⎜⎜⎝

0 −o3(t) o2(t)

o3(t) 0 −o1(t)

−o2(t) o1(t) 0

⎞
⎟⎟⎟⎠ .

Since at zero moment the TRF and ORF coincide, the passage matrix R(0) is the unit matrix, we
have

R(0) = E. (4.3)

We will assume that the components of O(t) are delta-correlated, Gaussian, and independent

〈oi(t)oj(t′)〉o(τ) = Ωδijδ(t− t′). (4.4)

In Eq. (4.4) the averaging is made over realizations of the three-dimensional random-process
vector o(τ) = (o1(τ), o2(τ), o3(τ)). Substituting Eq. (3.4) into Eq. (4.1) we can obtain the following
decomposition of the strain rate tensor into two terms

bij(t) = b0ij(t) + bijo(t).

Here, the following designations are introduced

b0ij(t) = λ(n)(0)rin(t)rjn(t), bijo(t) = λ(n)o
(0)rin(t)rjn(t). (4.5)

The tensor index in the parentheses means that the summation is over it, together with the indices
which are not contained in parentheses, for example

b0ij(t) = λ(n)(0)rin(t)rjn(t) = λ1(0)ri1(t)rj1(t) + λ2(0)ri2(t)rj2(t) + λ3(0)ri3(t)rj3(t).

The averaging must be made both over the initial conditions λ(0) and over the random processes
λo(t) and o(t), which represent the same process. This means that conditions (3.5) and (4.4) must be
supplemented with the pairwise cross-correlations. For the sake of simplicity we may assume that λo(t)
and o(t) are independent

〈λio(t)oj(t
′)〉λ(τ),o(τ) = 0. (4.6)

In what follows the set of conditions (3.5), (4.4), and (4.6) will be named the Gaussian, delta-
correlated model of the strain rate tensor.

FLUID DYNAMICS Vol. 53 No. 4 2018



492 ZYBIN, KOPYEV

5. DECAY OF THE AVERAGED TENSOR IN THE BASIS
OF THE ORIGINAL EIGENVECTORS

In Sections 3 and 4 we formulated the Gaussian delta-correlated model of the strain rate tensor. To
apply it to the stochastic equation (1.2) it is necessary to find the mathematical expectation and the
pairwise correlation of the strain rate tensor. In this section we will find the mathematical expectation
〈bij(t)〉λ(τ),o(τ) = 〈bij(t)〉proc (for the sake of brevity the averaging over a process is denoted by the
subscript proc).

Since

〈bijo(t)〉proc = 〈λ(n)o
(t)rin(t)rjn(t)〉proc = 〈λ(n)o

(t)〉λ(τ)〈rin(t)rjn(t)〉o(t) = 0,

the unknown parameters can be simplified

〈bij(t)〉proc = λ(n)(0)〈rin(t)rjn(t)〉λ(τ).

To determine them the distribution function of the rotation matrix can be introduced

f(R, t) = 〈δ(R −R(t))〉o(τ).

Using Eqs. (4.2) with the initial conditions (4.3) we obtain the following equation with the initial
conditions for the function f(R, t)

∂f

∂t
= Ω

(
rpm

∂

∂rpl
rkm

∂

∂rkl
f − rpl

∂

∂rpm
rkm

∂

∂rkl
f

)
, (5.1)

f(R, 0) = δ(R −E). (5.2)

Given the distribution function, the unknown correlator can be calculated as an integral over the
nine-dimensional space

λ(n)(0)〈rin(t)rjn(t)〉ω(τ) = λ(n)(0)

∫
rinrjnf(R, t) dR.

Here, dR = dr11 dr12 . . . dr33 is the nine-dimensional differential. We will multiply the right and
left sides of Eq. (5.1) and the initial condition (5.2) by λ(n)rinrjn and integrate the expressions thus
obtained with respect to dR. As a result of this integration, we arrive at the system of ordinary differential
equations

λ(n)(0)
d

dt
〈rin(t)rjn(t)〉o(τ) = 2Ω(λ(t)(0)− λ(n)(0))δll〈rin(t)rjn(t)〉o(τ),

λ(n)(0)〈rin(t)rjn(t)〉o(τ) = λ(n)(0)δinδjn.

The flow incompressibility condition, together with Eq. (4.5), make it possible to bring this equation
into the form:

d

dt
〈b0ij(t)〉proc = −6Ω〈b0ij(t)〉proc,

〈b0ij(t)〉proc =

⎛
⎜⎜⎜⎝
λ1(0) 0 0

0 λ2(0) 0

0 0 λ3(0)

⎞
⎟⎟⎟⎠ .

This is a linear equation, whose solution is given by the formula

〈bij(t)〉proc =

⎛
⎜⎜⎜⎝
λ1(0) exp(−6Ωt) 0 0

0 λ2(0) exp(−6Ωt) 0

0 0 λ3(0) exp(−6Ωt)

⎞
⎟⎟⎟⎠ . (5.3)
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Thus, in the Gaussian delta-correlated model the diagonal components associated with the dis-
tinguishness of the originally chosen basis decay with time. We note that, firstly, despite the delta-
correlation of the control processes, the inertial exponential decay of the diagonal components of the
tensor is observable. Secondly, the role of incompressibility in the universality of this process is very
important. In fact, in the case of the unit tensor (obviously, with a nonzero trace), which remains the
same in all reference frames, none decay of diagonal components can be observable.

6. ISOTROPIZATION OF THE CORRELATION TENSOR IN THE BASIS
OF THE ORIGINAL EIGENVECTORS

We will consider the pairwise correlator of the strain rate tensor

〈(bij(t)− 〈bij(t)〉proc)(bij(t′)− 〈bij(t′)〉proc)〉proc.

To determine it requires the distribution function dependent on two moments of time

f(R,R′, t, t′) = 〈δ(R −R(t))δ(R′ −R(t′))〉o(τ).

However, in the Gaussian delta-correlated model the distribution function f(R, t) is also sufficient to
determine this correlator. Omitting some simple transformations we obtain

〈(bij(t)− 〈bij(t)〉proc)(bkl(t′)− 〈bkl(t′)〉proc)〉proc
= 〈λ(n)o

(t)λ(m)o
(t′)〉λ(t)〈rin(t)rjn(t)rkm(t′)rlm(t′)〉o(τ).

Then for the transformed pairwise correlator we obtain

〈λ(n)o
(t)λ(m)o

(t′)〉λ(τ)〈rin(t)rjn(t)rkm(t′)rlm(t′)〉o(τ)
= δ(t− t′)Λ(m)(n)〈rin(t)rjn(t)rkm(t′)rlm(t′)〉o(τ) = δ(t − t′)Λ(m)(n)〈rin(t)rjn(t)rkm(t)rlm(t)〉o(τ)

= δ(t− t′)Λ(m)(n)

∫
rinrjnrkmrlmf(R, t) dR.

This means that the pairwise correlator depends only on the one-moment distribution function
f(R, t). The last expression can be transformed using the particular form of the correlation tensor Λmn

from Eq. (3.5)

〈bijo(t)bklo(t
′)〉proc = Λδ(t− t′)

(
3

2
〈nn(n)(n)〉(t)− 1

2
δijδkl

)
. (6.1)

Here, for the sake of convenience, the following designation is introduced

〈rip(t)rjq(t)rkr(t)rls(t)〉o(τ) = 〈pqrs〉(t).

Thus, now it is necessary to find the correlator 〈nn(n)(n)〉. Multiplying the right and left sides of
Eqs. (5.1) and (5.2) by rinrjnrk(n)rl(n) and integrating with respect to dR we obtain the linear equation
and the boundary condition

d

dt
〈nn(n)(n)〉 = −20〈nn(n)(n)〉(t) + 4(δikδjl + δilδjk + δijδkl),

〈nn(n)(n)〉(0) = δijδklδ(i)(k).

The solution of this equation is given by the formula

〈nn(n)(n)〉(t) = δijδklδ(i)(k) exp(−20Ωt) +
1

5
(δikδjl + δilδjk + δijδkl)(1 − exp(−20Ωt)).

Substituting this expression in Eq. (6.1) we can obtain the expression for the pairwise correlation

〈bijo(t)bklo(t
′)〉proc = Λ

(
3

2
δijδklδ(i)(k) exp(−20Ωt)

+
3

10
(δikδjl + δilδjk + δijδkl)(1− exp(−20Ωt))− 1

2
δijδkl

)
δ(t − t′). (6.2)
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After a long time this expression goes over into expression (2.3) for the isotropic tensor

〈bijo(t)bklo(t)〉proc
t→∞−→ 〈bij(t)bkl(t)〉proc

t→∞−→ 3

10
Λ

(
(δikδjl + δilδjk −

2

3
δijδkl

)
δ(t− t′).

For constant D from Eq. (2.3) we obtain

D =
3

10
Λ. (6.3)

The results obtained, together with expression (5.3) for the decay of the mathematical expectations
means the consistency of the Gaussian model of the strain rate tensor devised in Sections 3 and 4 and
the isotropic Gaussian model of Section 2 applicable for considering the effect only at large times.

For small times the inertial exponential decay of the pairwise correlation at the delta-correlation of
control processes means that the inertia forces associated with rotation of the reference frame of the
tensor eigenvalues do not introduce corrections in the first-order time expansion of the correlators α2

t ,
β2
t , and γ2t , which will be used in the next section in deriving the expression for the pirouette effect in the

model constructed.

7. LINEAR ASYMPTOTICS OF THE CORRELATORS α2
t , β2

t , AND γ2t AT SMALL TIMES

Now, with expressions (5.3) and (6.2), we can make an analysis of the pirouette effect observable
at small times. In the t → 0 limit expressions (5.3) and (6.2) give the mathematical expectation and
pairwise correlations of the strain rate tensor in the basis of its eigenvectors

〈bij(t)〉proc =

⎛
⎜⎜⎜⎝
λ1(0) 0 0

0 λ2(0) 0

0 0 λ3(0)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
λ1 0 0

0 λ2 0

0 0 λ3

⎞
⎟⎟⎟⎠ ,

〈bijo(t)bklo(t)〉proc = Λ

(
3

2
δijδklδ(i)(k) −

1

2
δijδkl

)
δ(t− t′) = Dijklδ(t− t′). (7.1)

Applying the Furutsu–Novikov formula to Eq. (1.2) we can obtain the following second-order
equation for the vorticity distribution function f(t, ω)

∂

∂t
f = −λ(i)

∂

∂ωi
ωif +Dijkl

∂

∂ωi
ωj

∂

∂ωk
ωlf. (7.2)

We will determine the Green function for Eq. (7.2)

∂

∂t
G = −λ(i)

∂

∂ωi
ωiG+Dijkl

∂

∂ωi
ωj

∂

∂ωk
ωlG, (7.3)

G(0,ω −ω0) = δ(ω − ω0). (7.4)

Given the Green function G(t,ω − ω0) and the initial distributions of the eigenvalues and vorticity,
we can find the unknown correlators α2

t , β2
t , and γ2t . For example, for the correlator α2

t we have

α2
t =

∫
R7

ω2
1

ω2
1 + ω2

2 + ω2
3

G(t,ω − ω0) · f0(ω0) · f12(λ1, λ2) dη2 dη3 dω0 dλ1 dλ2, (7.5)

where f0(ω) = f(0,ω) is the initial distribution function, whose expression will be obtained in Sect. 8,
and G(t,ω−ω0) is the Green function. It also depends on the parameters λ1 and λ2. In Eq. (7.3) we can
make the change of variables, which will make it linear and lead it to the so-called canonical form [26]:

η1 =
1√
3
(exp(ω1) + exp(ω2) + exp(ω3)),

η2 =
1√
2
(exp(ω1)− exp(ω3)),
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η3 =
1√
6
(− exp(ω1) + 2 exp(ω2)− exp(ω3)). (7.6)

As a result of this change5) we obtain the following equation

∂G

∂t
=

√
2

2
(λ3 − λ1)

∂G

∂η2
− 3√

6
λ2

∂G

∂η3
+

3

2
Λ

(
∂2G

∂η22
+

∂2G

∂η23

)
. (7.7)

We note that Eq. (7.7) does not include η1. After change (7.6) the initial condition (7.4) can be
rewritten, in view of the properties of the delta function [27], as follows:

G(0,η − η0) = exp(−
√
3η01)δ(η − η0). (7.8)

Here, η0 represents the initial conditions for η. They are obtained by substituting ω0 into Eq. (7.6).
Equation (7.7) with the initial condition (7.8) is solved using the Fourier transformation

G(t,η − η0) =
exp(−

√
3η01)

6πΛt
δ(η1 − η01) exp

(
−(2(η2 − η02)−

√
2(λ1 − λ3)t)

2

24λt

)

× exp

(
−
√
6(η1 − η03)− 3λ3t)

2

36Λt

)
.

Making the change of variables (7.6) in integral (7.5) and substituting in it the expression obtained
for the Green function, after some simple transformations we obtain

α2
t =

∫
R7

(ω0
1)

2 exp(
√
2η2)

(ω0
1)

2 exp(
√
2η2) + (ω0

2)
2 exp(

√
6η3) + (ω0

3)
2 exp(−

√
2η2)

f0(ω0)f12(λ1, λ2)

× exp

(
−(2η2 −

√
2(2λ1 + λ2)t)

2

24Λt

)
exp

(
−(2η3 −

√
6λ2t)

2

24Λt

)
dη2 dη3 dω0 dλ1 dλ2.

In order to obtain the asymptotics of the last integral near t = 0 we will make in it one more
substitution

ζ2 =
2η2 −

√
2(λ1 − λ3)t

2
√
Λt

, ζ3 =
2η3 −

√
6λ2t

2
√
Λt

.

As a result, we obtain

α2
t =

∫
R2

∫
R3

Ω−1
1 Ω2 exp

(
−ζ22 + ζ23

6

)
f0(ω0)f12(λ1, λ2) dζ2 dζ3 dω0 dλ1 dλ2,

Ω1 ≡ (ω0
1)

2 exp(
√
2Λtζ2 + 2λ1t) + (ω0

2)
2 exp(

√
6Λtζ3 + 2λ2t)

+ (ω0
3)

2 exp(−
√
2Λtζ2 + 2λ3t),

Ω2 ≡ (ω0
1)

2 exp(
√
2Λtζ2 + 2λ1t).

In this expression the fraction Ω2/Ω1 can be expanded into the Taylor series in the vicinity of t = 06).
In view of the fact that this expression is rather cumbersome, we will not present its particular form and
restrict ourselves to its general form:

Ω2/Ω1 ≈ A0(ω0/|ω0|) + a1(ω0/|ω0|, λ,Λ, ζ)
√
t+A1(ω0/|ω0|, λ,Λ, ζ)t+O(t3/2). (7.9)

5)Generally, this change is valid only in the spatial sector {ω1 ≥ 0;ω2 ≥ 0;ω3 ≥ 0}. However, in view of the oddness
(invariance with respect to the change ω1 for −ω1) and self-similarity (invariance with respect to the change ω1 for αω1)
of expression (7.5) for the correlator α2

t and the similar expressions for the correlators β2
t and γ2

t , the integration can be
performed only within this sector.

6)Rigorously speaking, it makes sense to expand the integrands only up to the first order, since to take account for the
quadratic corrections requires the solution of an equation with the full correlation tensor from Eq. (6.2).
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Here, the functions A0(ω0/|ω0|), a1(ω0/|ω0|, λ,Λ, ζ), and A1(ω0/|ω0|, λ,Λ, ζ) represent polynomi-
als with respect to all their arguments. It can be readily shown that in the polynomial a1 either the power
of ζ1 or the power of ζ2 is odd. This means that after the integration with respect to ζ the result will
contain only integer powers of t. For the sake of convenience we introduce the following designation for
the averaging over the initial directions ω(t)

〈H(ω)〉0 =

∫
R3

H(ω0)f0(ω0) dω0.

Making in Eq. (7.9) the final averaging over the initial conditions λ(t) and using Eq. (3.2) we obtain

α2
t =

〈
ω2
1

ω2

〉
0

+ 2λt

(〈
ω2
1ω

2
2

ω4

〉
0

+ 2

〈
ω2
1ω

2
3

ω4

〉
0

)

+ 12Λt

(〈
ω2
1ω

4
2

ω6

〉
0

−
〈
ω4
1ω

2
2

ω6

〉
0

−
〈
ω4
1ω

2
3

ω6

〉
0

+

〈
ω2
1ω

4
3

ω6

〉
0

)
+O(t2). (7.10)

Similar expressions can be obtained for the correlators β2
t and γ2t . The meaning of the coefficients

of λt and Λt can be conveniently illustrated assuming that the initial vorticity function is isotropic. In
this case, all coefficients of quantity Λt are zero. For the expressions α2

t , β2
t , and γ2t the coefficients

of the product λt are 8/15, 0, and −8/15, respectively. Thus, clearly that the term with Λt tries to
return the system to the isotropic regime (and for this reason it does not work in the case of the isotopic
distribution), while the term with λt reflects the property (3.1) of the special choice of the eigenvalues.

8. AVERAGING OVER INITIAL DIRECTIONS OF VORTICITY

In order to end averaging (7.10) it is necessary to know the initial vorticity distribution function
f0(ω) = f(0, ω). Without going into the nonlinear reasons of the anisotropy of the vorticity direction
distribution in the basis of eigenvectors [31], we will assume it to be a certain arbitrary ellipsoidal
distribution

f0(ω) = fω0

(
ω2
1

α2
+

ω2
2

β2
+

ω2
3

γ2

)
, (8.1)

α2 + β2 + γ2 = 1.

The initial correlator values α2
0, β2

0 , and γ20 determined from experiments and numerical calculations
make it possible to determine the parameters of the distributions α2, β2, and γ2 without defining
concretely the function fω0 . In fact, let us write the system of equations relating the initial correlator
values with the unknown parameters

α2
0 =

〈
ω2
1

ω2

〉
0

=

∫
R3

ω2
1

ω2
fω0

(
ω2
1

α2
+

ω2
2

β2
+

ω2
3

γ2

)
dω,

β2
0 =

〈
ω2
2

ω2

〉
0

=

∫
R3

ω2
2

ω2
fω0

(
ω2
1

α2
+

ω2
2

β2
+

ω2
3

γ2

)
dω,

γ20 =

〈
ω2
3

ω2

〉
0

=

∫
R3

ω2
3

ω2
fω0

(
ω2
1

α2
+

ω2
2

β2
+

ω2
3

γ2

)
dω.

To take these integrals we can make the change transforming the ellipsoidal distribution into the
isotropic one and to pass to the spherical coordinate system

ω1 = αx, ω2 = βy, ω3 = γz,

x = r cosφ
√

1− μ2, y = r sinφ
√

1− μ2, z = rμ.

FLUID DYNAMICS Vol. 53 No. 4 2018



ON THE MODEL OF GENERATION 497

Then the distribution normalization condition can be written as follows:

4π · αβγ
∞∫
0

fω0(r)r
2 dr = 1.

For this reason, the independence of the averaged quantity of the variable r makes it possible to
express α2

0, β2
0 , and γ20 for any distribution fω0 in terms of the elliptic functions

F = F

(
arccos

γ

β
,

√
β2(α2 − γ2)

α2(β2 − γ2)
,

)
, E = E

(
arccos

γ

β
,

√
β2(α2 − γ2)

α2(β2 − γ2)
,

)
,

α2
0 =

α2

α2 − β2

(
1 +

γ2(β2 − α2)F − α2(β2 − γ2)E

α
√

β2 − γ2(α2 − γ2)

)
, (8.2)

β2
0 =

β2

β2 − γ2

(
β2 − γ2

β2 − α2
− α

√
β2 − γ2

β2 − α2
E

)
,

γ20 =
γ2

γ2 − α2

α√
β2 − γ2

(E − F ).

The solution of system (8.2) cannot be written in terms of elementary functions but an approximate
solution of the system can be readily calculated for any particular initial conditions. For example, let us
take the initial conditions from [2, 4]

α2
0 = 0.350, β2

0 = 0.385, γ20 = 0.265. (8.3)

Then we obtain the following values of the distribution parameters

α2 = 0.355, β2 = 0.42, γ2 = 0.225. (8.4)

Thus, determining in any particular case the values of the distribution parameters (8.1) we can obtain
the numerical values of the coefficients of λt and Λt in expansion (7.10).

9. COMPARISON WITH THE EXPERIMENT

Thus, making all necessary averagings, instead of Eq. (7.10) we obtain the following expression for
α2
t and the analogous expressions for β2

t , and γ2t

α2
t ≈ 0.350 + 0.385λt − 0.025Λt, (9.1)

β2
t ≈ 0.385 − 0.030λt − 0.085Λt,

γ2t ≈ 0.265 − 0.355λt + 0.110Λt.

Here, λ = 3
√

3/10π(ε/r20)
1/3 (cf. Eqs. (3.2) and (3.3)) and Λ is a parameter-to fit of the same order.

Clearly that the parameter values obtained ensure both the growth of α2
t (pirouette effect [17]), and

the permanent slow decay of the correlator β2
t observable also in the experiment and the numerical

calculations [4], and the linear decrease in γ2t (see [18]). The correlation coefficient Λ has almost no
effect on the growth of α2

t . Thus, Eq. (9.1) for α2
t can be quantitatively verified from experimental data.

Using the time scale t0 = (r20/ε)
1/3 we obtain the universal growth of the correlator α2

t observable in [17]

α2
t = 0.350 + 0.36

t

t0
.

Within the framework of the model constructed one more phenomenon numerically revealed in [18]
can be explained. It turns out that if a tetrahedron accompanies a fluid particle retaining its shape, then
neither characteristic behavior of the vorticity can be observable. In fact, in this case the fluid particle
gradually “flows out” of the tetrahedron and is replaced by another fluid. The extensible intensifying
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vortex worm also partially comes out from the fluid particle and, for this reason, the worm length l in the
tetrahedron remains constant. Thus, from the Helmholtz theorem we obtain

ω · Sω · l = const,

where ω is the vorticity within the vortex worm and Sω is its cross-sectional area. As noted in Sect. 1,
in the model constructed precisely this quantity is associated with the large-scale vorticity of the
tetrahedron.

SUMMARY

The linear stochastic model of the dynamics of fluid particles from the inertial range is formulated. In
this model, the large-scale strain rate tensor is the external source of the large-scale vorticity dynamics.
Using this model the behavior of the vorticity direction in the Lagrangian reference scale is analytically
investigated in the delta-correlated Gaussian approximation. The results of the analysis performed are
in quantitative agreement with experimental and numerical results: at large times the vorticity direction
exponentially rapidly becomes isotropic (2.4) with respect to the originally chosen direction, while at
small times the vorticity is equalized (9.1) with the stretching vector (pirouette effect). The initial non-
isotropicity of the vorticity direction with respect to the eigenvectors of the strain rate tensor is taken into
account in the form of the initial conditions in the linear problem.

The importance of the results is in the fact itself of the applicability of the linear stochastic model in
the fundamentally nonlinear turbulence process. It is shown that the linear processes play, possibly, the
main role at the initial stage of the formation of intense large-scale structures in small-scale turbulence.

The results obtained in the study require in the future taking account for non-Gaussian effects of
statistical irreversibility and intermittence in turbulent flows.

The authors wish to thank A.N. Osiptsov and S.A. Chernyshev for discussion of the results of this
study. The study was performed in Central Aerohydrodynamic Institute (TsAGI) with the support of
Russian Science Foundation (project No.17-11-01271).
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