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Abstract—The liquid viscous film falling down a vertical wall with sinusoidal relief is considered.
The linear stability of steady-state flow with respect to time-periodic disturbances is studied using
the Floquet theory. It is shown that in the case of applying corrugations the variation in the
disturbance growth rate is proportional to the second power of their undulations. Depending on
the relief parameters there exist two possibilities: the instability domain can expand or certain
disturbances can be stabilized. The growth rates are obtained numerically and analytically in the
approximation of low-amplitude corrugations. The development of waves from small disturbances
is simulated within the framework of nonlinear equations and the formation of structures whose
wavelength is significantly greater than the space relief period is found out.
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The viscous liquid film flow subject to the gravity force on the surface with a microrelief is actively
investigated in connection with many applications [1], being an example of the problem of interaction of
the natural hydrodynamic instability with an external periodic impact.

In [2] the system of equations describing nonlinear viscous liquid film flow over a microrelief on an
inclined plane was derived. The characteristic streamwise dimension of the corrugations was assumed
to be much more than the film thickness and their amplitude be comparable with the latter. The basic
idea used in derivation and formulated in [3] consists in the fact that the viscous friction forces ensure
the parabolic shape of the streamwise velocity profile in each of the transverse cross-sections. The flow
is described by two functions of the streamwise coordinate and time, namely, these are the film thickness
h and the local flow rate q, and the equations describe the evolution of these quantities.

In [2] steady-state film flow over a localized and periodic relief was considered. It was shown that
the presence of the periodic relied leads to decrease in the fluid flow rate when the mean film thickness
is fixed and for the low relief amplitude approximate analytical solutions were obtained. In [4] the more
detailed analysis of steady-state flow was given in the framework of the same approach. In [5] other
steady-state solutions were found under the assumption that the free-surface period is only multiple to
the corrugation period but does not need to coincide with the latter. The solutions obtained exist only for
fairly high amplitudes of the relief.

In [6] the problem of stability of steady-state non-Newtonian liquid flow considered in [2, 4] was
formulated. This analysis seems to be quite labor-intensive since it contains five dimensionless param-
eters, namely, the corrugation amplitude and period divided by the film thickness and the characteristic
wavelength in the falling film, the slope of the incline, the Reynolds number, and the power in the
viscosity law indicating the non-Newtonian properties of the medium. Most attention was concentrated
on the dependence of the form of the neutral curve separating the stability and instability domains in the
disturbance frequency–Reynolds number plane and the determination of the critical Reynolds number
for flow over the inclined plane [4]. It was shown that the film can be stabilized with respect to the
low-frequency disturbances for a relatively high corrugation amplitude (up to 40% of the mean film
thickness), the instability domain becoming multiply connected and isolated domains called “instability
islands” by the authors can develop.
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The film flow stabilization due to periodic corrugations on the sustaining surface was noted in [7]
in which the Newtonian liquid on a vertical surface with sinusoidal corrugations was considered. The
corrugation parameters were analyzed for several sets of the flow parameters (the properties of liquid and
the flow rate). Surfaces which stabilize flows with respect to any small disturbances were found. All
the surfaces corresponded to the corrugation amplitude in tens of percents of the film thickness. The
fact that the critical Reynolds number increases in the presence of small corrugations was demonstrated
experimentally in [8].

The experiments [9] demonstrated the mechanism of flow stabilization characteristic of the high-
amplitude corrugations. If the hollows between the most prominent points on the surface are fairly sharp
and deep, they begin to serve as cavities inside which vortices develop. The streamline passing near the
rigid surface in the neighborhood of the maximum undulation does not follow it in the hollow but passes
above the vortex. Thus, the assumption on the local parabolic profile is not satisfied and the approach
developed in [2–7] cannot be applied. In [10] the stability of flow was analyzed within the framework of
the linearized Navier–Stokes equations and the results [9] were confirmed by calculations. In [11] the
detailed experimental investigation of the linear stability of a film on the inclined plane was outlined.

The effect of the relief on weakly nonlinear waves [12] was considered in [5]. In [13] the solutions of the
full Navier–Stokes equations of the type of steady-state waves were obtained. In [14] the development
of nonlinear waves was investigated experimentally.

In the present study a particular case of the problem considered in [2, 7] is investigated, namely, falling
Newtonian liquid over a vertical wall with sinusoidal corrugations. The stability of flow is investigated
in detail for a low corrugation amplitude. The steady-state solution has a fairly simple form and the
influence of corrugations can be analytically described. The results of the linear analysis of stability are
verified by solving the nonlinear time-dependent equations numerically.

1. FORMULATION OF THE PROBLEM

Let a layer of Newtonian liquid of a density ρ and a viscosity μ = νρ flow down along the vertical plane
with a periodic sinusoidal relief subject to the gravity force. The Ox∗ axis of the Cartesian coordinate
system is directed downwards and located so that the mean surface deviation from the axis is equal
to zero, the Oy∗ axis is horizontal and directed towards the liquid, and the Oz∗ axis supplements the
reference frame to the right-handed coordinate system. The rigid surface is described by the equation
y∗ = h∗0(x

∗) and the free surface on which the surface tension with a coefficient σ acts is described by
the equation y∗ = h∗1(t

∗, x∗), where t∗ is time. The asterisk denotes the dimensional quantities.
Let the thickness of the film falling down the smooth plane with a given flow rate be the scale of the

transverse coordinate while the scale of the streamwise coordinate be greater by ε−1 times (quantity
ε � 1 will be defined below). Assuming that in each of the cross-sections the streamwise velocity profile
represents a parabola, integration of the Navier–Stokes equations across the layer leads to the following
system of equations if the terms of the order of ε2 and εRe−1 are assumed to be small (detailed derivation
is given in [2])

ht + qx = 0,

qt +
6

5

(
q2

h

)
x

=
1

5δ

(
hhxxx −

q

h2
+ h

)
+

h

5δ
h0xxx. (1.1)

Here, h(t, x) = h1(t, x) − h0(x) is the film thickness and q is the local flow rate. The dimensionless
parameter δ can be determined from the condition [15] which means that the viscous, gravitational, and
capillary forces are of the same order

ε2

We
=

3

εRe
=

1

5δ
, We =

ρU2H

σ
, Re =

UH

ν
. (1.2)

The characteristic velocity U and the film thickness H are connected by the relations following from
the fact that the flow rate is fixed UH = Q∗ and the steady-state flow on the plane wall is described by
the Nusselt solution: U = gH2/(3ν) (g is the gravity acceleration). The parameter ε can be determined
from the relation ε2/We = 3/(εRe) which follows from (1.2). At large values of the Kapitsa number

γ = σ
(
ρ3gν4

)−1/3 (for water at room temperature γ ≈ 3300) the conditions ε2 and εRe−1 � 1 adopted
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in deriving (1.1) are fulfilled. A generalization of Eqs. (1.1) to include the case of small values of γ by
taking into account the terms of the order of ε2 is given in [16].

Let h0(x) = a cosαx. When a � 1 the approximate steady-state solution of (1.1) takes the form

hs = 1 + h(0) + h(1)eiαx + h(1)e−iαx [2] (bar denotes complex conjugate):

h(1) =
i

2

α3

3− iα(α2 − 6δ)
a+O(a3), h(0) = 4|h(1)|2 +O(a4). (1.3)

In the case of finite corrugation amplitude the shape of the free surface can be determined as the result
of numerical solution of a system of algebraic equations with respect to the expansion coefficients of the
unknown function in the Fourier series

hs = 1 +

N∑
k=−N

h(k) exp(ikαx), h(−k) = h(k).

As a → 0, the terms h(±k) exp(±ikαx), k �= 0 have the order O(ak) and h(0) = O(a2).
When δ = 0.2 and a = 0.2 the numerical solution differs from the approximate analytical solu-

tion (1.3) by no more than 4% for all α. A detailed analysis of the steady-state solution is given in [4].
In what follows, we will consider both the spatial development of small disturbances of the steady-

state solution and the time-periodic solutions of (1.1).

2. LINEAR STABILITY ANALYSIS

Let
h(t, x) = hs(x) + hd(t, x), q(t, x) = 1 + qd(t, x), hd, qd � 1.

Linearization of (1.1) gives the following equations with respect to small disturbances (subscript d is
omitted)

ht + qx = 0,

qt +
6

5

[
2
qx
hs

− hx
h2s

hx − 2
h′s
h2s

q + 2
h′s
h3s

hx

]
=

1

5δ

[
h

(
6δ

hs

(
1

hs

)′
+

3

h3s

)
+ hxxxhs −

q

h2s

]
. (2.1)

The coefficients of this equation depend only on x; therefore, in order to determine the stability of flow
it is sufficient to consider the spatial development of time-periodic disturbances. Let

q = Q1(x)e
−iωt, h = H1e

−iωt, ω = const. (2.2)

For Q1 we obtain the following ordinary differential equation with periodic coefficients (subscript 1 is
omitted):

QIV = −6δ

h3s
Q′′ +

1

h4s

[
18δh′s − 3 + i12δωh2s

]
Q′ +

1

h3s

[
5δω2h2s + iω

(
1− 12δh′s

)]
Q. (2.3)

In [4, 7] similar equations were obtained; however, the parameter δ was not used and the spatial
corrugation period was taken as the length scale. This complicates comparison of the results of the film
stability analysis on the sinusoidal and plane walls.

In what follows, we will give the main results of solving the problem of stability of the film falling down
the vertical wall. Such a solution is unstable to longwave disturbances at any Reynolds numbers [3, 15].
Under the assumption of long waves [17] the solution of the Orr–Sommerfeld equation gives the
expression βn =

√
18δ for the wavenumber β of neutral disturbances. Linearization of Eqs. (2.1) for

integral characteristics leads to the similar expression βn =
√
15δ. Both methods predict the same

phase velocity of neutral disturbances cn = 3. Despite of the difference in the coefficients, the equations
for integral characteristics adequately reproduce the form of the neutral curve and fairly exactly predict
the nonlinear wave parameters [18]. In [19] it was shown that outside a small vicinity of the corner point
on the neutral curve, in which the waves are not of practical interest as a result of small amplitudes,
small growth rates, and considerable instability, the neutral curves [3] agree in the most extent with the
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Roots of the characteristic equations and parameters of time-periodic disturbances

β ω c I

0.618− 0.117i 1.5 2.42 0.117

0.312 + 1.44i 1.5 4.81 −1.44

−1.99− 0.336i 1.5 −0.754 0.336

1.06− 0.985i 1.5 1.42 0.985

0.618 1.483 + 0.250i 2.40 0.104

0.618 −0.19× 10−4 − 1.25i −0.30× 10−4 4.06× 104

corresponding curves of the exact Orr–Sommerfeld equation for the film on the vertical and inclined
surfaces.

The coefficients of Eq. (2.3) are constant when there are no corrugations. The solution has the form
Q(x) = Q0 exp(iβx), where β must satisfy the characteristic equation

−β4 + 6δβ2 − (12δω + 3i) β +
(
5δω2 + iω

)
= 0. (2.4)

The same equation describes disturbances with a fixed real wavenumber β and unknown parameter ω.
Relation (2.4) represents the forth-order equation with respect to β at a fixed ω or the quadratic equation
with respect to ω at a fixed β. The first approach simulates the spatial development of deviations from the
equilibrium state introduced periodically in time in a certain cross-section, while the second describes
the evolution of space-periodic disturbances introduced into the system at the initial instant. The real
pairs (β, ω) which satisfy Eq. (2.4) correspond to the neutral disturbances. The phase velocity and the
growth rate of the disturbances are connected with the solutions of Eq. (2.4) by the relations c = ω/βr ,
c = ωr/β and I = −βi, I = ωiβ/ωr for the two approaches, respectively; the subscripts r and i denote
the real and imaginary parts. In Table 1 we have reproduced the values of the roots of Eq. (2.4), the phase
velocities, and the growth rates for δ = 0.2 and ω = 1.5 (β = 0.618).

Within the framework of each approach, one of the branches of the solutions ω1 and β1 describes the
waves with the phase velocity close to 3 and a small absolute value of the growth rate. On this branch the
roots of Eq. (2.4) are close to the eigennumbers of the spectral problem for the Orr–Sommerfeld equation
with the maximum growth rate. In describing the space-periodic solutions, the second branch ω2

corresponds to disturbances attenuated with time and can have any sign depending on the parameters.
Thus, the equations (2.1) adequately describe the time evolution of space-periodic disturbances.

In addition to the root considered above, the equation (2.4) considered as an equation for β has still
three roots. In this case β2 has a positive phase velocity and a negative growth rate, i.e., describes the
damped disturbances, β3 has a negative phase velocity and a positive growth rate, and β4 has a positive
phase velocity and a large positive growth rate. Formally, the presence of the root β4 implies the definite
conclusion on the instability of flow. This contradicts to the experiments.

In order to resolve this contradiction we will investigate the boundary-value problem for Eq. (2.1)
on a fairly long interval x ∈ [0, L]. Let Q and Q′ be specified in the inlet cross-section x = 0 in the
form (2.2). This is equivalent to specifying the perturbations of the flow rate and the shape of the
free surface. In [21, 22], in considering nonlinear waves on a finite spatial interval, the following non-
reflecting boundary conditions are imposed in the outlet cross-section

∂q

∂t
= c

∂q

∂x
,

∂h

∂t
= c

∂h

∂x
,

where c is a certain positive constant. This can be reduced to the conditions with respect to Q

−iωQ = cQ′, −iωQ′ = cQ′′.

The coefficients C3 and C4 of the expansions of the solution of the above boundary-value problem
in terms of the linearly independent solutions Q = C1 exp(iβ1x) + C2 exp(iβ2x) + C3 exp(iβ3x) +
C4 exp(iβ4x) tend to zero as L → ∞ for all positive c. If c varies from 1 to 5 for a fixed fairly large L,
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then the constants C1 and C2 will vary within the limits of 10−3, C3 is of the order of 10−3, and C4 is of
the order of 10−40. The calculations were carried out at L = 50. Thus, in analyzing the stability of flow,
it is necessary to ignore the root of the characteristic equation with the negative imaginary part of large
absolute value and investigate the influence of corrugations on the roots β1 and β2.

If the rigid surface has corrugations then the function hs(x) differs from unity and the coefficients
(2.3) are periodic functions of x. In order to study the stability of the steady-state solution it
is necessary to find the Floquet multipliers μk, i.e., the eigenvalues of the operator which places
the vector of the initial conditions (Q(0), Q′(0), Q′′(0), Q′′′(0))T in correspondence with the vector
(Q(2π/α), Q′(2π/α), Q′′(2π/α), Q′′′(2π/α))T .

The Floquet multipliers are the eigenvalues of the monodromy matrix. Its components can be
found numerically by means of fourfold integration of Eq. (2.3) with various linearly independent initial
conditions. The growth rate is determined by the formula [20]

I = ln |μk|
α

2π
.

The flow is unstable if the multiplier for which the growth rate tends to −β1i, as the corrugation
amplitude tends to zero, lies outside the unit circle in the complex plane.

The value of the growth rate can be obtained approximately if a � 1. The steady-state solution takes
the form:

hs(x) = 1 + a
(
H(1)eiαx +H(1)e−iαx

)
+ a2(H(0) +H(2)ei2αx +H(2)e−i2αx) +O(a3),

H(1) =
i

2

α3

3− iα(α2 − 6δ)
, H(0) = 4H(1)H(1).

The expression for H(2) can be obtained from (1.1); however, it is not significant for the further
considerations.

Equation (2.3) can be expanded in powers of a

LQ =
(
L0 + aL1 + a2L2

)
Q = 0, (2.5)

where

L0 =
d4

dx4
+ 6δ

d2

dx2
+ (3− 12iδω)

d

dx
− (5δω2 + iω),

L1 = L+
1 + L−

1 ,

L2 = L0
2 + L+

2 + L−
2 ,

L+
1 =

(
A1

2

d2

dx2
+A1

1

d

dx
+A1

0

)
expiαx, L−

1 =

(
B1

2

d2

dx2
+B1

1

d

dx
+B1

0

)
exp−iαx,

L0
2 =

(
D2

d2

dx2
+D1

d

dx
+D0

)
, L+

2

(
A2

2

d2

dx2
+A2

1

d

dx
+A2

0

)
expi2αx,

L−
2 =

(
B2

2

d2

dx2
+B2

1

d

dx
+B2

0

)
exp−i2αx,

A1
2 = −18δH(1), B1

2 = −18δH(1),

A1
1 = (−12 + 24iωδ − 18iδα)H(1) , B1

1 = (−12 + 24iωδ + 18iδα)H(1) ,

A1
0 = (5δω2 − 12ωδα + 3iω)H(1), B1

0 = (5δω2 + 12ωδα + 3iω)H(1),

D2 = 0, D1 = (12 + 24iδω)H(1)H(1), D0 = 10δω2H(1)H(1).

The expressions for A2
n and B2

n are not significant. Let the general solution of (2.5) have the form
Q = Q0 + aQ1 + a2Q2. Substitution of such a solution in the equation with equating the multipliers of
the powers of a to zero gives

L0Q0 = 0,
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L0Q1 = −L1Q0,

L0Q2 = −L1Q1 − L2Q0. (2.6)

The general solution of the first equation is as follows:

Q0 =

4∑
j=1

Cje
iβjx,

where βj are the roots of the characteristic equation (2.4).

The second equation is inhomogeneous and there is an exponential polynomial with the exponents
i(β ± α) on its right-hand side. Since α is a real number and there is no pair with coinciding imaginary
part among the roots of (2.4), there is no resonance; consequently, the general solution of the second
equation has the form:

Q1 = Q0
1 +Q+

1 +Q−
1 ,

Q0
1 =

4∑
j=1

C1
j e

iβjx, Q+
1 = C1+

j ei(βj+α), Q−
1 = C1−

j ei(βj−α).

All the terms of the form Cje
iβjx are contained only in Q0 so that C1

j = 0 and

C1±
j = −Cj

L±
1 e

iβj

L0ei(βj±α)
.

If only one of the constants Cj is nonzero, then for all x

Q0(x+ 2π/α) + aQ1(x+ 2π/α) = (Q0(x) + aQ1(x)) exp

(
i
2πβj
α

)
,

consequently, the growth rates do not change in the first approximation in a.
On the right-hand side of the third of equations (2.6) there are terms with the exponents iβj ± 2α,

namely, −
(
L±
2 Q0 + L±

1 Q
±
1

)
, and with the exponents iβj which have the form −

(
L0
2Q0 + L±

1 Q
∓
1

)
. The

second group of the terms leads to resonance and the particular solution has the form:

Q2 =

4∑
j=1

C20
j xeiβjx + C2+

j ei(βj+2α)x + C2+
j ei(βj−2α)x,

C20
j = −Cj

[
L0

(
xeiβjx

)]−1
[
L0
2e

iβjx − L∓
1 e

iβjx

L0ei(βj∓α)x
L±
1 e

i(βj∓α)x

]
.

The expressions for C2±
j are not significant. Let only a single constant Cj be nonzero. Then we have⎛

⎜⎜⎜⎜⎜⎜⎝

Q(2πα )

Q′(2πα )

Q′′(2πα )

Q′′′(2πα )

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Q(0)

Q′(0)

Q′′(0)

Q′′′(0)

⎞
⎟⎟⎟⎟⎟⎟⎠

exp

(
i
2πβj
α

)
+ a2C20

j
2π

α

⎛
⎜⎜⎜⎜⎜⎜⎝

1

iβj

−β2
j

−iβ3
j

⎞
⎟⎟⎟⎟⎟⎟⎠

exp

(
i
2πβj
α

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Q(0)

Q′(0)

Q′′(0)

Q′′′(0)

⎞
⎟⎟⎟⎟⎟⎟⎠

exp

(
i
2πβj
α

)
+ a2

C20
j

Cj

2π

α

⎛
⎜⎜⎜⎜⎜⎜⎝

Q0(0)

Q′
0(0)

Q′′
0(0)

Q′′′
0 (0)

⎞
⎟⎟⎟⎟⎟⎟⎠

exp

(
i
2πβj
α

)
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

Q(0)

Q′(0)

Q′′(0)

Q′′′(0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(
1 + a2

C20
j

Cj

2π

α

)
exp

(
i
2πβj
α

)
+O(a3).

Thus, correct to the small terms of the third order, the Floquet multiplier takes the form:

μj =

(
1 + a2

C20
j

Cj

2π

α

)
ei

2πβj
α

and the growth rate is

I = −βji + a2

(
C20
j

Cj

)

r

+O(a3).

In Fig. 1 we have reproduced the graphes of the growth rate as a function of the relief wavenumber
at a fixed frequency of the inserted disturbances ω = 1.5 and ω = 4.5 for δ = 0.2. In the calculations
the relief amplitude a = 0.2. Both frequencies correspond to unstable disturbances on the flat wall with
the growth rates I = 0.116 and I = 0.01 respectively; the first quantity is close to the maximum possible
growth rate and the neutral disturbances have the frequency ωn = 3

√
3. The relief wavenumber is divided

by
√
15δ which corresponds to the wavenumber of the neutral disturbances on the flat wall. The growth

rate decreases sharply at some relief wavenumber and the absolute value of this change depends only
slightly on the disturbance frequency; therefore, the disturbances that have a small growth rate on the
flat wall are stabilized.

I

1
2

30.12

0.10

0.08

βr
βr

0.62

0.60

1.56

1.54
1 2 α/

I

0.02

0

–0.02

(а)

(c)

(b)

(d)

 15δ 1 2 α/ 15δ

Fig. 1. Disturbance growth rates (a, b) and wavenumbers (c, d) as functions of the normalized relief wavenumber.
Curve 1 corresponds to the numerical solution, curve 2 to the approximate analytical solution, and curve 3 to the
solution for the flat wall; a and c correspond to ω = 1.5 and b and d to ω = 4.5.
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0

0 5

1
2

3

4

I

5

0.1

ω

Fig. 2. Disturbance growth rate as a function of the frequency: curves 1–4 correspond to s = 1, 2, 2.5, and 3,
respectively, and curve 5 to the solution for the flat wall.

(а) (b)
ω ω
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5
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6

5

4

3

2

1
10
99
8

7
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4

Fig. 3. Neutral curves for various relief wavenumbers: curves 1–10 correspond to s = 0.5, 1, 1.5, 2.4, 2.5, 2.6, 2.7, 2.8,
2.9, and 3, respectively.

In Fig. 2 we have reproduced the graphes of the growth rate as a function of the the disturbance
frequency at a fixed amplitude for various relief wavenumbers. If the normalized relief wavenumber
s = α/

√
15δ is small then the relative deviation of the wavenumber of the appearing disturbances on the

wall with corrugations from the value on the flat wall is not greater than 10−2. Starting from a certain s,
which is close to 1, a frequency range appears such that for these frequencies the growth rate is smaller
than that on the flat wall. The resonance frequency at which the relief effect is strongest increases with
the wavenumber. This is appreciably manifested if s > 1, i.e., the waves, which have the same period
as the relief, damp on the flat wall. At the fixed disturbance frequency the relative perturbation of the
wavenumber is small.

Since the stabilization is possible at certain frequencies due to the interaction between the distur-
bances and the relief, the neutral curve has several components of connectivity in the plane (a, ω). For
small and large s the neutral frequency is almost independent of the corrugation amplitude.

If s is close to unity, the instability domain extends (curves 1–3 in Fig. 3,a). If the relief effect is
manifested in the strongest way for the disturbances with small growth rates and these disturbances
are stabilized, the second branch of the neutral curve appears in the plane (a, ω) over the high-
amplitude range (Fig. 3,b). As the corrugation wavenumber increases, the second branch displaces
towards increase in the frequencies and decrease in the amplitudes. After its intersection with the
first branch, the form of the instability domain changes: one branch of the neutral curve goes from the
point corresponding to the flat wall towards decrease in the frequency with increase in the amplitude, an
instability domain being present over the range of large amplitudes and high frequencies. As s increases,
the second instability domain leaves the amplitude range considered and again only a single branch of
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Fig. 4. Profiles of the low-frequency nonlinear waves: a corresponds to a = 0 and b–d to s = 1, 2, and 3, respectively;
curves 1 correspond to the free surface, curves 2 to the result of the linear stability theory, and curves 3 to the rigid
surface.

the neutral curve remains. This branch tends to the line ω = 3
√
15δ. This corresponds to the flat wall

(curves 8–10 in Fig. 3,a).

3. NONLINEAR WAVES

Let the film thickness h(t) and the flow rate q(t) be specified as periodic functions of time in the
cross-section x = 0. Since, generally speaking, these functions do not satisfy the boundary conditions
for the steady-state solution of (1.1), this means that some disturbances are introduced into the system
at a certain frequency. From the physical considerations it makes sense to search a solution bounded
as x → ∞. The boundary conditions of this type cannot be implemented in the calculations; therefore,
we will solve the problem on a finite, although fairly long, interval x ∈ [0;L] and will set “soft” boundary
conditions on the right boundary. These boundary conditions will not reflect the waves arriving at the
boundary. Following [21, 22], we will set them in the form:

∂q

∂t
= c

∂q

∂x
,

∂h

∂t
= c

∂h

∂x
,
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Fig. 5. Profiles of the high-frequency nonlinear waves: a corresponds to a = 0 and b–e to s = 1, 2, 2.5, and 3,
respectively; curve 1 correspond to the free surface, curves 2 to the result of the linear stability theory, and curves 3
to the rigid surface.

where c is a certain constant. As shown in the previous section, the solution of the linearized problem is
only slightly sensitive to variation in c, if c > 2 and L is fairly large.

Let a uniform grid with a step Δx be specified on a spatial segment and the finite-difference
approximations

fxxx(nΔx) =
fn+2 − 3fn+1 + 3fn − fn−1

Δx3
+O(Δx),

fx(nΔx) =
fn − fn−1

Δx
+O(Δx), fn = f(nΔx)

be used for the derivatives entering into (1.1).
The first-order scheme was taken since the use of central differences leads to the development of fast-

growing shortwave numerical perturbations. The derivatives with respect to time were approximated

FLUID DYNAMICS Vol. 53 No. 3 2018



382 MOGILEVSKII, SHKADOV

(а)

(b)

(c)

(d)

1
q−1

q−1

q−1

q−1

0.1

0.01

0.1

0.01

0.1

0.01

0.1

0.01
0 50 100 x

Fig. 6. Local maxima of the low-frequency nonlinear waves: a corresponds to a = 0 and b–d to s = 1, 2, and 3,
respectively; lines 1 correspond to the result of the linear stability theory.

using the purely implicit scheme for stability reasons. The time step Δt was taken constant. The
iteration method was used to solve the nonlinear algebraic equations, namely, for determining the
next approximation the coefficients of the linear differential operators were calculated from the previous
approximation.

The implicit-in-time scheme and the space approximation mentioned above introduce a small
damping to the system; however, in the case of the scheme parameters (Δt,Δx) ∼ 10−3 the growth
rates of small disturbances and the spatial period of the waves developed on the flat wall correspond to
the linear theory (2.4) with the absolute error not greater than 3 · 10−3.

The calculations were carried out with the initial conditions q(0, x) = 1 and h(0, x) = hs(x) and the
boundary conditions q(t, 0) = 1+ b cosωt and h(t, 0) = hs(0) for L = 290, ω = 1.5 and 4.5, and a = 0.2
for s = 0.5, 1, 1.5, 2, 2.5, and 3, as well was for a = 0. At small t a wave packet is formed. It contains
waves of various frequencies due to the fact that transition from the boundary conditions q = 1 and
h = hs to the nontrivial boundary conditions at t ≥ 0 is equivalent to addition of perturbations at various
frequencies. The periodic solution is formed after passage of the starting wave packet.

In Figs. 4 and 5 we have plotted the graphes of the functions q(x) at fairly large t = 3000π/ω for
various relief wavenumbers.

When ω = 1.5 the disturbance growth rate varies only slightly due to the relief effect. The nonlinear
waves represent the superposition of the solution corresponding to the flat wall and small waves close to
harmonic waves with the wavenumber equal to the relief wavenumber α.

In accordance with the results of the linear stability analysis, the perturbations at the frequency
ω = 4.5 are stable for s = 2.5. In this case, perturbation damping is also observed in calculating the
solution of the nonlinear equations. For other values of s the perturbations grow, the growth rate being
close to that obtained in the linear theory at low amplitudes. The difference between the growth rates
is of the order of 10−3 and can be attributable to the scheme viscosity. As the perturbations grow, the
growth rate decreases and the saturation occurs. In flow down the flat wall the frequencies ω = 4.5 form
waves with the normalized wavenumber s0 ≈ 0.91. Longwave structures are formed in flow down the
wall with the relief with s = 1, 2, and 3. In these structures the wave amplitude varies periodically only
slightly.

In Figs. 6 and 7 we have reproduced the wave amplitude in the logarithmic scale, namely, the quantity
ln(q − 1) has been plotted, the dotes correspond to the local maxima located above the mean level. The
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respectively; lines 1 correspond to the result of the linear stability theory.

broken curves show the result of the linear stability analysis and the mean amplitude of the steady-state
waves. For the latter the spatial wave period is equal to the period of small perturbations at the same
frequency. In accordance with the linear theory, for the amplitudes considered the relative change in this
quantity is small with variation in the corrugation parameters.

The results obtained are in qualitative agreement with the experimental data [14] and the calculations
of the full Navier–Stokes equations [13]. In the wave spectrum we can distinguish a wavenumber which
corresponds to the frequency of variation in the boundary conditions for the flat wall, a wavenumber of
the surface relief, and multiple wavenumbers, as well as the sums and differences of these wavenumbers,
the basic harmonics predominating.

SUMMARY

The sinusoidal relief deposited on the vertical wall down which the viscous liquid film flows changes
the wave parameters on the free surface. Using the Floquet theory, it is shown that the phase velocities
and the growth rates are changed by a value proportional to the second power of the relief amplitude. For
the corrections an approximate analytical solution which coincides well with the numerical calculations
is obtained.

The resonance between the flow disturbances and the periodic relief whose wavenumber is greater
than the wavenumber of neutral disturbances on the flat wall is revealed. Under the resonance the growth
rate decreases appreciably and weakly growing disturbances are stabilized and become damped.

Nonlinear waves are simulated. The appearing wave structures replicate locally the steady-state
waves on the flat wall; however, their amplitude varies slowly in the periodic manner.

The results obtained, in particular, the analytical expressions for the growth rates open the possibil-
ities for the further qualitative analysis of the system considered: using the similar method, flow down
the inclined plane with a microrelief can be studied and the detailed comparison with the results of the
calculations [13] and the experiments [11, 14] can be carried out.

The work was studied with financial support from the Russian Foundation for Basic Research (project
No. 15-01-05186) and the Council for Grants of the Russian Federation President (grant No. MK-
1798.2017.1).
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