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Abstract—The structure of flow in the vicinity of a triple point in the problem of stationary irregular
reflection of weak shock waves is numerically investigated within the framework of the Euler model,
including the von Neumann paradox range. To improve the accuracy of the solution near singular points
a new technology including a grid contracted toward the triple point and the discontinuity fitting is
applied. It is shown that in the four-wave flow pattern the curvatures of the tangential discontinuity and
the Mach front at the triple point are finite. The singularity is concentrated only in a sector between the
reflected wave front and the expansion fan. When the three-wave flow pattern is realized, the curvatures
of the tangential discontinuity and both wave fronts at the triple point are infinite. On the range of weak
and moderate shock waves the logarithmic singularity in subsonic sectors near the triple point conserves
up to transition to the regular reflection.
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The problem of weak Mach-type shock wave reflection in an ideal gas called the von Neumann paradox
or the triple point paradox was successfully solved at the end of the last century. In [1–3] it was shown that
on the range of the relevant parameters, at which the solution of the classical problem based upon three-
shock theory is absent from the triple point vicinity, it is the four-wave flow configuration with a centered
expansion wave and a local supersonic zone suggested by Guderley as long ago as in 1947 [4] that is realized.
Later the four-wave flow configuration was found in the experiments in a shock tunnel of large cross-section
[5, 6] and of standard section [7]. On the range of very weak reflected waves, in some experiments [6, 7] and
numerical calculations [8] a cascade of several supersonic zones closed by deceleration shocks was found
to exist, additionally to the four-wave configuration. Quite recently, the cascade structure of the supersonic
region behind a triple point was confirmed also for moderately weak reflections [9, 10].

In [3] it was analytically shown that in the four-wave configuration the reflected front possesses the
logarithmic singularity with infinite curvature at the triple point. An analogous property for the Mach front
and the tangential discontinuity remained open question.

In this study, these and some other questions are numerically investigated using a more accurate tech-
nique with reference to the problem of stationary reflection of an oblique shock wave in a plane supersonic
flow of an ideal perfect gas (Fig. 1). The diagram of possible triple-point configurations (T -configurations)
in the plane of the parameters M0 and β is plotted in Fig. 2 for a small range of moderately weak shock
waves. The letter designations of the regions are taken from book [11]. In the regions above curve 1 and
below curve 6 there is no reflection. In the region below curve 6 the incident shock does not exist, since
Mn = M0 sinβ < 1, while in the region above curve 1 the flow behind the incident shock is subsonic, so that
the reflected shock does not exist. Regions 2 and 3 (GR and VR) form the von Neumann paradox region,
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Fig. 1. Steady irregular reflection of a shock wave in a plane channel. Density contours for a case with a non-maximum
Mach front height; (1–4) are the channel walls and (5) is the front of the incident shock wave inclined by an angle β to the
oncoming flow with the Mach number M0; L is the height of the narrow section of the channel.

where the three-wave T -configuration is replaced by the four-wave flow configuration near the triple point.
In the regions located below curve 3 there exist solutions in the form of three-wave (vNR and MR) and two-
wave (RR) configurations. The last configuration corresponds to the regular reflection without a triple point.
These regions are partially overlapped which indicates a possible nonuniqueness of the solution. Curve 4
separating vNR and MR corresponds to the T -configurations in which the flow is orthogonal to the reflected
shock front. The reflected shock deflects the flow into the same direction, as the incident shock, in the
vNR region and in the opposite direction in the MR region. The vNR region is remarkable by the fact that
here the theoretical characteristics of the T -configurations are considerably different from those observed in
the experiments.

As shown in [2], in the vNR region and in the upper part of the MR region the triple point proximity
also contains a small-size singularity with high parameter gradients. The boundary of the existence of
this singularity remained an open question. In [4] Guderley investigated this question in the potential flow
approximation. In accordance with his results, the curvatures of the reflected front, the Mach front, and
the streamline either vanish or increase without bounds at the triple point. In the interpretation of [12] this
looks as follows. With respect to the flow entry angle β the shock waves can be subdivided into the strong
family A and a weak family with supersonic flow behind the shock wave (family C) and a family with a
subsonic flow. The lower boundary of the A family is the entry angle, at which the deflection angle reaches
a maximum. The upper boundary of the C family is the entry angle, at which the Mach number behind the
front is unity. There is a narrow region (family B) located between the C and A regions. If the reflected
shock belongs to the C family, then the curvatures of the reflected front, the Mach front, and the streamline
at the triple points are zero. If the reflected shock belongs to the A family, then the curvatures of the fronts
and the streamline at the triple points are infinite and the singularity is similar with that in incompressible
flow past a dihedral, that is, power-law in nature. The boundary of these regimes is within the narrow B
family. The truth of these inferences for the ideal perfect gas model has not yet been verified.

The purpose of this study is to investigate the general properties and the differences in the triple point
singularities in the GR, VR, vNR, and MR regions and to determine the boundary of the singularity existence
in the MR region.
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Fig. 2. Fragment of the diagram of the T -configuration regions in the case of steady shock wave reflection from a plane for
a perfect gas with γ = 5/3; the configurations of Guderley (GR) in between (1) and (2), Vasil’ev (VR) (2, 3), von Neumann
(vNR) (3, 4), and Mach (MR) below curve (4); regular reflection (RR) (5, 6); (7) is the set of the calculated cases.

1. FORMULATION OF THE PROBLEM
AND METHOD OF NUMERICAL SOLUTION

We will consider a plane supersonic steady flow of an ideal perfect gas in a channel with a rectilinear
wedge. The wedge-produced shock wave is reflected from the opposite wall of the channel. The main
flow elements in the case of irregular reflection are shown in Fig. 1, which presents the density contours
in the representative calculations. At the triple point T the rectilinear incident-shock front is split into the
reflected shock front above point T and the Mach front below this point. In the general case, both fronts
are curvilinear. Apart from the shock waves, a contact discontinuity proceeds from point T and separates
the flows having passed on either side of the triple point (in Fig. 1 it is visible as a condensation of the
contours). On the edge of the reflecting wedge there is formed the centered expansion fan which intersects
with the reflected shock front. On the weak shock range a subsonic flow is realized directly behind the
Mach front and the reflected shock (shaded region in Fig. 1). However, further downstream the expansion
wave transforms the subsonic flow into supersonic. The supersonic flow regime at the channel exit is the
necessary condition of the realizability of this steady flow. If the narrow part of the channel is long, then
multiple interactions of the reflected shock with the upper wall and the contact discontinuity can lead to
the channel choking and the steady flow breakdown [13]. To eliminate the similar effects it is sufficient to
consider channels with not too long narrow sections.

The relevant parameters of the problem are the oncoming flow Mach number M0 and the angle of in-
clination of the incident shock β . At fixed wedge dimensions the flow also depends on the height L of the
narrow section of the channel. In order for this flow could be realizable the channel height L must be greater
than a certain minimum size Lm. A steady flow is possible only in the case in which L ≥ Lm, when the
reflected shock arrives at the wall to the right of the center of the expansion wave. To reduce the number
of the input data in this study we considered configurations with the minimum height value L = Lm, that is,
the configurations in which the reflected shock passes infinitely near from the center of the expansion wave.
This makes the numerical simulation technology somewhat more difficult but reduces the number of the
input parameters to two, namely, M0 and β . Obviously that in these configurations the Mach front height is
maximum.

In numerically modeling the flow the stationary solution was obtained by the stabilization method, that
is, as a limiting time-dependent solution that has attained the steady state.
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The differential equations governing the time-dependent two-dimensional flow of an inviscid and non-
heat-conducting gas with constant specific heats are as follows:
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Here, x is the coordinate aligned with the lower reflecting plane, y is the coordinate orthogonal to x, ρ and
p are the density and the pressure, u and v are the velocity components along the x and y axes, respectively,
e is the total energy per unit volume, and the adiabatic exponent γ = 5/3.

The boundary conditions are those of impermeability at the channel walls and those of Rankine–Hugoniot
at the shock waves. The flow parameters were normalized by the height of the narrow section of the channel
and the speed of sound in the oncoming flow. In view of the fact that the flow region includes discontinuities,
the required solution is considered to mean a weak solution satisfying the equations in the integral meaning.

The numerical solution was obtained using the baseline method [14] adapted to the case of curvilinear
movable grids with an algorithm for fitting and tracing the shock fronts and the triple point [2].

The calculation technique consisted of two stages, namely, the calculation of the overall steady flow and
an analysis of the flow in the vicinity of the triple point. In the first stage for given values of M0 and β the
overall steady flow was calculated at L = Lm. In this stage, the outer movable boundaries of the computation
domain were the Mach front and the reflected shock front; in this case, the reflecting wedge edge with
the center of the expansion fan was always located on the reflected shock front. Inside the computation
domain the horizontal grid line proceeding from the triple point was adjusted with contact discontinuity
shape. The calculations were performed by marching in time until the steady state of the flow pattern and
the computation grid was attained.

In the second stage, the boundaries that were previously fixed (lower, upper, and right) start to continu-
ously move toward the triple point with the conservation of similarity, so that the flow at the exit boundaries
of the grid is supersonic relative to the grid. This approach makes it possible to avoid problems with the
conditions at the boundaries of the grid contracting toward the triple point. At any moment of time the
contracting grid is characterized by the contraction factor Fz which decreases from 1 to 0 in the contrac-
tion process. This technique performs simultaneously with tracing the main shock waves and the tangential
discontinuity, which makes it possible to obtain with a high accuracy the quantitative information on the
geometry of the discontinuity surfaces on all the contraction scales. We note that in this approach the cal-
culations are always performed on the same movable grid. Any procedures of grid interpolation are not
required.

To increase the accuracy and speed of calculations we also used the computation grid nonhomogeneity,
the alternation of the contraction and stabilization stages, the stabilization accelerators, and the extrapolation
of the initial conditions; the description of these procedures is beyond the scope of this paper. We only
note that the contraction technique and the approaches mentioned above were earlier successfully employed
in [9]. The main advantage of the technique described is that a set of unique calculations could be performed
basing upon it for a finite time and with limited computational resources.
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Fig. 3. Contours of the fragments of the pressure (a, c) and Mach number (M > 1) (b, d) fields near the triple point T ;
(a, b) GR case, Fz = 8× 10−3, Δp = 0.0004, and ΔM = 0.0003 and (c, d) VR case, Fz = 4.5× 10−11, Δp = 0.0002, and
ΔM = 0.0003; K is the contact discontinuity.

2. RESULTS OF THE CALCULATIONS FOR GR AND VR

The calculations were performed for a perfect gas with the adiabatic exponent γ = 5/3 for the cases
corresponding to the parameter ranges β ∈ [46∘, 61∘] and M0 ∈ [1.38, 1.808]. Here, only certain variants of
the calculations are presented; in the diagram in Fig. 2 these are marked by bold points (7). The computation
grid contained 640× 800 points. In what follows, the calculated cases are called in accordance with the
names of the regions, where they are located, namely, the GR case corresponding to M0 = 1.7 and β = 59.5∘

and the VR case (M0 = 1.5 and β = 56.0∘).
In Fig. 3 the pressure and Mach number contours for the GR and VR cases are plotted in the vicinity of

the triple point. The Mach number contours are presented only in supersonic regions. From these contours
the contact discontinuity position (K) is clearly traced. In both cases the cascade structure consisting of a
sequence of supersonic zones can be observable. The final calculation stage of the grid contraction toward
the triple point was terminated before the vertex of the local supersonic zone arrived at the upper boundary
of the computation domain, which in Fig. 3 coincides with the upper boundary of the presented flowfield
fragments. Clearly that the method does not generate any numerical artifacts on the upper boundary of
the computation domain. The region of the supersonic zones shown in Fig. 3 included about 240× 400
gridpoints. That was sufficient in order to identify three to four structures of the supersonic zone cascade,
which can be well traced from the Mach number contours.

The distinctive features of these cases are the supersonic zone structures and dimensions. In accordance
with the four-wave theory, in the second case the flow below the contact discontinuity is subsonic and
the closing shocks penetrate there in the form of continuous smeared compression waves. An analogous
behavior can be observable for the second closing shock in the first case. In this case the vertical dimensions
of the supersonic zones and the closing shocks rapidly decrease. Each successive zone is half as large as
the preceding one. In the second case the situation is different: the decrease proceeds more slowly and,
moreover, the second zone is larger than the first one. This is due to the fact that the closing shock of the
first zone has no time to form. The formation of the closing shocks, as the compression wave turnover, starts
in the upper part of the expansion fans; they become stronger, as the contact discontinuity is approached. In
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Fig. 4. Angles of inclination of the shock fronts and the tangential discontinuity in the vicinity of the triple point as functions
of the normalized natural argument s; (a) GR case, A(s) = ϕr(s) − 6∘, B(s) = ϕm(s) − 29∘, and C(s)/5 = ϕc(s) − 13.9∘
and (b) VR case, A(s) = ϕr(s) + 9.3∘, B(s) = ϕm(s) − 27.5∘, and C(s)/5 = ϕc(s) − 10∘; (1) A(s); (2) B(s); and (3) C(s).

the second case the closing shock is rather a continuous compression wave which has no time to be formed
as a shock. We note that in [15] this factor of the delay in the intersection of characteristics was adduced as
an argument in favor of the existence of a supersonic zone without closing shocks. Clearly that this is not
the case. That the first closing shock could not be formed does not preclude the formation of the second and
successive shocks.

In both GR and VR variants the linear dimensions of the supersonic zones differ by a factor of 108. For
the first case the contraction factor Fz = 8×10−3, while for the second case Fz = 4.5×10−11. Obviously, the
second structure is only an element of the solution of the mathematical ideal-gas model and is not realized
in actual flows owing to its small dimensions.

The geometric characteristics of the shock fronts and the contact discontinuity for the two cases are
presented in Fig. 4, in which the angles of inclination of the fronts to the coordinate axes are plotted against
the natural parameter s measured along the front from the triple point. The angles of inclination to the
vertical axis are presented for the shock waves (curves A(s) and B(s)) and those to the horizontal axis are
plotted for the contact (tangential) discontinuity (curves C(s)). The curves consist of separate points, any of
which corresponding to one computation cell. The dimensionless natural parameter is normalized by Fz.

Clearly visible on the C(s) curves are the splashes corresponding to the interactions between the closing
shocks and the contact discontinuity. They make it possible to easily identify the belonging of the regions
on the curves to particular parts of the flowfield fragments in Fig. 3. The analogous interactions can also
be traced on the Mach fronts (curves B(s)). The derivatives of the curves plotted in Fig. 4 are proportional
to the front curvatures. In both cases clearly visible is a large curvature of the reflected shock wave, which
strongly increases, as the triple point is approached (that is, as s→ 0). For the Mach fronts and the tangential
discontinuities this behavior is not observable: the curvatures of these fronts remain finite up to the triple
point. Moreover, in the GR case the dependences near s = 0 are near-linear, that is, the corresponding
sections of the fronts are similar in shape with circular arcs. In the GR case the Mach front curvature
reaches a maximum outside the supersonic zone, while in the VR case its maximum is at the triple point.
We recall that in the VR case the flow behind the Mach front is subsonic. We also note that in the VR
case the gradients and curvatures, though finite, can be very large due to the smallness of the singularity
dimensions. Thus, the actual ranges of the argument variation in Fig. 4a and 4b are proportional to Fz and
differ by a factor of 108.
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The finiteness of the front curvatures is accompanied by the finiteness of the parameter gradients in these
zones. Thus, in the GR and VR cases the singularity with infinite gradients is concentrated only in a narrow
subsonic zone between the reflected front and the expansion fan. In the other regions the singularity does
not manifest itself. This fact was noted in [1] but later it was questioned in [2]. The results presented above
indicate that the original standpoint was more adequate.

3. RESULTS OF THE CALCULATIONS FOR vNR AND MR

The results that follow pertain to the transitional region between vNR and MR for the same adiabatic
exponent γ = 5/3. The MR region borders with the RR region along curve 5 in Fig. 2. Below this curve
there is the possibility of the existence of a solution in the form of regular reflection. The possibility of
the Mach reflection is also conserved. Theoretically, in this region the solution can be two-valued. The
realization of one or another regime depends on the complete formulation of the problem and, in particular,
on the downstream conditions.

As applied to the given problem of reflection in a plane channel, the Mach-to-regular transition on the
range of weak shock waves was investigated for the Mach numbers M0 = 1.5 and 1.808. The calculated
dependences of the front height in the steady flow with a gradually decreasing angle of the incident shock
inclination β are plotted in Fig. 5a. In this figure βR = βR(M0) is the limiting angle of the incident shock
inclination in the case of the regular reflection. Curves 3 in Fig. 5a are the results of the quadratic inter-
polation which show that the Mach front height vanishes, as the regular reflection boundary is approached,
that is, transition to the regular reflection occurs precisely at the β = βR(M0) boundary. We note that, when
the problem conditions, for example, the lower wall shape, are varied, the irregular reflection can also exist
below this boundary.

To determine the boundary of the singularity existence at the triple point on transition from the vNR to
the MR region we performed the calculations for the governing parameters from the ranges M0 = 1.808
and β ∈ [46.6∘, 52.8∘]. The points corresponding to these range are marked in Fig. 2. It was found that
the singularity is present in all these cases and it does not vanish, as the regular reflection boundary is
approached. The reflected front geometry ϕr(s) is similar with the A(s) curves in Fig. 4. To illustrate this
fact in compact form in Fig. 5b we have plotted the differences ϕr(s)− ϕr(0) for different values of s against
the angle β measured from βR. The quantity ϕr(0) is the angle of the reflected front inclination directly at
the triple point and ϕr(s) is the angle of inclination at a point on the front at a distance s from the triple point.
Thus, for example, in the vicinity of the triple point, 10−4Lm in size, which is smaller than the resolution
limits in the existing laboratory measurements, the angle of the reflected front inclination varies by 1 to 3
degrees. The extrapolation (3) in Fig. 5b indicates that the reflected front singularity at the triple point is
conserved up to transition to the regular reflection.

In Fig. 6 the analogous dependences are plotted for the Mach front and the tangential discontinuity. Here,
the same tendency can be observable, though with somewhat smaller angle variations in the vicinity of the
triple point. Thus, as distinct from the GR and VR cases considered above, in vNR and MR the Mach
front and the tangential discontinuity have infinite curvature at the triple point, which is in agreement with
Guderley’s results [4].

In [3] basing upon the properties of numerical solutions a formula was derived that demonstrates that in
GR the reflected front shape has the logarithmic singularity

ϕr(s) = ϕr(0) − D(M0, β )

lg(s/s0)
, (3.1)

where the coefficient D depends on the initial data of the reflection and a certain scale length s0≫ s.
In Fig. 7 the validity of this dependence for the reflections is checked in the vNR and MR cases.

The quantity s0 = Lm is taken for the scale length. In this case, the argument under the logarithm sign is the
dimensionless natural parameter. In Fig. 7 the calculated dependences of the angles of the reflected front
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Fig. 5. Dependences of the Mach front height (a) and the angles of the reflected front inclination (b) on the angle of the
incident shock inclination; βR is the limiting angle of the regular reflection; M0 = 1.808 (1) and 1.5 (2); (3) is extrapolation;
δϕr = ϕr(s) − ϕr(0); s = 10−3, 10−4, 10−5, and 10−6 (4–7).

Fig. 6. Dependences of the angles of inclination of the Mach front (a) and the tangential discontinuity (b) on the angle of
the incident shock inclination; βR is the limiting angle of the regular reflection; δϕ = ϕ(s) − ϕ(0); s = 10−3, 10−4, 10−5,
and 10−6 (1–4).

Fig. 7. Angles of inclination of the reflected shock wave (a) and the tangential discontinuity (b) near the triple point as
functions of the logarithmic argument; M0 = 1.808 and β = 46.4∘, 48.6∘, 51∘, and 52.8∘ (1–4).
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inclination are presented as functions of the logarithmic argument −(lgs)−1 for four variants. The s range
is 10−10 < s < 10−2. The curves are composed of the data of eight successive calculations with different
values of Fz = 10−1→ 10−8. The grids of these calculations are partially overlapping. Despite the fact that
the result for any cell is presented as a discrete point, the totality of the points looks as a bold curve. The
junctions of neighboring calculations can be seen at the upper parts of curves 2–4 in Fig. 7a. Generally, the
transition zones are almost indistinguishable, which indicates the high efficiency and adequate realization
of the calculation technique.

For all the curves on the 10−5 < s < 10−2 range the logarithmic dependence is near-linear; for the tan-
gential discontinuity the proportionality coefficient D is almost independent of the angle β . In this small
vicinity of the triple point the angle of the tangential discontinuity inclination varies by 2∘ as minimum. The
analogous variations for the reflected front are several times greater and the dependence of the proportion-
ality coefficient D on the input parameter β manifests itself fairly clearly. These differences in the front
geometries indicate that the singularity in the sector between the reflected front and the tangential discon-
tinuity is inhomogeneous with respect to directions. If an approximation for the analytical solution in the
vicinity of the triple point is sought in the form similar with (3.1), then the dependence of the coefficients
of the logarithms on the polar angle should be allowed. From the plots in Fig. 7 it can also be seen that
with further approach to the triple point, that is, at 10−10 < s < 10−5, the linearity changes for a depen-
dence which is nearer to quadratic. All these facts indicate a complicated structure of the singular solution,
which possesses a greater number of degrees of freedom than the solution with finite gradients. We note
that the logarithmic nature of the singularity differs from the power-law behavior obtained by Guderley in
the potential approximation.

With increase in M0 the singularity amplitude gradually diminishes. An attempt to determine the M0

range of singularity existence has been unsuccessful. It was only established that the singularity conserves
up to M0 = 2.

4. DISCUSSION

We note that within the framework of the ideal perfect gas model the singularity at the triple point in
the MR case can be explained fairly simply. In fact, let us assume that the flow parameter gradients and
the front curvatures are finite at the triple point and the three-wave theory works, which includes a closed
system of equations at the shock waves and the tangential discontinuity. Then the passage to the triple
point limit in Eqs. (1.1) and the differential relations following from the conditions at discontinuities yield
a system of 18 linear homogeneous equations in 18 unknowns, namely, two curvatures of the reflected front
and the Mach front and 16 components of the gradients in the sectors behind the shock waves. For a nonzero
solution to exist the determinant of the system should be zero. In the general case, this additional condition
is inconsistent with the three-wave theory equations, that is, a solution with finite nonzero gradients does not
exist. Instead of this solution, there appears a solution with a gradient singularity at the triple point. We note
that the above considerations do not exclude the existence of T -configurations with zero curvatures of the
shock waves and zero gradients, which were allowed by Guderley. In this case, the singularity exhibits itself
only in the second derivatives of the solution. At M0 ≤ 2 these T -configurations were not observable.

If the flow behind the reflected shock is supersonic, then the condition on the going-away characteristics
should be excluded from the equations of motion and the system that remained can admit a solution with
finite nonzero gradients. The consideration of the previous paragraph can be inapplicable for triple points in
axisymmetric or self-similar flows, since in this case the equations of motion include source terms, which
leads to inhomogeneous systems of equations with respect to the gradients.

As for self-similar solutions, the double Mach reflection at γ = 1.4 was considered in detail in [16], in
which case the second triple point includes a singularity. It is noteworthy that in [16] and in the equivalent
T -configuration for the problem of stationary reflection (M0 = 2.2, β = 47∘) the curvatures of the shock
waves and the tangential discontinuity are opposite in sign. This means that the subsonic singularity pa-
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rameters cannot be uniquely determined from the local theory and adapt to the global flow. The singularity
plays the role of a sort of a versatile mechanism of the smooth matching of the local solution provided by the
three-wave theory and the global solution. Then a conclusion suggests itself that on the range of moderately
weak shock waves the presence of singularity at the triple point of the triple configuration with subsonic
flow on either side of the tangential discontinuity is rather a rule than an exception.

Summary. Detailed calculations of flows in the vicinity of triple points are performed in the case of the
stationary irregular reflection of weak and moderate shock wave using a new numerical method. The results
of the calculations show that in the case in which the four-wave flow pattern is realized, the curvatures of
the tangential discontinuity and the Mach front are finite at the triple point. In this case, the singularity with
infinite gradients is concentrated only in the sector in between the reflected shock front and the expansion
fan. When the three-wave flow pattern is realized, the curvatures of the tangential discontinuity and the both
shock fronts are infinite at the triple point. On the range of weak and moderate shock waves the logarithmic
singularity in the subsonic sectors near the triple point conserves up to transition to the regular reflection.
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