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Abstract—A combined fully Lagrangian approach for meshless modeling of unsteady axisymmetric
vortex flows of a gas-particle mixture with an incompressible carrier phase is developed. The approach
proposed is based on the combination of a meshless vortex method for calculating axisymmetric flows
of the carrier phase described by the Navier–Stokes (or Euler) equations and the full Lagrangian method
for calculating the parameters of the dispersed phase. The combination of these methods reduces the
problem of modeling the two phase flows to the solution of a high-order system of ordinary differential
equations for the coordinates of toroidal vortex elements in the carrier phase and the particle trajectories,
the velocity components, and the components of the Jacobian of transformation from the Eulerian to the
Lagrangian variables in the dispersed phase. The application of the method is illustrated by modeling
the behavior of an admixture of inertial Stokes particles with a small mass concentration in unsteady
flows like solitary vortex rings in a viscous carrier phase and groups of vortex rings in an effectively
inviscid carrier phase.

Keywords: full Lagrangian approach, vortex method, inertial particles, concentration, diffusion veloc-
ity, axisymmetric flow, Navier–Stokes equation.

DOI: 10.1134/S0015462816050094

The development of models and methods for calculating unsteady vortex flows of ‘gas (fluid)—particle’
mixtures is important because such flows are widely encountered in nature and engineering. The examples
include gas-droplet flows in internal-combustion engines, where, after the fuel injection, vortex rings are
formed [1]; dust rise during the helicopter landing in a desert [2]; gas-particle tornadoes and ‘dust devils’
[3–4]; the motion of gas-particle mixtures in vortex separators [5]; swirling bubbly flows [6], and others [7].

In many important applications, the two-phase medium is fairly dilute, the volume fraction of the dis-
persed inclusions is very small (of the order of 10−4–10−6). In this case, the inertial dispersed admixture
is usually modeled by the equations of a continuum devoid of self-stresses (pressureless continuum). This
continuum is extremely compressible, in it there may arise the ‘folds’, i.e. the regions of crossing particle
trajectories (where formally several ‘cold’ dispersed continua co-exist), the localized particle accumula-
tion regions with singular values of the particle number density on their boundaries (caustics) [8], as well
as strong discontinuities of the dispersed-phase parameters and the zones devoid of particles. The bound-
aries of the regions of crossing particle trajectories are unknown beforehand, that makes the standard Euler
approach practically inapplicable for the quantitative description of complex unsteady gas-particle flows.
All mentioned above features of the particle density fields are evident in unsteady flows with localized vor-
ticity regions. A detailed study of the dispersed-phase concentration fields in such flows (in the presence of
discontinuities, integrable singularities in the particle number density, caustics, and folds of the dispersed-
phase volume) requires the development of efficient methods for the accurate calculation of the carrier-phase
hydrodynamic fields and special methods of computing the concentration fields of the inclusions.
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This work is devoted to the development of a combined Lagrangian method (CLM) for modeling un-
steady axially symmetric gas-particle vortex flows with a viscous (or efficiently inviscid) carrier phase.
Earlier, a combined fully Lagrangian approach was proposed by the authors in [9,10] for the case of 2D
plane-parallel flows. The method is based on the modification and combination of two Lagrangian ap-
proaches, namely, a vortex method for solving the Navier-Stokes (or Euler) equations for the carrier phase
and the full Lagrangian method for calculating the parameters of the dispersed phase. The full Lagrangian
approach, proposed in [11] and then developed for various classes of dispersed flows (see, for example,
[3, 12–17]), is a highly reliable and efficient method which enables one, in addition to the calculation of
the dispersed-phase velocity field, to calculate correctly the concentration fields of the dispersed admixture
in the flows with intersecting particle trajectories. This method is based on the use of the dispersed-phase
continuity equation in the Lagrangian form and the derivation of additional equations for the components of
the Jacobian of the transformation from the Eulerian to the Lagrangian variables.

In recent years, different Lagrangian approaches have been developed also for the numerical simulation
of pure-fluid flows. Among them are the SPH (‘smoothed particle hydrodynamics’) methods [18, 19], which
use the standard ‘velocity–pressure’ variables, and various variants of vortex methods, using the ‘velocity–
vorticity’ variables, which generalize the methods of discrete vortices to the case of viscous flows (see,
for example, books [20, 21], papers [22–25] and the literature therein). The vortex methods have proven
themselves as handy tools for the solution of plane and axisymmetric problems in which the vorticity is
localized in space, which allows to compute economically unsteady velocity fields in viscous and efficiently
inviscid flows.

In the combined Lagrangian method developed in the present work, for calculating the carrier-phase
parameters we use a variant of a vortex method based on the introduction of the so-called ‘diffusion ve-
locity’ of the vorticity and the divergence form of the transport equation for the vorticity in a viscous fluid
[22, 23]. The parameters of the inertial dispersed phase are calculated using the full Lagrangian method
[11]. In contrast to the standard Lagrangian-Eulerian methods, widely used in commercial software pack-
ages, the combined Lagrangian method proposed makes it possible to avoid the cumbersome procedure of
the recalculation of the carrier-phase parameters from the Lagrangian to the Eulerian grid.

It should be noted that recently several publications appeared in the literature (e.g., [26, 27] and the
papers cited therein), which were devoted to the development of methods that combine different variants of
vortex methods for the carrier phase and a Lagrangian approach for the admixture. However, in all these
studies (except [9, 10]) the Lagrangian approach was used only for calculating the particle trajectories, and
no accurate calculation of the particle concentration field with account for the possibility of crossing particle
trajectories was performed.

In the present work, the combined Lagrangian method is developed for the case of axially symmetric
gas-particle flows without a swirl, and the application of the method is illustrated by several examples of
simulating the behavior of an admixture of inertial Stokes particles in unsteady vortex flows like vortex rings
and their groups.

1. BASIC IDEAS OF THE COMBINED LAGRANGIAN METHOD

We consider unsteady vortex flows (without a swirl) of a two-phase gas-particle mixture in an unbounded
space. As the basis for the mathematical modeling we use the two-fluid ‘dusty-gas’ model [28], according to
which at each point of space there are two continua, namely, the carrier and the dispersed phase. The carrier
phase is incompressible and (in general case) viscous fluid with a constant density ρ , viscosity μ , velocity v,
and pressure p. The dispersed phase consists of identical spherical particles of radius σ and mass m, moving
with the velocity vs and having the number density ns. The random motion of the particles is neglected,
which leads to the absence of self-stresses (pressure) in the continuum of particles. The particle volume
fraction is negligibly small, which makes it possible to use the known expressions for the force acting on the
individual particle in a viscous flow. The mass concentration of the admixture is also assumed to be small,
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and the effect of the particles on the carrier flow is neglected. These assumptions make it possible to solve
the problem of calculating the vortex flow of the carrier phase independently of the dispersed-phase motion.

Description of the Carrier Phase

To calculate the parameters of the carrier phase in unsteady axially symmetric flows without a swirl,
we use a variant of the vortex method based on the diffusion velocity of the vorticity [22, 23]. In the case
considered, there is only one non-zero component of the velocity curl (referred to as the vorticity ω), directed
along the variation of the azimuthal angle ϕ . In the ‘velocity–ω’ variables, the Navier–Stokes equations are
rewritten in divergence form in the cylindrical coordinates r = (r, ϕ , z), where the symmetry axis coincides
with Oz:

∂ (urr)
∂ r

+
∂ (urz)

∂ z
= 0,

∂ω
∂ t

+
∂
∂ r

[
(ur + udr)ω

]
+

∂
∂ z

[
(uz + udz)ω

]
= 0. (1.1)

Here, v = (ur, 0, uz) is the convective velocity of the carrier phase in the cylindrical coordinates, vd =
(udr, 0, udz) is the vorticity diffusion velocity which, in the case of axisymmetric flows without a swirl, in
the cylindrical coordinates takes the form:

vd =− 1
Re

∇(rω)

rω
, ω =

(
∂ur

∂ z
− ∂uz

∂ r

)
, ∇(rω) =

(
∂ (rω)

∂ r
, 0,

∂ (rω)

∂ z

)
. (1.2)

Here, all equations are written in dimensionless form. For the scaling, we used certain characteristic
values of velocity U , length L, time L/U , vorticity U/L, and circulation UL. The Reynolds number is
Re = ρUL/μ . For particular examples, the choice of the characteristic scales of length and velocity will be
explained below. In a viscous fluid, the vorticity is not ‘frozen’ in the medium: it is transported with the
velocity equal to the sum of the flow velocity and the diffusion velocity. Accordingly, when considering the
vorticity transport, the ‘Lagrangian’ vortex element means an element the points of which move with the
total velocity v + vd .

To find the carrier-phase parameters for a specific initial vorticity distributions, at first the vorticity field
is calculated at each time step from the second of Eqs. (1.1). When the vorticity is found, the convective
velocity v = (ur, uz) can be obtained from the Biot–Savart integral, which in the case of axisymmetric flow
without a swirl gives the following expressions for the velocity components [29]:

ur(r) =− 1
2πr

∫ ∫
ω(R, Z) f ′(k)

∂k
∂ z

(rR)1/2dRdZ,

uz(r) =
1

2πr

∫ ∫
ω(R, Z)

(
f (k)

2r
+ f ′(k)

∂k
∂ r

)
(rR)1/2 dRdZ, (1.3)

f (k) =

(
2
k
− k

)
K(k)− 2

k
E(k), k(r, R) =

(
4rR

(r + R)2 + (z−Z)2

)1/2

.

Here, the radius-vectors r(r, z) and R(R, Z) are considered in the plane. The integration over Z is
performed from ∞ to +∞, and over R from 0 to ∞; K(k) and E(k) are the complete elliptic integrals of the
first and second kind:

K(k) =

π/2∫

0

(1 − k2 cos2 θ)−1/2 dθ , E(k) =

π/2∫

0

(1 − k2 cos2 θ)1/2 dθ .

The Description Of The Dispersed-Phase Dynamics

For the class of unsteady vortex flows under study, the typical feature is the onset of regions of crossing
particle trajectories. On the boundaries of these regions, the caustics can be formed, near which the particle
number concentration sharply increases [8]. The boundaries of the regions of intersecting trajectories and
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the number of trajectories intersecting at a fixed Eulerian point of space are unknown in advance, which
makes inapplicable the Euler approach to the description of the dispersed phase. In this regard, below we
use a Lagrangian description of the dispersed phase, and the parameters of the particulate continuum are
found using the full Lagrangian method described in a more detail in [3, 10–15].

As the Lagrangian coordinates, we choose the values of the Euler cylindrical coordinates of dispersed
particles at a certain instant of time taken as the initial point: rs0 = r(t = 0). The Lagrangian equations of
a ‘cold’ (pressureless) continuum of particles in dimensionless form (in nondimensionalization, the scales
of the coordinates, velocity, and time are taken as in the previous section, and the particle concentration is
scaled to a certain characteristic value nse) are as follows:

∂rs(t, rs0)

∂ t
= vs(t, rs0), (1.4)

∂vs(t, rs0)

∂ t
= fs(vs, v(t, rs)), (1.5)

ns(t, rs0)∣det J∣rs = ns0(0, rs0)rs0. (1.6)

Here, fs is the dimensionless force exerted on the particle, ∣detJ∣ is the modulus of the Jacobian of the
transformation from the cylindrical Eulerian coordinates to the Lagrangian coordinates: Jpq = ∂ (rs)p/∂ (rs0)q

(p, q correspond to 1, 2, where 1 corresponds to r and 2 to z). Taking the modulus of the Jacobian in (1.6)
automatically takes into account the change in the orientation of the Lagrangian contour (and ensures the
positiveness of the particle concentration) with the formation of folds in the continuum of particles.

To calculate the concentration along particle trajectories using (1.6), we derive additional equations for
the Jacobian components Jpq. These equations are obtained by the differentiation of Eqs. (1.4)–(1.5) with
respect to the Lagrangian coordinates:

∂Jpq(t, rs0)

∂ t
= ϑpq(t, rs0), (1.7)

∂ϑpq(t, rs0)

∂ t
=

∂ (fs)p

∂ (rs0)q
. (1.8)

Here, ϑpq = ∂ (vs)p/∂ (rs0)q are the derivatives of the velocity components with respect to the Lagrangian
coordinates.

In the present study, as an example of the interphase momentum exchange we use the Stokes drag, which
gives the main contribution in the case of heavy particles whose density is much greater than that of the
carrier phase (gas-particle mixtures, aerosols). Examples of the application of the full Lagrangian method in
the cases when the interphase momentum exchange includes the Archimedes, added mass, and lifting forces
can be found, for instance, in [3, 9, 15].

In dimensional form, the expression for the Stokes drag is

f∗s = 6πσ μ(v∗ − v∗s ).

Taking this into account, dimensionless Eqs. (1.5) and (1.8) take to form:

∂vs

∂ t
= β

[
v(t, rs) − vs

]
,

∂ϑpq

∂ t
= β

[
∂up(t, rs)

∂ r
Jpq +

∂up(t, rs)

∂ z
Jpq − ϑpq

]
.

Here, each index “p” and “q” takes the values of r and z, β = 6πσ μL/mU is the dimensionless parameter
of particle inertia (sometimes in the literature the inverse value, called the Stokes number, is used).

For a fixed value rs0 (along a chosen trajectory rs(rs0, t)), system (1.4)–(1.8) becomes a system of or-
dinary differential equations. As the initial conditions for system (1.4)–(1.8), we use the initial coordinates
and velocity of the particles, the values Jrr = Jzz = 1, Jrz = Jzr = 0, and the values of ϑpq corresponding to
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the initial conditions for the particle velocity field at the starting point of the considered trajectory. The cal-
culations are performed for M chosen particle trajectories, which start in the region originally occupied by
the dispersed phase at the points with the initial coordinates rs0 j ( j = 1, . . . , M). The number of calculated
trajectories M is determined by the required level of detailing the description of the dispersed-phase velocity
and concentration fields.

Discrete-Vortex Method for Calculating the Carrier-Phase Parameters

In calculating the parameters of the dispersed phase, the values of the carrier-phase velocity components
and their derivatives with respect to the Eulerian coordinates, entering in the right-hand sides of the equa-
tions, should be known at the points of the calculated particle trajectories. Below we describe a discrete
version of the procedure of finding the carrier-phase parameters using the meshless vortex method. The
domain of the initial non-zero vorticity Ω in the plane (r, z) is split into a set of N small Lagrangian ele-
ments with areas ΔSi and coordinates of their centers (ri, zi) (i = 1 . . . , N). In the space, each such element
corresponds to a toroidal vortex ring, characterized by the ring radius ri, the coordinate along the symmetry
axis zi, a small radius of the ring section ai ≪ ri, and the velocity circulation γi, equal to the vorticity flux
through ΔSi. The radius of the ring section satisfies the relation πa2

i = ΔSi. Due to the divergence form of the
vorticity transport equation in (1.1), the Lagrangian vortex elements, moving with the total velocity v + vd ,
preserve the vorticity flux, and hence their values of the velocity circulation. Hence, the circulations of the
chosen elements γi are constant, and ∑

i

γi = Γ, where Γ is the total circulation of the vorticity domain Ω.

In the Lagrangian variables t and ri0 = ri(t = 0), the equations of motion of the centers of the chosen
small vortex elements can be written in the form:

∂ri(t, ri0)

∂ t
= v(t, ri) + vd(t, ri), ri = (ri, zi). (1.9)

The values of the flow velocity components at the points ri are found from the discrete analog of the
Biot–Savart integral (1.3):

ur(ri) =− 1
2πri

N

∑
j=1
j ∕=i

γi f ′(ki j)
∂ki j

∂ zi

√
rir j, ki j =

(
4rir j

(ri + r j)2 + (zi− z j)2

)1/2

,

uz(ri) =
γi

4πri

(
ln

8ri

ai
− 1

4

)
+

1
2πri

N

∑
j=1
j ∕=i

γi

(
f (ki j)

2ri
+ f ′(ki j)

∂ki j

∂ ri

)√
rir j.

(1.10)

Here, the first term in the expression for uz(ri) is responsible for the self-induced velocity of the i−th
vortex ring [30].

To find the vorticity and its gradient with respect to the Eulerian coordinates, required for calculating the
diffusion velocity vd (1.2) at an arbitrary point r, we use the interpolation based on the method of smoothed
particle hydrodynamics [18–20]:

ω(r)

∫
ω(R)δ (r, R)dR≈

∫
ω(R)δε(r, R)dR≈

N

∑
i=1

γiδε(r, ri),

∇ω(r)≈
N

∑
i=1

γi∇δε(r, ri).

Here, δ is the delta-function, δε is an approximation of the delta-function by a ‘cut-off’ function which
ensures a weak convergence to the delta-function as ε → 0. To improve the accuracy of the approximation,
the values of the small parameter εi are chosen different for the neighborhoods of different vortex elements
(with the subscript “i”), because they depend on the distance to the center of the nearest element. The form
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of the cut-off function can be chosen fairly arbitrarily, with satisfying the necessary balance between the
complexity of calculations and the required accuracy. In the earlier articles [10, 31], we used the cut-off
functions of both the first order [21]

δε(r, ri) =
1
εi

exp

(
− ∣r − ri∣

εi

)

and higher orders, for example:

δε(r, ri) =
1

3πε2
i

(
4 − ∣r − ri∣2

ε2
i

)
exp

(
− ∣r − ri∣2

ε2
i

)
.

In most calculations presented below, we used the cut-off function of the first order. With account of the
form of the cut-off function δε the expressions for the vorticity and the components of its gradient take the
form:

ω(r, z)≈
N

∑
i=1

γi

εi
exp

(
−
√

(r− ri)2 + (z− zi)2

εi

)
,

∂ω(r, z)
∂ r

≈
N

∑
i=1

γi

ε2
i

exp

(
−
√

(r− ri)2 + (z− zi)2

ε2
i

)(
ri− r

√
(r− ri)2− (z− zi)2

)
, (1.11)

∂ω(r, z)
∂ z

≈
N

∑
i=1

γi

ε2
i

exp

(
−
√

(r− ri)2 + (z− zi)2

ε2
i

)(
zi− z

√
(r− ri)2− (z− zi)2

)
.

In addition, we use the relations for the small variable radii of the cross-sections of the vortex elements
ai(t):

a2
i ωi = a2

i0ωi0 = consti. (1.12)

These relations are obtained from the condition of the constancy of the vorticity flux through the cross-
section of the Lagrangian vortex element whose center travels with the total velocity v + vd .

In accordance with the recommendations of [21], the value of the ‘support’ of the cut-off function εi is
taken proportional to the distance to the nearest vortex element li(t): εi(t) = Cli(t), where C is a constant
greater than unity.

The initial discretization of the region of non-zero vorticity implies the choice of the appropriate values
of ri0, γi, and ai, which should ensure a satisfactory approximation of the initial vorticity field according
to formula (1.11). The more detailed information about the possible ways of discretization of the initial
vorticity can be found in [20].

For finding the interphase force in (1.5) and its derivatives in (1.8), it is necessary to calculate the carrier-
phase velocity and its derivatives with respect to the Eulerian coordinates (r, z) at the points (t, rs j0) ( j is
the number of the trajectory). For this purpose, we use the formulas similar to (1.10) and their derivatives
with respect to the spatial coordinates. If the point at which the velocity is calculated does not fall in the
region of non-zero vorticity, the contribution of the self-induced velocity of the vortex ring (the first term in
the formula for uz in (1.10)) is neglected.

To calculate the derivatives of the carrier-phase velocity ∂ur,z/∂ r and ∂ur,z/∂ z, it is possible to differ-
entiate analytically the expressions (1.10) over the Eulerian coordinates r and z or to use the second-order
finite-difference approximations of the derivatives with a discretization step h:

(
∂ur,z

∂ r

)

r=rs

≈ ur,z(rs + h, zs) − ur,z(rs − h, zs)

2h
,

(
∂ur,z

∂

)

r=rs

≈ ur,z(rs, zs + h) − ur,z(rs, zs − h)

2h
.

Here, the velocity values at several points are calculated also with the use of (1.10).
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The Advantages of the Combined Lagrangian Method

We should note one important advantage of the combined fully Lagrangian method compared with the
standard Lagrangian–Eulerian methods, in which the velocity field of the carrier phase is calculated at the
fixed grid points of the Eulerian mesh. In the general case, the grid points of the Eulerian mesh do not
coincide with the current positions of the dispersed particles rs, so that at the points r = rs it is necessary
to interpolate the values of the requested functions from the Euler mesh. It is a cumbersome procedure
resulting in a substantial error the order of which depends on the order of the interpolation polynomial.
Usually, in practice, the quadratic interpolation is used (see, for example, [17]). The proposed combined
approach makes it possible to avoid the procedure of remeshing from the Eulerian to the Lagrangian mesh,
and formulas (1.10) make it possible to find the velocity values at any point without an additional error.

The combined approach described above makes it possible to find all two-phase flow parameters (the
coordinates of the vortex element centers, the velocity and vorticity of the carrier phase, the particle tra-
jectories, the velocity and the concentration of the dispersed phase) from the solution of the system of
governing equations, which consists of 2N + 12M ordinary differential equations (1.4)–(1.5), (1.7)–(1.9),
finite integral sums (1.10)–(1.11), and finite algebraic relations (1.6) and (1.12).

The method can be used for the description of disperse multiphase mixtures with an incompressible
viscous and an effectively inviscid carrier phase. In the latter case, the diffusion velocity is set to be zero,
and the method of calculating the carrier-phase parameters reduces to a known class of vortex methods for
axisymmetric flows of inviscid fluids [29]. In this case, instead of relation (1.12), it is necessary to use the
relation a2

i ri = a2
i0ri0, which follows from the fact that the toroidal vortex tubes are ‘frozen’ in the inviscid

incompressible carrier phase.

2. THE NUMERICAL SOLUTION OF THE EQUATIONS
OF THE COMBINED LAGRANGIAN METHOD

The solution of the system of governing Eqs. (1.4)–(1.12) is found numerically. At each time step, for
solving the system of Eqs. (1.9) describing the motion of the vortex elements the second-order Runge–Kutta
method was used. To calculate the convective and diffusion velocities, in the right-hand side of Eqs. (1.9),
the current values of the vortex element coordinates are substituted into formulas (1.10)–(1.11), in which
the radius of the elementary vortex ring, used in the calculation of its self-induced velocity, is found from
Eq. (1.12), and the value of the cut-off function support is calculated as εi(t) = Cli(t) (li(t) is the distance to
the nearest vortex element). In the calculations, the value of the coefficient C = 1.15 was chosen from the
conditions of optimal approximation of the initial vorticity field in the examples considered below. The cur-
rent coordinates of the chosen M particles, and the corresponding values of the particle velocity components,
and the components of the Jacobian Jpq j(t) are found from the numerical solution of system (1.4)–(1.5),
(1.7)–(1.8) for each trajectory using the Runge–Kutta method. When the Jacobian components are found,
the concentration of the dispersed impurity is calculated using formula (1.6). Thus, at each time step all
two-phase flow parameters become known along the chosen M Lagrangian trajectories of the particles.

3. EXAMPLES OF THE APPLICATION OF THE COMBINED LAGRANGIAN METHOD

As the first example illustrating the capabilities of the combined Lagrangian method, we considered the
evolution of a cloud of inertial particles against the background of the motion of a system of thin coaxial
vortex rings of equal circulation in an inviscid fluid. Earlier, such system of vortex rings in a pure inviscid
fluid was studied in [32]. It was shown that, depending on the intensity and the initial location of the
rings, different regimes of their motion along the symmetry axis can be realized, in particular, the so-called
‘leapfrogging’ regime, in which the vortex rings periodically change their radius and pass through each
other. Against the background of this flow, a finite cloud of inertial particles, moving with a velocity slip
with the carrier phase, is subjected to significant deformations. In the calculations, as the length scale L the
maximum vortex ring radius is taken, and the velocity scale is Γ∗/L, where Γ∗ is the dimensional velocity
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Fig. 1. Locations of the cloud of inertial particles (1) and two vortex rings (2) at subsequent instants of time t = 1.72, 3.12,
4.28 (a–c); (d) trajectories of the two vortex rings in inviscid fluid, corresponding to the periodic ‘leapfrogging’ regime.

circulation around a single vortex ring. Below, we present the examples of calculations corresponding to
two and four vortex rings. The initial values of the parameters were as follows:

ri0 = 1, z10 = 0, z20 = 1, ai0 = 0.01, γi = 1, N = 2,

r10 = r30 = 1, r20 = r40 = 0.5, zi0 = 0.5(i−1), ai0 = 0.01, γi = 1, N = 4.

The particle cloud consists of M chosen elements, with the particle inertia parameter β = 1 (the velocity
relaxation length is equal to the characteristic length scale of the flow). At the initial instant, the cloud was
at rest and uniformly occupied the domain Ωp = {(r, z) : r ∈ (0, 1], z ∈ [1.5, 2.5]}, which corresponds to
the initial conditions (the subscript “ j” is omitted):

rs0 ∈Ωp, vs0 = 0. (3.1)

All calculations presented were performed with a constant time step, which was smaller than Δt = 10−4,
that ensured the satisfactory accuracy. In the example considered, only Eqs. (1.4)–(1.5) allowing to deter-
mine the positions of the dispersed particles were solved; accordingly, it was sufficient to use only initial
conditions (3.1). Figure 1 shows the calculations of the evolution of the particle cloud at successive instants
of time (a–c) in the case of two vortex rings moving in the leapfrogging regime. In the course of motion,
the volume of the dispersed phase is subjected to a significant deformation: it is elongated along the axis of
vortex motion and displaced from the near-axial region. In Fig. 1, the trajectories of the two vortex rings for
the leapfrogging regime considered are shown on a larger time scale. Within the graphical accuracy, the tra-
jectories of the vortices coincide with the results of [32], which serves as the confirmation of the correctness
of the algorithm and the accuracy of the presented numerical calculations.

In the case of the flow with four vortex rings (Fig. 2), the fragmentation of the particle cloud occurs.
At the initial stage, the particle cloud is first deformed, and then a part of the cloud is separated and entrained
by the two fastest vortices. The calculations show that with increase in the number of the localized and
distant vortex rings the degree of the fragmentation of the particle cloud increases. In all calculations,
multiple intersections of the particle trajectories are observed, which can be successfully tracked by the
proposed algorithm of the combined Lagrangian method.

As the next example, we consider a gas-particle flow induced by the motion of a vortex ring of finite
thickness in a viscous fluid at moderate Reynolds numbers. The motion of solitary vortex rings in pure
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Fig. 2. Locations of the cloud of particles (1) and four vortex rings (2) at subsequent instants of time t = 0.75, 1.5, 3 (a–c).

viscous fluids was discussed in many publications (for example, see [33–35] and the literature therein).
The initial stage of the evolution of a laminar vortex ring in a viscous fluid depends significantly on the initial
distribution of vorticity, but then, over time, some integral parameters of the flow go on the asymptotics,
obtained by different authors (see, a review [33]), for the purely diffusion regime of vorticity transport
(when the convective terms in the vorticity transport equation can be neglected). The velocity of the vortex
centroid is described by the asymptotic formula [33] (the dimensional variables are marked by the asterisks):

V ∗c = 0.0037038
I∗/ρ∗

ν∗(t∗ − t∗0)3/2
. (3.2)

Here, ρ∗ and ν∗ are the density and kinematic viscosity of the fluid, t∗0 is a certain time value depending
on the initial distribution of vorticity, the Reynolds number, and the details of the vortex ring evolution at
the initial stage, V ∗c and I∗ are the vortex-centroid velocity and the vortex impulse, which are given by the
formulas:

V ∗c =
dz∗c
dt∗

, z∗c =

∫
ω∗r∗2zdr∗ dz∗
∫

ω∗r∗2 dr∗ dz∗
, I∗ = πρ∗Γ∗2R∗0

2.

Here, the integrals are taken over the entire space, R∗0 is the initial toroidal radius of the vortex ring. In
this problem, it is convenient to take the length scale equal to R∗0 and the velocity scale equal to Γ∗/R∗0,
then the Reynolds number is Re = Γ∗/ν∗ and the global dimensionless circulation is equal to unity. The
solution in dimensionless form depends only on the Reynolds number and the initial vorticity distribution
corresponding to the unit total circulation in the ring the toroidal radius of which is equal to unity.

In our dimensionless variables, asymptotics (3.2) take the form:

Vc = 0.0037038π
(

Re
t − t0

)3/2

. (3.3)

To verify the numerical algorithm of calculating the viscous carrier-phase flow using the above method
of discrete vortex elements, we calculated the evolution of a vortex ring in a pure viscous fluid for different
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Reynolds numbers. For simplicity, the initial (at a small t1 = 0.01) vorticity distribution in the ring was
taken as in the Oseen vortex:

ω0 =
Re
4t1

exp

[
− Re

4t1

(
z2 + (r − 1)2)

]
. (3.4)

The circular domain of the initial non-zero vorticity was split into N vortex elements, which were con-
structed by splitting the equidistant annular elements by a given number of radial elements. The maximum
number of the vortex elements in the calculations was as large as several thousand. The calculated values
of the vortex centroid velocity for three values of the Reynolds number are presented in Fig. 3. Clearly,
with increase in time the calculated velocity of the centroid approaches asymptotics (3.3) with a satisfactory
accuracy, which confirms the efficiency of the numerical algorithm for calculating the parameters of the
carrier phase. It turned out that for three considered values of Re = 50, 100 and 200, the value of the free
parameter t0 in Eq. (3.3) can be chosen almost the same: t0 ≈ −1.14. Figure 4 shows a typical calculation
of the velocity pattern formed in the vortex with time.

Further, we calculated the evolution of a finite cloud of inertial particles in the vortex flow under study.
At the initial instant, the cloud occupied a disk-shaped region Ωp = {(r, z) : r ∈ [0, 1.5], z ∈ [0, 0.4]}.
The initial number concentration of the particles in the cloud was assumed to be uniform ns0(r, z) = 1. Two
variants of the initial conditions for the particle velocity were considered: in the first variant, the velocity
was equal to zero, and in the second variant the particle velocity was equal to that of the carrier phase. In
calculating the particle concentration along the chosen trajectories, Eqs. (1.7)–(1.8) were solved with the
initial conditions:

Jrr = Jzz = 1, Jrz = Jzr = 0.

In the case of zero initial velocity of the particles, ϑrr = ϑzz = ϑrz = ϑzr = 0. In the second variant, at
the initial instant we have:

ϑrr =
∂ur

∂ r
, ϑrz =

∂ur

∂ z
, ϑzr =

∂uz

∂ r
, ϑzz =

∂uz

∂ z
.

For discretizing the initial admixture distribution, we used M values of initial coordinates of the particles,
uniformly distributed in Ωp.

The vortex ring under study, specified by the initial vorticity distribution (3.4), travels along the z-axis
with a gradually decreasing velocity. In Fig. 5, for the Reynolds number equal to 100 and three subsequent
instants of time, we present the distribution patterns of the vortex element centers 2 and the chosen particles
of the dispersed phase (1, the dot color intensity corresponds to the value of the particle number density at
the considered point of space). It is clear that, with time, the particle cloud is elongated and ‘coiled’ onto the
vortex. Therewith, ahead of and behind the vortex localized high particle concentration zones are formed.
It should be noted that for fairly inertial particles the formation of ‘folds’ in the dispersed continuum is
typical. It is associated with the intersections of particle trajectories. This effect is illustrated in Fig. 6,
where several Lagrangian surfaces are shown, which at the initial instant were flat surfaces z = const (a),
(c). In Figs. 6b and 6d, we show the calculated distributions of the particle concentration at the leading
and the trailing Lagrangian surface. Clearly, the local particle concentration sharply increases at the points
of the onset of a fold. These features of the behavior of the inertial dispersed phase make difficult the
use of the standard Eulerian or Eulerian–Lagrangian approaches for the accurate calculation of the particle
concentration distribution in vortex flows. However, the full Lagrangian approach developed in this paper
makes it possible to cope successfully with the above mentioned problems.

Summary. A combined fully Lagrangian method for modeling axisymmetric (without swirl) vortex flows
of dilute gas-particle mixtures in an unbounded space is proposed. The approach developed is based on the
combination of a vortex blob method for the viscous (or effectively inviscid) incompressible carrier phase
and the full Lagrangian method for calculating the parameters of the dispersed phase. The combined method
has a clear advantage as compared to the standard Eulerian-Lagrangian approaches: it makes possible to
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Fig. 3. Fig. 4.

Fig. 3. The approach of the vortex centroid velocity to the self-similar asymptotics for Re = 200, 100, 50 (1–3);
(4) asymptotics (3.3); the logarithmic scale is used in the x-axis.

Fig. 4. The velocity vector pattern in the vortex ring in the plane (r, z) for Re = 100, t = 0.962, N = 2601.

Fig. 5. Locations of the cloud of inertial particles (1, the color corresponds to the particle number concentration) and
vortex elements (2) at subsequent instants of time t = 0.2998, 0.9998, 2 (a–c) for Re = 100, beta = 1; the number of
vortices N = 961, the number of tracked particles M = 500.
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Fig. 6. Locations of the Lagrangian surfaces 1–4 and the distribution of the particle concentration on the leading (1) and
trailing (4) Lagrangian surface for Re = 100, β = 0.5, N = 961, M = 500: (a, b) t = 1.3478, at the initial instant the particles
are at rest; (c, d) t = 0.3998, at the initial instant the particles move with the gas.

avoid the cumbersome procedure of the recalculation of the parameters from the Eulerian to the Lagrangian
grid. The method is particularly convenient for accurate calculations of the dispersed phase concentration
fields in vortex flows with crossing particle trajectories.

The work obtained financial from the Russian Foundation for Basic Research (No. 14-01-00147).
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