
ISSN 0015-4628, Fluid Dynamics, 2016, Vol. 51, No. 6, pp. 821–833. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © S.A. Bochkarev, S.V. Lekomtsev, V.P. Matveenko, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika
Zhidkosti i Gaza, 2016, Vol. 51, No. 6, pp. 108–120.

Hydroelastic Stability of a Rectangular
Plate Interacting with a Layer

of Ideal Flowing Fluid

S. A. Bochkarev∗, S. V. Lekomtsev∗∗, and V. P. Matveenko∗∗∗

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences,

ul. Akad. Koroleva 1, Perm, 614013 Russia

e-mail: ∗bochkarev@icmm.ru, ∗∗lekomtsev@icmm.ru, ∗∗∗mvp@icmm.ru

Received September 15, 2015

Abstract—The three-dimensional formulation of the problem on the natural vibrations and stability of
an elastic plate which interacts with a quiescent or flowing fluid is represented and a finite element algo-
rithm of its numerical implementation is proposed. The governing equations, which describe vortex-free
ideal fluid dynamics in the case of small perturbations, are written in terms of the perturbation velocity
potential and transformed using the Bubnov–Galerkin method. The plate strains are determined on the
basis of the Timoshenko theory. The variational principle of virtual displacements which takes into
account the work done by inertial forces and the hydrodynamic pressure is used for the mathematical
formulation of the dynamic problem of elastic structure. The solution of the problem is reduced to cal-
culations and an analysis of complex eigenvalues of a coupled system of two equations. The effect of the
fluid layer height on the eigenfrequencies and the critical velocities of the loss of stability is estimated
numerically. It is shown that there exist different types of instability determined by combinations of the
kinematic boundary conditions prescribed at the plate edges.
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The interaction between elastic plates and gas or liquid is already analyzed over a half-century using
various methods including the numerical ones [1, 2]. Considerable part of the investigations is devoted to
natural vibrations of the structures interacting with quiescent fluid. The corresponding models are success-
fully implemented in commercial finite element software packages and envelope a fairly wide class of the
problems.

It is well known [2] that an elastic plate located in an axial stream of a liquid or gaseous medium can
lose stability when the flow velocity becomes higher than a certain value called the critical velocity. The
type of instability, namely, static (divergence) or dynamic (flutter), depends on both the boundary conditions
imposed at the plate edges and the flow velocity. In particular, simply supported and rigidly restrained plates
lose stability in the form of divergence in the subsonic gas stream and in the form of flutter in the supersonic
stream. The plate restrained at one edge and free at the others has the flutter instability in the subsonic
stream and the divergent instability in the supersonic stream [3]. Many studies restricted to an analysis of
the behavior of plates infinite in all [4–8] or a single [9–13] of the directions are devoted to studying this
phenomenon using numerically-analytic methods. In the latter case the fluid flow is assumed to be two-
dimensional and, as a rule, the plate is considered as a beam. This assumption is based on experimental
investigations of the phenomenon of aeroelastic flutter which showed that the deflection of a cantilever plate
under self-exited vibrations depend only slightly on the transverse coordinate. We note that in all the studies
mentioned above the excess pressure on the elastic surface from the flowing medium was calculated within
the framework of potential theory.
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822 BOCHKAREV et al.

In investigating finite plates [14–19], the main attention was focused on the possibility of generalization
of the approaches developed for one-dimensional plates, the estimate of legitimacy of the obtained conclu-
sions on the higher velocities of the loss of stability in the case of plates infinite in one of the directions as
compared with finite plates, and an analysis of additional boundary conditions for fluid at the leading or rear
edges of cantilevered restrained plates for describing the wake. Some results of these investigations were
generalized in [19]. It was found that the stability increases as the plate width decreases. It was noted that
various approaches to taking additional boundary conditions for fluid into account lead to the same critical
velocities of the flutter, therefore, their effect can be called insignificant.

As distinct from the above-mentioned studies on the interaction of an elastic body with a fluid flow in
unbounded space, in [20–22] stability of plates located in a channel with rigid walls was analyzed. In [20]
it was shown for a one-dimensional plate (beam) with various boundary conditions that the critical velocity
of the loss of stability tends to an asymptotic dependence when the ratio of the channel height to the plate
length reaches a certain value. Instability of a plate in the channel with flowing viscous fluid described by
the Navier–Stokes equations was considered in [23, 24].

In [24] the development of flutter was demonstrated in the case of joint flow in the upper and lower
channels and the development of divergence for flow only in one channel. In the context of results of [24],
in [21] it was noted that in the case of fairly small Reynolds numbers the boundaries of stability for short
flexible plates are in well agreement with the results obtained within the framework of the potential theory.

In practice, the real structures with complex variants of fastening are frequently subjected to the action of
arbitrary distributed loads and, as a result, various types of spatial vibrations and instability can be observed.

The three-dimensional formulation of the problem of hydroelastic stability of plates and its solution by
means of the finite element method were given in [25]. The effect of several variants of the kinematic
boundary conditions imposed at the plate edges on the boundary of stability was analyzed. However, certain
results obtained are not in the qualitative agreement with the well-known numerically-analytic solutions and
full-scale observations. Because of the absence of sufficient information in [25] (boundary conditions for
fluid, physico-mechanical parameters of the system considered, stability criterion, etc.), the data presented
in [25] cannot be reproduced.

The aim of the present study is to create the method of calculation of the natural frequencies, the forms of
vibrations, and the boundaries of hydroelastic stability of three-dimensional plates interacting with the layer
of a flowing ideal fluid. A parametric analysis of certain characteristics of the system under consideration is
carried out to demonstrate the possibilities of the numerical algorithm developed. The effect of the kinematic
boundary conditions and the fluid layer height on the form of the loss of stability and the critical velocities
of fluid flow is analyzed.

1. MATHEMATICAL FORMULATION OF THE PROBLEM

We will consider a rectangular plate of thickness h located on the top of a channel with rigid walls inside
of which a fluid flows with a velocity U . In Fig. 1 we have reproduced the geometric parameters of the
model. The strains developed in the plate as a result of the hydrodynamic impact are small. The effect of
the boundary layer and the fluid viscosity is neglected.

We will consider irrotational flow of an ideal compressible fluid in terms of the velocity potential Φ =
Ux + φ , where U is the flow velocity, φ is the potential of perturbed velocities, and (x, y, z) are the Cartesian
coordinates.

In the disturbed state the components of the fluid velocity vector can be determined as follows:

vx =
∂Φ
∂x

= U +
∂φ
∂x
, vy =

∂Φ
∂y

=
∂φ
∂y
, vz =

∂Φ
∂ z

=
∂φ
∂ z
. (1.1)

In the case of small perturbations the governing equations which describe fluid dynamics in the volume
Vf can be written in the coordinate system moving with the plate by means of the perturbation velocity
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Fig. 1. Computational scheme.

potential φ [26]

∇2φ =
1
c2

∂ 2φ
∂ t2 +

2U
c2

∂ 2φ
∂ t∂x

+ M2 ∂ 2φ
∂x2 . (1.2)

Here, c is the speed of sound in fluid and M = U/c is the Mach number.
On the interface Sσ between the elastic structure and the fluid we impose the condition of equality of the

normal stresses and velocities [27]
ẇ = vn, σ p

nn = σ f
nn, (1.3)

where w is the normal component of the plate displacement vector, vn is the fluid velocity in the direction
of the normal to the plane Sσ , and σ p

nn and σ f
nn are the normal stresses of the elastic structure and the fluid

on the contact boundary. For small displacements the normal vector to the surface Sσ deviates only slightly
from the coordinate z; therefore, within the framework of theory of plates the boundary conditions (1.3) take
the form: (

∂w
∂ t

+ U
∂w
∂x

)
=

∂φ
∂ z
, (1.4)

pw =−ρ f

(
∂φ
∂ t

+ U
∂φ
∂x

)
. (1.5)

The expression (1.4) represents the impermeability condition and (1.5) is the linearized Bernoulli equa-
tion, where ρ f is the fluid density.

On the boundary between the fluid and the rigid wall Sw we impose the condition

∂φ
∂n

= 0. (1.6)

We will assume that there are no perturbations of the longitudinal velocity component at the channel inlet
(x = 0), then from (1.1) we obtain

vx = U ⇒ ∂φ
∂x

= 0. (1.7)

As an alternative variant, we can use the condition

φ = 0. (1.8)

We note that this condition, being mathematically correct, can represent certain difficulties for its physical
interpretation.

At the channel outlet (x = a) the perturbed pressure vanishes

−ρ f

(
∂φ
∂ t

+ U
∂φ
∂x

)
= 0⇒ ∂φ

∂x
=− 1

U
∂φ
∂ t
. (1.9)
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In [28] it was noted that in the first approximation a condition, which is equivalent to (1.7) correct to
notation, can be used instead of (1.9).

The strains of the elastic plate can be determined on the basis of the Timoshenko theory [29]:

εεε =
{

εxx, εyy, γxy, γxz, γyz
}T

= ε̃εε + zk̃,

ε̃εε =
{

ε0
xx, ε0

yy, ε0
xy, γ0

xz, γ0
yz

}T
=

{
∂u
∂x
,

∂v
∂y
,

∂u
∂y

+
∂v
∂x
,

∂w
∂x

+ θx,
∂w
∂y

+ θy

}T

,

k̃ =
{

ε1
xx, ε1

yy, ε1
xy, 0, 0

}T
=

{
∂θx

∂x
,

∂θy

∂y
,

∂θx

∂y
+

∂θy

∂x
, 0, 0

}T

,

(1.10)

where (u, v, w) are the displacements of points of the middle surface in the directions of the corresponding
axes of the coordinate system (x, y, z), and θx and θy are the angles of turning of the normals about the axes
y and x.

The physical relations which connect the stress and moment vector T with the strain vector εεε can be
written in the matrix form:

T =
{

Nxx, Nyy, Nxy, Mxx, Myy, Mxy, Qx, Qy
}T

= Dεεε. (1.11)

For the isotropic material the coefficients entering into the stiffness matrix D can be determined from the
following expressions⎧⎨

⎩
Nxx

Nyy

Nxy

⎫⎬
⎭=

h/2∫

−h/2

Q

⎧⎨
⎩

ε0
xx

ε0
yy

γ0
xy

⎫⎬
⎭ dz,

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭=

h/2∫

−h/2

Q

⎧⎨
⎩

ε1
xx

ε1
yy

γ1
xy

⎫⎬
⎭z2 dz,

{
Qx

Qy

}
= ks

h/2∫

−h/2

[
Q33 0

0 Q33

]{
γ0

xz

γ0
yz

}
dz, Q =

⎡
⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q33

⎤
⎥⎦ ,

Q11 = Q22 =
E

1 − ν2 , Q12 =
νE

1 − ν2 , Q33 =
E

2(1 − ν)
.

Here, ks = 5/6, E is the elasticity modulus, and ν is the Poisson’s ratio.
For the mathematical formulation of the problem of plate dynamics we will use the variational principle

of virtual displacements in which the Bernoulli equation (1.5) and the work of inertia forces are included.
In the matrix form it can be written as follows:∫

Ss

δεεεTDεεε dS +

∫

Vs

ρsδdTd̈dV −
∫

Sσ

δdTPdS, P =
{

0, 0, pw, 0, 0
}T
, (1.12)

where d and P are the vectors of generalized displacements and surface loads and points denote the deriva-
tives with respect to time.

2. NUMERICAL REALIZATION

The solution of the problem is implemented using the finite element method (FEM). Using the
Bubnov–Galerkin method [30], the partial differential equation for the perturbation velocity potential (1.2)
together with the boundary conditions (1.6)–(1.8) and the impermeability condition (1.4) are reduced to the
system of equations in the matrix form:

(
K f + Ac

f

)
φφφ + M f φ̈φφ + Cc

f φ̇φφ − C f ẇ − A f w = 0, (2.1)
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where

K f = ∑
mf

∫

Vf

(
∂FT

∂x
∂F
∂x

+
∂FT

∂y
∂F
∂y

+
∂FT

∂ z
∂F
∂ z

)
dV, M f = ∑

mf

∫

Vf

1
c2 FTFdV,

A f = ∑
mσ

∫

Sσ

UFT ∂Nw

∂x
dS, Ac

f =−∑
mf

∫

Vf

M2 ∂FT

∂x
∂F
∂x

dV,

C f = ∑
mσ

∫

Sσ

FTNw dS, Cc
f = ∑

mf

∫

Vf

2U
c2

∂FT

∂x
FdV.

Here, m f and mσ are the numbers of finite elements onto which the region of fluid Vf and the plane Sσ are
divided; F and Nw are the shape functions for the perturbation velocity potential and the normal component
w of the plate displacement vector. The fluid volume is discretized by means of a 20-node finite element in
the form of a prism with the quadratic approximation of the unknowns [31].

Applying the well-known technique of the finite element method to Eq. (1.12), we obtain

Ksd + Msd̈ + Csφ̇φφ + Asφφφ = 0, (2.2)

where

Ks = ∑
ms

∫

Ss

BTDBdS, Ms = ∑
ms

∫

Vs

ρsNTNdV,

Cs = ∑
mσ

∫

Sσ

ρ f FTNwdS, As = ∑
mσ

∫

Sσ

ρ fU(Nw)T ∂F
∂x

dS.

Here, ms is the number of finite elements onto which the surface of plate is divided; N are the shape
functions of a finite element; and B is the matrix of relation between the strains and the nodal displacements.

Thus, the problem of investigation of the dynamic behavior of a plate which interacts with flowing fluid
reduces to the simultaneous solution of the systems of equations (2.1) and (2.2)

M
{

d̈ φ̈φφ
}T

+ C
{

ḋ φ̇φφ
}T

+ (K + A)
{

d φφφ
}T

= 0, (2.3)

K =

[
Ks 0

0 K f

]
, M =

[
Ms 0

0 M f

]
, C =

[
0 Cs

−C f Cc
f

]
, A =

[
0 As

−A f Ac
f

]
.

Here, K, M, C, and A are the stiffness, mass, damping, and hydrodynamic stiffness matrices, respec-
tively.

We will consider a disturbed motion of the plate and fluid in the following form: d = qexp(λ t), φφφ =
fexp(λ t), where q and f are certain functions of the coordinates and λ = δ + iω is the characteristic
exponent. Then the system of equations (2.3) can be transformed to the generalized eigenvalue problem for
asymmetric matrices of the double dimension[

C K

−I 0

]{
λx

x

}
+ λ

[
M 0

0 I

]{
λx

x

}
= 0, (2.4)

where I is a unit matrix and x =
{

q f
}T

. To calculate complex eigenvalues of the problem (2.4) we used the
ARPACK procedures based on the implicitly restarted Arnoldi method [32]. The stability criterion is based
on an analysis of the roots of Eq. (2.4) obtained for increasing flow velocity [2]. Vibrations damp when
δ < 0 and grow when δ > 0, and the dynamic loss of stability in the form of flutter arises. Divergence arises
at the frequency ω = 0 and positive δ .
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3. RESULTS

The numerical calculations were carried out for the following geometric dimensions and physico-me-
chanical characteristics: a = 0.24 m, b = 0.32 m, h = 2×10−3 m, H = 4×10−2 m, E = 69 GPa, ν = 0.3,
ρs = 2700 kg/m3, ρ f = 1000 kg/m3, and c = 1500 m/s. For representation of the results we use the dimen-
sionless eigenvalue Λ and the dimensionless velocity ϒ

Λ = ΛRe + iΛIm = a2

√
ρsh
D

λ , ϒ = a

√
ρsh
D

U, D =
Eh3

12(1 − ν2)
.

For the kinematic boundary conditions specified at the plate edges we introduce the following notation:
F corresponds to the free edge and C to the rigid clamping (u = v = w = θx = θy = 0). In indication of a
given combination of boundary conditions the enumeration is carried out clockwise starting from the left
edge. For example, the variant CFFF corresponds to a cantilever plate clamped only at the left edge.

The fluid region is discretized taking the compatibility of finite-element meshes on the boundary between
two media into account. The subdivision parameters are determined from the condition of analysis of
the asymptotic behavior when the number of nodal unknowns increases. In the numerical experiments it
was established that the acceptable accuracy of calculations can be reached when the coupled system has
approximately 22,000 degrees of freedom. The reliability of the results obtained within the framework of
the numerical algorithm developed was tested on the problem of natural vibrations of a plate located in the
vacuum and on the layer of quiescent fluid and rigidly clamped at all the edges.

In Table 1 we have given the values of the vibration eigenfrequencies (in Hz) in comparison with the data
obtained in [33] and with the use the commercial finite element ANSYS software. Here, n and m denote the
number of nodal lines in the directions of the Oy and Ox axes. On all the sides of the rigid container which
bounds the fluid we specified the boundary conditions (1.8) or (1.6). In Table 1 the corresponding variants
of calculations are denoted by I and II, respectively. The characteristic feature of the latter is the existence
of “mixed” vibration shapes which cannot be classified in accordance with the number of rectilinear nodal
lines. Thus, the boundary conditions specified in the fluid region affect formation of the vibration shapes.
However, in neglecting the combination of wavenumbers to which each of the frequencies corresponds,
their effect on the frequency spectrum manifests itself considerably only at low frequencies. In particular,
the difference between the first seven frequencies ω1 − ω7 of the spectra I and II reaches 25%, while for the
others it does not greater than 10%.

The kinematic boundary conditions specified at the edges of the elastic structure interacting with fluid
flow affect significantly the dynamic behavior of the system. The presence of the free edge on the outlet flow
side leads to appearance of damping in the system. As a result, the form of the loss of stability can change.
In [2, 35, 38] a similar phenomenon was analyzed with reference to circular cylindric shells. In Fig. 2 we
have reproduced the typical dependences for plates for two variants of fastening CCCC and CFFF. In this
figure we have reproduced the graphs of variation in the real and imaginary parts of the dimensionless
eigenvalues Λ for several lowest vibration modes as functions of the dimensionless velocity ϒ. As the fluid
flow velocity increases, the imaginary part of the second eigenvalue Λ2 of the plate rigidly clamped at all the
edges decreases until it becomes equal to zero at the point ϒD (Fig. 2a). At this instant the pair of the real
parts of this mode appears. With the further variation in the flow velocity the real parts form a characteristic
figure in the form of an oval. We note that one of the real parts of the second mode is positive. This
corresponds to the static loss of stability in the form of divergence. The further increase in the flow velocity
leads subsequently to the divergent instability with respect to the first mode, repeated stabilization for it,
and the onset of the secondary instability in the form of coupled flutter [2] achieved as a result of merging
two vibration modes when ϒ = ϒF : the imaginary parts of the first and fourth modes become identical, a
positive real part appearing for each of them. We note that the data on the secondary loss of stability given
in Fig. 2 are mainly illustrative. They are represented as an example which clearly demonstrates various
forms of the loss of stability and criteria from which the conclusion on their onset is made. In the general
case the phenomenon of secondary instability must be analyzed in the nonlinear formulation.
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Table 1. Comparison of the vibration eigenfrequencies (Hz) of a plate in the vacuum and on the layer of quiescent fluid

n m
In the vacuum On the layer of quiescent fluid

[33] Authors ANSYS Authors, I Authors, II

0 0 243.4 242.32 89.30 89.30 —

1 409.1 407.17 158.04 158.04 79.39

2 681.3 680.77 282.27 282.27 195.45

3 1053 1058.51 470.15 470.15 369.80

1 0 573.3 573.34 230.21 230.21 137.68

1 726.9 724.74 302.17 302.16 214.57

2 984.2 982.80 431.15 431.13 348.27

3 1345.5 1348.14 625.04 625.01 538.71

2 0 1074.2 1083.52 478.33 478.33 363.96

1 1223.5 1228.91 556.75 556.73 461.08

2 1470.3 1476.45 693.77 693.73 —

3 1820 1829.95 896.16 896.09 808.07

In the case of another combination of the boundary conditions (Fig. 2b) characteristic figures also arise
in the real part when ΛIm vanishes. However, they are completely located in negative half-plane owing to
strongly expressed damping properties of the system. Short-term flutter on a single vibration mode occurs
when ϒ = ϒF and the real part of the first mode becomes positive in a short interval ϒ = 7.955–8.230. Then
a secondary stability zone follows. Successive increase in the fluid flow velocity leads to the irreversible
loss of stability. Initially, the real part of the third mode becomes positive and then this takes place for the
second mode. We note that this version of fastening is characterized by complex nonmonotonic variation in
the real part of the eigenvalues.

The numerically-analytic investigations with the use of two-dimensional (infinite in one of the directions)
plates make it possible to embrace only partially the possible ways of fastening. The three-dimensional im-
plementation makes it possible to eliminate this imperfection. In Fig. 3 we have given quantitative estimates
of the critical flow velocity for the most frequently encountered variants of the boundary conditions. In this
figure we have also reproduced the shapes of vibrations of an elastic structure obtained for ϒ = ϒcr. We
note that the lower critical velocities are characteristic of the divergent form of instability than of the flutter.
An analysis of the eigenvalues of structures with fastenings of the form CCCC, CFCF, and FCFC showed
that there is almost no damping in this systems (ΛRe ≈ 0). For the remaining variants of the boundary con-
ditions damping is present even at the insignificant fluid flow velocity (real part is negative and not equal
to zero). These results make it possible to make the following conclusions: the presence of damping has
a stabilizing effect and leads to an increase in the critical velocities of the loss of stability; the boundary
conditions specified at the plate edges located parallel to the direction of flow have no effect on the form
of instability. We also note that for the plate with the version FCCC of the boundary conditions instability
manifests itself at arbitrary low fluid flow velocities. This means that there exist positive real pats of sev-
eral eigenvalues of the system (2.4). Earlier, a similar phenomenon was revealed for cylindrical shells with
asymmetric fastening [34].

Information on the specified boundary conditions for fluid is not complete in the above-mentioned studies
of the hydroelastic stability of plates. This not only complicates the comparative analysis but also determines
one of the possible directions of the numerical experiments. The previous authors’ investigations [30, 35]
of the hydroelastic stability of cylindrical shells of revolution showed that the boundary conditions (1.8)
and (1.7) at the inlet and outlet, respectively, are that combination which ensures detection of the flutter
loss of stability observed experimentally. In Fig. 4 we have reproduced the shapes of vibrations, the critical
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Fig. 2. Variation in the real and imaginary parts of the dimensionless eigenvalues Λ as a function of the dimensionless
velocity ϒ (H = 0.05 m): (a) and (b) correspond to CCCC and CFFF.

velocities, and the form of the loss of stability obtained in this case for plates with similar fastenings.
The results demonstrate not only the quantitative but also the qualitative differences. The cantilevered plate
flutter sets in at insignificantly higher flow velocities; however, the critical velocities of divergence for
fastenings of the form CCCC and FCFC decrease by more than 40%. These variations are due to change
in the mode on which the loss of stability is implemented. Despite of the presence of damping (δ ∕= 0), the
form of instability remains the same for the systems with the boundary conditions CCCC, CFCF, and FCFC.

The fluid layer height H is another factor which affects appreciably the hydroelastic vibrations of the
structures considered. When there is no flow (ϒ = 0), the vibration eigenfrequencies tend to an asymptotic
value if the ratio of the characteristic plate dimension to the fluid layer height is greater than unity (see
Fig. 5a). This trend is observed for all variants of the boundary conditions given in Fig. 3. Earlier, a similar
phenomenon was investigated in [36, 37] for a cantilevered plate totally immersed in water. The asymptotic
behavior of the plate vibration eigenfrequencies as functions of the height of fluid layer above the plate was
considered on the basis of analytic [36] and finite-element [37] solutions.

In the examples below we will consider the hydroelastic stability of a plate interacting with a fluid flow.
In Fig. 5b we have reproduced the graphs of the critical velocity of the loss of stability as a function of the
ratio H/b obtained for various variants of fastening. In this example we have used a combination of the
boundary conditions (1.7)–(1.7) for fluid. From these data we can see that the asymptotics set in starting
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Fig. 3. Shapes of vibrations of a plate under various boundary conditions for ϒ = ϒcr. The boundary condition (1.7) is
specified at the channel inlet.

from H/b> 0.25 for the boundary conditions of the form CCCC and CCFC. The curve of critical velocities
of the plate restrained along the flow direction on both sides (FCFC) has a point of the local minimum in the
neighborhood of H/b = 0.15. The successive smooth decrease in the velocity is accompanied by change in
the type of the loss of stability from divergence to coupled flutter on two vibration modes. The absence of
fastening at the inlet of the structure facilitates not only significant decrease in the critical velocities but also
appearance of instability of another form. Curve CFFF corresponding to the cantilevered plate descends
sharply when H/b≈ 0.14. The cause of this fact is change in the mode on which the loss of stability occurs.
In Fig. 2b we have reproduced the data for H/b = 0.1563 from which we can see that the first-mode short-
term flutter sets in when ϒ = 7.955–8.230. A detailed analysis showed that the real part of this eigenvalue
does not appear in positive half-plane if H/b < 0.14. Thus, the system remains stable until the flutter sets
in on another mode, in our case this is the second mode. Starting from H/b ≥ 0.14 a short-term flutter
zone develops at the lower flow velocities. This interval of the primary instability expands gradually with
increase in the fluid layer height.

In the above models we used the assumption that the fluid volume is bound by the plate dimensions. This
assumption not only affects the critical velocities of the loss of stability but also leads to necessity to specify
the boundary conditions which can be inconsistent. For example, if the leading edge of the structure is not
restrained and the condition (1.8) is specified for fluid at the inlet. In elements of various components of the

FLUID DYNAMICS Vol. 51 No. 6 2016



830 BOCHKAREV et al.

Fig. 4. Shapes of vibrations of a plate under various boundary conditions for ϒ = ϒcr. The boundary condition (1.8) is
specified at the channel inlet.

Fig. 5. Lowest vibration eigenfrequencies ω (a) and dimensionless critical velocities ϒ (b) as functions of the fluid layer
height.

modern atomic power plants and heat exchangers, the channel with rigid walls along which fluid flows can
be multiply greater than the dimension of the deformed stream-wise section. A similar structure is simulated
in the following example (Fig. 6). The calculations were carried out for two combinations of the boundary
conditions for fluid

φ ∣x=0 = φ ∣x=5a = 0, (3.1)

φ ∣x=0 = 0, ∂φ/∂x∣x=5a = 0. (3.2)

The condition (3.1) is equivalent to the absence of perturbations far from the plate [25], while the condi-
tion (3.2) is considered as an alternative.

In Table 2 we have compared the dimensionless critical velocities of the loss of stability obtained with
the use of the first and second computational schemes (Figs. 1 and 6, respectively). An analysis of the results
showed that the assumption on boundedness of the fluid volume used above leads to somewhat underesti-
mated critical velocities of divergence and overestimated velocities of flutter. The difference between the
values obtained with the use of the boundary conditions (3.1) and (3.2) is insignificant. In both cases the
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Fig. 6. Computational scheme of the channel whose longitudinal dimension is greater than the plate length.

Table 2. Comparison of the dimensionless critical velocities of the loss of stability

Calculation scheme
Boundary conditions Boundary conditions for the plate

for fluid CCCC CCFC FCFC CFFF CFCF

Fig. 1 (1.7)–(1.7) 3.639 10.329 1.846 8.892 1.756

(1.8)–(1.7) 1.857 10.782 1.095 10.178 1.293

Fig. 6 (3.1) 1.969 10.457 1.121 7.228 1.381

(3.2) 1.857 10.452 — 7.207 1.293

shapes of vibrations correspond to those shown in Fig. 4. An exception is the plate restrained along the
direction of flow on two opposite sides (FCFC). In this case instability manifests itself at arbitrary low fluid
flow velocities for the boundary conditions of the form (3.2).

Summary. The three-dimensional formulation and the finite element algorithm of its numerical imple-
mentation intended for solving the problems on the natural vibrations and stability of an elastic plate which
interacts with flowing fluid are presented. The results of computational experiments make it possible to
establish existence of various forms of the loss of stability which are determined by the kinematic boundary
conditions specified at the plate edges. The data obtained demonstrate the qualitative coincidence with the
well-known numerical-analytic solutions.

It is found that the critical velocities of the loss of stability of a plate tend to an asymptotic value (except
for several variants of fastening), if the ratio of the characteristic plate dimension to the fluid layer height is
greater than H/b = 0.25.

It is established that the assumption on boundedness of the fluid volume in accordance with the plate di-
mensions leads to underestimated values of the critical velocities of divergence and overestimated velocities
of flutter.

The work was carried out with support from the Russian Foundation for Basic Research (project
No. 15-01-05254) and the Russian Federation President’s grant for the state support of young PhD scientists
(project No. MK-6167.2015.1).
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