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Abstract—The formulas for the heat fluxes of heavy components and electrons as well as the
Stefan–Maxwell relations for the diffusion fluxes in a magnetic field are derived for a multicomponent
two-temperature plasma with regard to the higher-order approximations in orthogonal expansions
of the component distribution functions in Sonine polynomials. For the complex transport coeffi-
cients of heavy components and electrons exact formulas are obtained in the significantly simpler
form as compared with the standard procedure of the Chapman–Enskog method with the minimum
number of minimum-order matrix inversions.
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In [1–6] the expressions for the mass and heat fluxes in the completely ionized and three-component
plasma in a magnetic field were obtained using the Chapman–Enskog method. For the multicomponent
plasma moving in a magnetic field the transport equations were derived mainly using the 13th-moment
Grad method [7–9]. In [10–19] the Chapman–Enskog method was used with these aims.

On the basis of systematic calculations of the transport coefficients [20–31] it was established that
for ionized gases it is necessary to take into account at least the third approximation in terms of
Sonine polynomials (ξ ≥ 3). This leads to inversion of Nξth-order matrixes, where N is the number
of components. Additional complexities related to the necessity of solving high-order systems of linear
algebraic equations for the complex transport coefficients arise in calculating the transport coefficients
for multicomponent ionized gases in a magnetic field by means of the Chapman–Enskog method.

1. FEATURES OF CALCULATIONS OF THE TRANSPORT COEFFICIENTS
FOR IONIZED GASES

In the literature there is a certain gap between the rigorous formulas of kinetic theory for diffusion and
heat fluxes and the level of description of transport processes in particular problems of computational
aerothermodynamics. In particular, the following classical expressions for the diffusion velocities Vi

are generally not used in practical calculations of flows of multicomponent reacting gas mixtures and
plasmas [32]
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Here, ni is the number of particles of the ith kind per unit volume, n is the total number of particles
in unit volume, mi is the mass of a particle of the ith kind, ρ is the mixture density, p is the pressure, T is
the temperature, and Xi is the external force.

Calculations of the multicomponent diffusion and thermodiffusion coefficients Dij and DT
i using

the formulas of kinetic theory for chemically nonequilibrium flows are fairly time-taking. For the
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multicomponent two-temperature plasma the formulas for the diffusion fluxes of heavy components
(molecules, atoms, and ions) become significantly more complex and take the form [12, 13]:

Ji =
n2

ρ

∑

j

mimj

(
D

‖
ijd

‖
j +D⊥

ijd
⊥
j +D∧

ijb× dj

)

−
(
D

Th‖∇‖
ih lnTh +DTh⊥∇⊥

ih lnTh +DTh∧
ih b×∇ lnTh

)

−
(
D

Te‖∇‖
ie lnTe +DTe⊥∇⊥

ie lnTe +DTe∧
ie b×∇ lnTe

)
,

dj =
1

nkTh
∇pj − cj

p

nkTh
∇ ln p+

1

kTh

(
cj

q

n
− nj

n
ej

)
E|, E| = E+ v ×B. (1.1)

Here, Th is the heavy particle temperature, Te is the electron temperature, pj is the partial pressure,
cj is the mass concentration, ej is the electric charge of particles of the jth component, q is the space
charge of the mixture, E is the electric field, b is the unit vector in the direction of the magnetic field B,
and v is the hydrodynamic velocity.

From (1.1) we can see that the complexities of description of multicomponent diffusion in the two-
temperature plasma are aggravated by the circumstance that thermodiffusion constituents due to the
electron temperature gradient appear in diffusion fluxes of heavy components. In this case it is necessary
to calculate all the transport coefficients along the magnetic field (symbol ‖) and in the perpendicular
and transverse directions (symbols ⊥ and ∧, respectively).

From the point of view of reducing the computational burden and the level of complexity of the
programm algorithms, the most rigorous and efficient approaches to description of multicomponent
diffusion in particular problems of modern thermophysics are based on the use of the Stefan–Maxwell
relations for the diffusion velocities of the components which have the following classic form for the
one-temperature gas mixtures [32]:
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Here, Dij(1) are the binary diffusion coefficients in the first approximation which can be calculated
from the formulas of kinetic theory [32]

Dij(1) =
3(mi +mj)

16nmimj
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In solving the particular problems of aerothermodynamics of multicomponent gas mixtures, the
calculations of the binary coefficients Dij(1) are radically simpler than the calculations of the multi-
component diffusion coefficients Dij and, as a rule, the contribution of the thermodiffusion constituent
on the right-hand side of (1.2) is not taken into account at all.

In the present study, for the multicomponent two-temperature plasma formulas for the heat fluxes
of heavy components and electrons as well as the Stefan–Maxwell relations for the diffusion fluxes in
a magnetic field are derived with regard to the higher approximations in the orthogonal expansions of
the distribution functions of the components in terms of the Sonine polynomials. For the transport
coefficients of heavy components and electrons the formulas are obtained in the considerably simpler
form as compared with the standard procedure of the Chapman–Enskog method. For the complex
thermal conductivity coefficients the formulas generalize the formula [33] which corresponds to the
second approximation and the exact formula in [34] to include the case of anisotropy of heat transfer
in the multicomponent two-temperature plasma in the presence of the magnetic field.

FLUID DYNAMICS Vol. 53 No. 2 2018



EFFICIENT APPROACH TO DESCRIPTION 317

2. INITIAL SYSTEM OF TRANSPORT EQUATIONS WITH REGARD TO THE HIGHER
APPROXIMATIONS IN THE SONINE POLYNOMIALS

In what follows, we will assume that the particle collisions are elastic and the external electromagnetic
field has no effect on them [11, 35]. In the N-component two-temperature plasma (the electron
component has the number N ) the initial system of equations, obtained in [12, 13] in the approximation
(me/mh)

1/2 � 1, for the diffusion velocities Vi and the reduced partial heat fluxes qi has the form:
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The coefficients Λrp
ij = Λpr

ji can be expressed in terms of the integral brackets Qmp
ij [32]
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The vectors ξip and ξep (p ≥ 2) can be expressed in terms of the higher moments of the distribution
functions [34]. The equations similar to (2.1)–(2.7) were also obtained in [9] from the solution of the
linearized Boltzmann equation using the Grad method at Kn � 1.
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The form of the transport equations for the diffusion velocities Vi and the reduced partial heat fluxes
qi (i = 1, . . . , N) will depend on the way of resolution of the system (2.1)–(2.7) with respect to the
fluxes. For example, if we resolve this system of linear equations at once with respect to all the fluxes on
the right-hand side, then we obtain cumbersome expressions for the diffusion and heat fluxes as those
in the standard procedure of the Chapman-Enskog method. The approach proposed here to solution of
Eqs. (2.1)–(2.7) is the most efficient from the point of view of its application to the aerothermodynamic
problems and reducing the calculation volume. This approach was used in [15, 34] for deriving the
Stefan–Maxwell relations in the isothermal plasma, in [14] for the two-temperature plasma in the
absence of the magnetic field, and in [17] in the general case.

3. HEAT FLUXES IN THE MULTICOMPONENT TWO-TEMPERATURE PLASMA
In complex form the system of equations (2.5) for the constituents of the flux vectors perpendicular to

the magnetic field (denoted by the symbol ⊥) takes the form:
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where the vector product b× ξ⊥kp is formally represented in the complex form iξ⊥kp (i
2 = −1).
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The solution of system (3.1) with respect to the vectors ξjp takes the form:
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Here, Λ∗
h is the determinant of the matrix whose elements are the matrices Λmp

rs and Λpp∗
rs (r, s =

1, . . . , N − 1). The matrices Λpp∗
rs differ from Λpp

rs only by the diagonal (complex) elements. Symbol
δjs = 1 if j = s and δjs = 0 if j 	= s.

The constituent of the reduced heat flux of the jth component perpendicular to the magnetic field
takes the form:
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⊥
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= xjβjk1. (3.3)

The reduced heat flux of the heavy particles in the direction perpendicular to the magnetic field can be
obtained by summing (3.3) over all heavy components
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Here, λ∗
h is the complex thermal conductivity coefficient of the mixture of heavy components and k∗Thk

are the complex thermodiffusion ratios of heavy components. These complex transport coefficients can
be represented in the form of the real and imaginary parts:

λ∗
h = λ⊥

h + iλ∧
h , k∗Thk

= k⊥Thk
+ ik∧Thk

.

Similarly, we can derive the expression for the constituent of the heat flux of heavy components
parallel to the magnetic field

q
‖
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The coefficients λ‖
h and k

‖
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can be calculated from the formulas (3.5) and (3.6) when B = 0. Finally,
for the reduced heat flux of heavy plasma components in the magnetic field we obtain

qh = q
‖
h + q⊥

h = −λ
‖
h∇

‖Th − λ⊥
h∇⊥Th − λ∧

hb×∇Th

+ nkTh

N−1∑

i=1

(
k
‖
Thi

V
‖
i + k⊥Thi

V⊥
i + k∧Thi

b×Vi

)
. (3.8)
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The heat flux transported by heavy components in the mixture of ionized gases takes the form:

Jqh = qh +
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The formula for the electron heat flux can be similarly derived from Eqs. (2.6)
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Here, Λ∗
e is the determinant of the matrix of the elements Λrp

ee (r 	= p) and Λpp∗
ee .

It is significant that, as distinct from the standard Chapman–Enskog procedure [11], the thermal
conductivity coefficients and the thermodiffusion ratios can be calculated directly from the formulas (3.5),
(3.6), (3.11), and (3.12) without preliminary determination of the remaining transport coefficients and
additional inversion of the matrixes. In the new formulation the heavy component transport coefficients
are expressed at once in terms of the ratios of (N − 1)Mhth-order complex determinants and the electron
transport coefficients are expressed in terms of the ratios of Meth-order complex determinants.

The formulas (3.5) and (3.11) for the thermal conductivity coefficients can be considered as a
generalization of the Muckenfuss–Curtiss formula [33] to the case of the two-temperature plasma
moving in the magnetic field in any approximation in the Sonine polynomials. For the one-temperature
plasma the formulas for the heat flux in the mixture and the transport coefficients obtained in this section
go over in the formulas [15, 16] correct to small terms of the order of (me/mh)

1/2.
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4. STEFAN–MAXWELL RELATIONS FOR THE DIFFUSION FLUXES
IN THE MULTICOMPONENT TWO-TEMPERATURE PLASMA

In order to derive the Stefan–Maxwell relations for the diffusion velocities of heavy components in
the magnetic field it is convenient to represent Eqs. (2.1) in the form:

d⊥
j = −

N−1∑

k=1

Λ00∗
jk V⊥

k − Λ00∗
je V⊥
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⊥
kp −

Me∑

p=1

Λ0p
jeξ

⊥
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After eliminating the vectors ξ⊥ip and ξ⊥ep in (4.1) using (3.2) and (2.6), we can express the vectors d⊥
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in terms of the constituents of the diffusion velocities and the temperature gradients orthogonal to the
magnetic field B

d⊥
i = −

N−1∑

j=1

(
Λ00∗
ij − ϕ∗

ij

)
V⊥

j −
(
Λ00∗
ie − ϕ∗

ie

)
V⊥

e − k∗Thi
∇⊥ lnTh − k∗Tei∇

⊥ lnTe,

ϕ∗
ij = ϕ⊥

ij + iϕ∧
ij = − 1

Λ∗
h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Λ01
is Λ02

is . . . Λ0p
is . . . Λ0Mh

is

Λ10
rj Λ11∗

rs Λ12
rs . . . Λ1p

rs . . . Λ1Mh
rs

Λ20
rj Λ21

rs Λ22∗
rs . . . Λ2p

rs . . . Λ2Mh
rs

. . . . . . . . . . . . . . . . . . . . .

ΛMh0
rj ΛMh1

rs ΛMh2
rs . . . ΛMhp

rs . . . ΛMhMh∗
rs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

ϕ∗
ie = ϕ⊥

ie + iϕ∧
ie = − 1

Λ∗
e

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Λ01
ie Λ02

ie . . . Λ0p
ie . . . Λ0Me

ie

Λ10
ee Λ11∗

ee Λ12
ee . . . Λ1p

ee . . . Λ1Me
ee

Λ20
ee Λ21

ee Λ22∗
ee . . . Λ2p

ee . . . Λ2Me
ee

. . . . . . . . . . . . . . . . . . . . .

ΛMe0
ee ΛMe1

ee ΛMe2
ee . . . ΛMep

ee . . . ΛMeMe∗
ee

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

k⊥Tei + ik∧Tei = − 1

Λ∗
e

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 xe 0 . . . 0

Λ10
ie Λ11∗

ee Λ12
ee . . . Λ1Me

ee

Λ20
ie Λ21

ee Λ22∗
ee . . . Λ2Me

ee

. . . . . . . . . . . . . . .

ΛMe0
ie ΛMe1

ee ΛMe2
ee . . . ΛMeMe∗

ee

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.2)

Finally, it is convenient to represent relations (4.2) in the form:

d⊥
i =

N−1∑

j=1

[
ciωj(cj − δij)

m

kTh
+ ϕ∧

ij

]
b×Vj +

(
−ciceωe

m

kTh
+ ϕ∧

ie

)
b×Ve

+
N−1∑

j=1

xixj

Dij(1)f⊥
ij

(
V⊥

j −V⊥
i

)
+

xixe

Die(1)f⊥
ie

V⊥
e

− k⊥Thi
∇⊥ lnTh − k∧Thi

b×∇ lnTh − k⊥Tei∇
⊥ lnTe − k∧Teib×∇ lnTe,

f⊥
ij = f⊥

ji =
(
1−Δ⊥

ij

)−1
, Δ⊥

ij = Δ⊥
ji = ϕ⊥

ij/Λ
00
ij , ϕ⊥

ij = ϕ⊥
ji, ϕ∧

ij = ϕ∧
ji,
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f⊥
ie = f⊥

ei =
(
1−Δ⊥

ie

)−1
, Δ⊥

ie = ϕ⊥
ie/Λ

00
ie ,

Dij(1) = Dji(1) =
3(mi +mj)

16nmimj

kTh

Ω
(1,1)
ij

, Die(1) = Dei(1) =
3

16nme

kTh

Ω
(1,1)
ie

. (4.3)

For electron diffusion perpendicularly to the magnetic field we have

d⊥
e =

(
ceωe

m

kTh
+ ϕ∧

e

)
b×Ve −

N−1∑

j=1

xexj

Dej(1)f⊥
ej

V⊥
e − k⊥Te

∇⊥ lnTe − k∧Te
b×∇ lnTe,

k⊥Te
= −

N−1∑

j=1

k⊥Tej , k∧Te
= −

N−1∑

j=1

k∧Tej , ϕ∧
e = −

N−1∑

j=1

ϕ∧
je. (4.4)

For diffusion along the magnetic field we have

d
‖
i =

N−1∑

j=1

xixj

Dij(1)f
‖
ij

(
V

‖
j −V

‖
i

)
+

xixe

Die(1)f
‖
ie

V‖
e − k

‖
Thi

∇‖ lnTh − k
‖
Tei

∇‖ lnTe, (4.5)

d‖
e = −

N−1∑

j=1

xexj

Dej(1)f
‖
ej

V‖
e − k

‖
Te
∇‖ lnTe. (4.6)

Equations (4.5) and (4.6) coincide in form with the Stefan–Maxwell relations in [36] when there is
no magnetic field. We note that in [17, 37] the binary diffusion coefficients Die(1) were defined in another
way, namely, as follows:

Die(1) =
3

16nme

kTe

Ω
(1,1)
ie

.

In connection with this definition, in the Stefan–Maxwell relations given in [17, 37] there is a factor
Te/Th multiplying the diffusion velocities Ve.

The transport coefficients with the superscript “‖” can be calculated from the same formulas as the
coefficients with the superscript “⊥” if we set in them ωi = 0, i.e., replace Λmp∗

rs by Λmp
rs .

In the first non-zero approximation for the binary diffusion coefficients (f‖
ij(1) = f⊥

ij (1) = 1, ϕ⊥
ij(1) =

0), in the second approximation for the thermodiffusion ratios of heavy components, and in the third
approximation for the thermodiffusion ratios of electrons the Stefan–Maxwell relations take the most
convenient and simple form for implementation in computational algorithms for solving the magnetohy-
drodynamic and aerothermodynamic problems:

di =
N−1∑

j=1

[
ciωj(cj − δij)

m

kTh

]
b×Vj − ciceωe

m

kTh
b×Ve

+
N−1∑

j=1

xixj
Dij(1)

(Vj −Vi) +
xixe
Die(1)

Ve − k
‖
Thi

(2)∇‖ lnTh − k⊥Thi
(2)∇⊥ lnTh

− k∧Thi
(2)b ×∇ lnTh − k

‖
Tei

(3)∇‖ lnTe − k⊥Tei(3)∇
⊥ lnTe − k∧Tei(3)b ×∇ lnTe, (4.7)

de = ceωe
m

kTe
b×Ve −

N−1∑

j=1

xexj
Dej(1)

Ve − k
‖
Te
(3)∇‖ lnTe

− k⊥Te
(3)∇⊥ lnTe − k∧Te

(3)b ×∇ lnTe. (4.8)

For the one-temperature plasma the relations (4.7) and (4.8) go over in the formulas of [15] correct
to small terms of the order of (me/mh)

1/2.
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For practical calculations we recommend the following formulas for the electron transport coefficients
in the third approximation:

λ⊥
e (3) + iλ∧

e (3) = − nkx2eΛ
22∗
ee

Λ11∗
ee Λ22∗

ee − (Λ12
ee)

2 , (4.9)

k⊥Te
(3) + ik∧Te

(3) = xe
Λ10
eeΛ

22∗
ee − Λ20

eeΛ
12
ee

Λ11∗
ee Λ22∗

ee − (Λ12
ee)

2 , (4.10)

k⊥Tei(3) + ik∧Tei(3) = xe
Λ10
ieΛ

22∗
ee − Λ20

ieΛ
12
ee

Λ11∗
ee Λ22∗

ee − (Λ12
ee)

2 . (4.11)

Summary. For the multicomponent two-temperature plasma the formulas describing the heat fluxes
of heavy components and electrons as well as the Stefan–Maxwell relations for the diffusion velocities
in a magnetic field are derived with regard to arbitrary approximations in the orthogonal expansions
of the component distribution function in the Sonine polynomials. For the transport coefficients of
heavy components and electrons the formulas are obtained in the considerably simpler form as compared
with the standard procedure of the Chapman–Enskog method. For the complex thermal conductivity
coefficients the formulas generalize the formula which corresponds to the second approximation and
the rigorous formula to the case of anisotropy of heat transfer in the multicomponent two-temperature
plasma in the presence of the magnetic field.
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