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Abstract—Existence conditions are investigated for the unidirectional flows of binary mixtures de-
scribable by the equations of motion in the Oberbeck–Boussinesq approximation with account for the
thermodiffusion effect. Possible solutions are classified, known and novel classes of exact solutions
being distinguished. For the solutions obtained different formulations of boundary-value problems are
proposed. Flows between two rigid walls with given heat distribution laws are described.
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The study is devoted to investigating the thermal diffusion convection equations in the Oberbeck–Bous-
sinesq approximation for unidirectional binary mixture flow. The latter can be realized in a channel with
walls of high heat conductivity and ends different in temperature, sufficiently long in the horizontal direction.
For a homogeneous fluid the mathematical model of such flow was proposed in book [1], the solution being
obtained and interpreted for constant temperatures gradients at the walls in [2]. Later, this solution was
obtained once more [3, 4] and generalized to include flows in geometrically different domains [5, 6]. Its
unsteady analogs were also considered [7, 8].

For the nonlinear dependence of density on temperature and concentration the problem of solution exis-
tence was investigated within the framework of a similar model in [9].

In the present study, the conditions of existence of the flows described are investigated in detail for a
binary mixture with account for thermodiffusion. In contrast to the solutions of equations for purely thermal
convection, where the linear temperature distribution at the wall requires the linearity of temperature distri-
bution inside the layer, within the framework of the model considered the dependence of temperature and
concentration on the longitudinal coordinate is generally quadratic, which in its turn suggests the quadratic
law for the temperature distribution along the horizontal wall. For the system in question all possible exact
solutions are exhausted by three cases, depending on the integration of the equations that link the den-
sity function and the parameters of state. For the solutions constructed, we propose some formulations of
boundary-value problems for binary mixture flow between two rigid walls at which the temperature distri-
bution is specified or there is no heat flux, as well as on the assumption that the layer is bounded from above
by a free boundary. Examples are presented for two mixtures, which demonstrate the fluid behavior under
the temperature gradient that acts by a given law along the horizontal walls.

It should be noted that in [10] for the system investigated the group classification problem was solved
with respect to the thermal and concentration expansion coefficients, thermal diffusivity, and the diffusion
and thermodiffusion parameters. The solution of that problem resulted in the list of admissible differential
operators whose action leads to a reduction in the number of dependent and/or independent variables in
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UNIDIRECTIONAL FLOWS OF BINARY MIXTURES 137

the system. The knowledge of these operators enables us to construct exact solutions whose variety is
presented in [11]. In [12], the group analysis was performed and an exact solution of the thermal diffusion
equations with account for vibrational convection was constructed. As compared with the solutions obtained
in [10–12], those obtained in the present study are, on one hand, more general and, on the other, specified
for unidirectional flow alone.

1. EQUATIONS OF THERMAL DIFFUSION MOTION
AND THEIR EXACT SOLUTIONS

The unidirectional thermal diffusion flow equations have the following form (p∗ = p∗(x, z), θ = θ(x, z),
and c = c(x, z)):

1
ρ0

p∗x = gβ1θ + gβ2c,
1
ρ0

p∗z = νwxx, (1.1)

wθz = χ(θxx + θzz), (1.2)

wcz = D(cxx + czz) + Dθ (θxx + θzz), (1.3)

where β1 and β2 are the thermal and concentration expansion coefficients, ν , χ , D, and Dθ are the viscosity,
thermal diffusivity, diffusion and thermal diffusion coefficients, p∗ = p + gρ0x is the modified pressure,
and ρ0 the average density.

From the compatibility condition for Eqs. (1.1) there follow the equalities

β1θ + β2c = α(x)z + β (x), (1.4)

w′′′ =
g
ν

α(x) (1.5)

with arbitrary functions α(x) and β (x). Here and in what follows, by prime we denote differentiation with
respect to x.

Eliminate from formula (1.4) the concentration c(x, z)

c =
1
β2

[−β1θ + α(x)z + β (x)
]

(1.6)

and substitute (1.6) in Eq. (1.3). With account for expression (1.2) we arrive at the relation

Pw(x)θz =
Dα ′′

β2
z +

Dβ ′′

β2
− α(x)

β2
w, (1.7)

where we introduced the notation

P =
Dβ1

β2χ
− β1

β2
− Dθ

χ
.

Assume that P ∕= 0. Then, from (1.7) it follows that temperature is the quadratic function of the variable z:

θ(x, z) =
1

Pβ2

[
Dα ′′

2w(x)
z2 +

Dβ ′′ − α(x)w(x)

w(x)
z + γ(x)

]
(1.8)

with a certain function γ(x). The concentration field can be determined from equality (1.6) and also is the
quadratic function in the variable z.

Calculating the derivatives θz, θxx, and θzz from formula (1.6) and substituting them in Eq. (1.2), we
obtain the equality

Dα ′′

χ
z +

Dβ ′′ −α(x)w(x)

χ
=

Dα ′′

w(x)
+

D
2

(
α ′′

w(x)

)′′
z2 +

[
Dβ ′′ − α(x)w(x)

w(x)

]′′
z + γ ′′,
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138 ANDREEV, STEPANOVA

valid for any z. From this we obtain the constraint equations
(

α ′′

w(x)

)′′
= 0,

Dα ′′

χ
=

[
Dβ ′′ − α(x)w(x)

w(x)

]′′
,

γ ′′ =
Dβ ′′ − α(x)w(x)

χ
− Dα ′′

w(x)
.

(1.9)

The first and second equations from system (1.9) can be integrated in the form

α ′′ = (a0x + a1)w(x), (1.10)

Dβ ′′ =
[(

1 +
D
χ

)
α(x) − b0x − b1

]
w(x) (1.11)

with constant a0, a1, b0, and b1. The third equation from (1.9) then takes the form

γ ′′ =
[

D
χ

α(x) − b0x − b1

]
w(x)

χ
− D(a0x + a1). (1.12)

Differentiating Eq. (1.5) twice with respect to x and using formula (1.10), we obtain the equation for
w(x)

w(V) − g
ν

(a0x + a1)w = 0. (1.13)

Thus, from the determined velocity w(x) and expression (1.10) we find α(x) and then, from relations
(1.11) and (1.12), find in quadratures the functions β (x) and γ(x) and, hence, temperature and concentration.
Pressure can be determined from Eq. (1.1) and the problem is completely solvable.

Note that the solution of Eqs. (1.10)–(1.13) depends on the constants a0 and a1. Consider in detail three
(I–III) cases.

I. If a0 = a1 = 0, then from (1.10) α = α0x + α1 and from the second and third equations in (1.9)

β ′′ = (b0x + b1)w(x), γ ′′ = (γ0x + γ1)w(x),

where γ0 = (Db0−α0)/χ and γ1 = (Db1−α1)/χ . The velocity function can be determined from equality
(1.5)

w =
g
ν

(
α0x4

24
+

α1x3

6
+

C1x2

2
+ C2x + C3

)
. (1.14)

The functions β and γ then are seventh-power polynomials:

β (x) =
g
ν

[
α0b0x7

1008
+

1
720

(
4b0α1 + α0b1

)
x6 +

1
120

(
b1α1 + 3C1b0

)
x5

+
1

24

(
2b0C3 + b1C1

)
x4 +

1
6

(
α0C3 + b1C2

)
x3 +

b1C3

2
x2 + C4x + C5

]
,

(1.15)

γ(x) =
g
ν

[
α0γ0x7

1008
+

1
720

(
4γ0α1 + α0γ1

)
x6 +

1
120

(
γ1α1 + 3C1γ0

)
x5

+
1

24

(
2γ0C3 + b1C1

)
x4 +

1
6

(
α0C3 + γ1C2

)
x3 +

γ1C3

2
x2 + C6x + C7

]
.

(1.16)

In formulas (1.14)–(1.16), α0, α1, and Ci (i = 1, . . . , 7) are arbitrary constants.
In this case, temperature and concentration are functions linear in z and can be determined using (1.15)

and (1.16) by the formulas

θ =
1

Pβ2

(
γ(x) + χ(γ0x + γ1)z

)
, (1.17)
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UNIDIRECTIONAL FLOWS OF BINARY MIXTURES 139

c =
1
β2

[
β (x) − β1

Pβ2
γ(x) + χ

((
α0 − χβ1

Pβ2
γ0

)
x + α1 − β1χ

Pβ2
γ1

)
z

]
. (1.18)

This solution was first considered in [4]. In [13], solution (1.14), (1.17), (1.18) was used for describing
the regime of two-layer flow with evaporation at the interface between liquid and gas phases.

II. If a0 = 0 and a1 > 0, then the general solution of Eq. (1.13) has the form

w(x) = c1 exp(λx) + exp(λ μ1x)(c2 cos λ μ2x + c3 sinλ μ2x)

+ exp(λ μ3x)(c4 cos λ μ4x + c5 sinλ μ4x),
(1.19)

λ =

(
ga1

ν

)1/5

, μ1 =
1
4

(
√

5 − 1), μ2 =
1
4

√
10 + 2

√
5,

μ3 =−1
4

(
√

5 + 1), μ4 =
1
4

√
10 − 2

√
5,

where c j ( j = 1, . . . , 5) are constants.
Note that the roots of the characteristic equation μi (i = 1, . . . , 4) have the following interesting properties

to be used in what follows for calculations:

μ2
1 + μ2

2 = 1, μ2
3 + μ2

4 = 1, μ2
1 − μ2

2 = μ3, μ2
3 − μ2

4 = μ1.

Reproduce expressions for the functions α , β , and γ :

α(x) = p1 exp(λx) + exp(λ μ1x)(p2 cosλ μ2x + p3 sinλ μ2x)

+ exp(λ μ3x)(p4 cosλ μ4x + p5 sinλ μ4x) + c6x + c7,
(1.20)

β (x) = B1(x), γ(x) = B2(x), (1.21)

Bi(x) = qi
1 exp(2λx) + exp(λ (1 + μ1)x)(qi

2 cosλ μ2x + qi
3 sinλ μ2x) + exp(λ (1 + μ3)x)

×(qi
4 cosλ μ4x + qi

5 sinλ μ4x) + exp(λ (μ1 + μ3)x)(qi
6 cosλ (μ2 − μ4)x

+ qi
7 sinλ (μ2 − μ4)x + qi

8 cosλ (μ2 + μ4)x + qi
9 sinλ (μ2 + μ4)x)

+ exp(2λ μ1x)(qi
10 + qi

11 cos2λ μ2x + qi
12 sin2λ μ2x)

+ exp(2λ μ3x)(qi
13 + qi

14 cos2λ μ4x + qi
15 sin2λ μ4x)

+ exp(λx)(qi
16x + qi

17) + exp(λ μ1x)((qi
18x + qi

19)cosλ μ2x

+ (qi
20x + qi

21)sin λ μ2x) + exp(λ μ3x)((qi
22x + qi

23)cos λ μ4x

+ (qi
24x + qi

25)sin λ μ4x) + ci
qx + ci

s.

(1.22)

In formulas (1.20)–(1.22) the values qi
1, . . . , qi

25 (i = 1, 2) are nonlinear combinations of the constants
c1, . . . , c7, the coefficients of the characteristic equation μ1, . . . , μ4, and the physical constants λ , χ , and D.
The constants ci

q and ci
s have the form c1

q = c8, c1
s = c9, c2

q = c10, c2
s = c11. The constants pi (i = 1, . . . , 5)

can be determined by the formulas

p1 =
a1c1

λ 2 , p2 =
a1(c2μ3−2μ1μ2c3)

λ 2 , p3 =
a1(2c2μ1μ2 + μ3c3)

λ 2 ,

p4 =
a1(c4μ1 − 2μ3μ4c5)

λ 2 , p5 =
a1(2c4μ3μ4 + μ1c5)

λ 2 .

III. For a0 > 0, Eq. (1.13) can be reduced by the change of the variable y =
(
g(a0x + a1)

)
/ν to the

following equation:
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140 ANDREEV, STEPANOVA

w(V) = Ayw, (1.23)

where A = (ν/(ga0))5 and the derivative is calculated with respect to the variable y.
In accordance with [14], the solution of the transformed equation (1.23) has the form

w(y) =
5

∑
k=0

skεk

∞∫

0

exp

(
εkyt − t6

6A

)
dt, (1.24)

εk = exp
πki
3
,

5

∑
k=0

sk = 0,

where i is the imaginary unit.
For example, the second term in the sum (1.24) can be written as

s1(1 + i
√

3)

4

∞∫

0

exp

(
(1 + i

√
3)yt − t6

3A

)
dt

and is in calculating the integral the hypergeometric function. The temperature and concentration functions
can be reconstructed after expressions for α , β , and γ are found. The expressions are cumbersome and,
therefore, in this case the solution is not reproduced explicitly.

If the constant P from formula (1.7) is equal to zero, the following equality is valid:

Dθ =
β1

β2
(D − χ).

We do not know such binary mixtures whose physical properties satisfy this relationship exactly. There-
fore, in what follows this case will only be discussed within the framework of the mathematical solution of
the problem formulated. If the equality P = 0 is valid, this leads to the linear dependence of the function α
on x. From Eq. (1.5) the velocity function can be found in the form of a fourth-power polynomial and the
function β is a seventh-power polynomial. The temperature field can be determined as the solution of the
elliptic equation (1.2) and the concentration by formula (1.6).

2. FORMULATION OF BOUNDARY-VALUE PROBLEMS FOR P ∕= 0

Let the binary mixture flow unidirectionally within a plane layer of thickness L. Assign boundary condi-
tions for Eq. (1.13). At the rigid walls the no-slip conditions are satisfied:

w(0) = w(L) = 0. (2.1)

Moreover, the mixture flow rate across the layer cross-section at the point z = 0 is given, that is,

L∫

0

(1 − β (x))w(x)dx = q = const. (2.2)

The latter equality follows from the fact that ρ = ρ0(1−β1θ −β2c) = ρ0(1−β (x)) by virtue of relation
(1.4) (q is the known constant). Note that instead of (2.2) we can assign the condition

L∫

0

w(x)dx = 0. (2.3)
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UNIDIRECTIONAL FLOWS OF BINARY MIXTURES 141

Equality (2.3) follows from the mass conservation equation at constant average mixture density. Further
conditions depend on the formulation of the problem for temperature and concentration.

2.1. Flow in the layer with the given temperature at the walls. The form of the function θ from equality
(1.8) predetermines the wall temperature distribution quadratic in z

θ
∣∣
x=0 = f0z2 + f1z + f2, (2.4)

θ
∣
∣
x=L = h0z2 + h1z + h2, (2.5)

where f j and hj ( j = 0, 1, 2) are the given constants.
The conditions formulated enable us to determine the constants a0, a1, b0, and b1 and to obtain conditions

for the function γ :

a0 =
2Pβ2

DL
(h0 − f0), a1 =

2Pβ2

D
f0,

b0 =
1
L

[
D
χ

(α(L) − α(0)) + Pβ2( f1 − h1)

]
, b1 =

Dα(0)

χ
− Pβ2 f1,

γ(0) = Pβ2 f2, γ(L) = Pβ2h2.

(2.6)

Since the walls are assumed to be insoluble, there are no mass fluxes across them. This can be expressed
by the conditions

(Dcx + Dθ θx)
∣∣
x=0 = 0, (Dcx + Dθ θx)

∣∣
x=L = 0. (2.7)

In accordance with (1.6), (1.8), (1.10), and (1.11), we have

Dcx + Dθ θx =

(
Dθ − β1

β2
D

)
θx +

D
β2

α ′z +
D
β2

β ′

=

(
Dθ − β1

β2
D

)
1

Pβ2

[
D
2

a0z2 +

(
D
χ

α ′ − b0

)
z + γ ′

]
+

D
β2

α ′z +
D
β2

β .
(2.8)

Therefore, if P1 = Dθ − β1D/β2 ∕= 0, then in (2.6) a0 = 0 (h0 ≡ f0),

β ′(0) =− P1

PD
γ ′(0), β ′(L) =− P1

PD
γ ′(L),

α ′(0) = α ′(L) =−β2P1

β1D
b0.

(2.9)

Using Eq. (1.5) for a0 = 0 and the third formula (2.6), we find two lacking conditions for the function
w(x)

w(IV)(0) = w(IV)(L), (2.10)

w(IV)(0) +
β2P1

χβ1L

[
w′′′(L) − w′′′(0)

]
=

gβ 2
2 P1

νDβ1L
P(h1 − f1). (2.11)

For P1 = 0, the following relation holds:

Dθ =
β1

β2
D.

This means that from equality (2.8) the boundary conditions can be rewritten as

α ′(0) = 0, α ′(L) = 0, β ′(0) = 0, β ′(L) = 0.
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142 ANDREEV, STEPANOVA

All conditions (2.6) are assumed to be satisfied. In this case, equalities (2.10) and (2.11) for the function
w(x) can be reduced to the form

w(IV)(0) = 0, w(IV)(L) = 0. (2.12)

2.2. Flow in the layer with the given temperature of the lower wall and the thermally insulated upper
wall. Now, at the lower wall conditions (2.4) and the first condition from (2.7) are satisfied. From these
conditions there follows that

a1 =
2Pβ2

D
f0, b1 =

Dα(0)

χ
− Pβ2 f1, γ(0) = Pβ2 f2,

a0 = 0, β ′(0) =−P1

D
γ ′(0), α ′(0) =−β2

β1

P1

D
b0.

(2.13)

The thermal insulation condition for the upper wall means that θx
∣∣
x=L = 0. Then, from the second

condition in (2.7), there follows that cx

∣
∣
x=L = 0 too. In its turn, this yields the equalities

α ′(L) = 0, β ′(L) = 0, γ ′(L) = 0, b0 = 0. (2.14)

From (2.13) and (2.14) we can derive (P1 ∕= 0)

a0 = 0, a1 =
2Pβ2

D
f0, b0 = 0, b1 =

Dα(0)

χ
− Pβ2 f1,

γ(0) = Pβ2 f2, β ′(0) =
P1

D
γ ′(0), β ′(L) = 0,

α ′(0) = 0, α ′(L) = 0.

(2.15)

In this case, for w(x), in addition to (2.1) and (2.2), conditions (2.12) are satisfied.
If P1 = 0, then

α ′(0) = 0, β ′(0) = 0,

The constants a0, a1, b1, and γ(0) are the same as in (2.6). Moreover, equalities (2.13) are satisfied.
Thus, for w(x) boundary conditions (2.12) are valid.

2.3. Flow in the layer with two thermally insulated walls. Since in this case θx = 0 and cx = 0 at x = 0
and x = L, from (1.6) and (1.8) it follows that

α ′(0) = α ′(L) = 0, β ′(0) = β ′(L) = 0, a0 = 0, b0 = 0, γ ′(0) = γ ′(L) = 0

For w(x) conditions (2.12) are satisfied. Note that here there are no restrictions on the two constants
a1 and b1 which cannot be determined within the framework of the problem formulation adopted. We can
propose the following solution method. Replacing the function α(x) by α∗(x) = α(x) − χb1/D, we can set
b1 = 0. If assuming in (2.2) q = 0, for the velocity w(x) we obtain the spectral problem. The parameter a1

can be determined from the solution non-triviality condition for the spectral problem obtained. It should be
noted that in the general case we cannot set b1 = 0 since the problem then becomes overdetermined.

2.4. Flow in the layer with the undeformable free upper boundary. Here, instead of (2.1), we have

w(0) = 0, w′(L) = 0, (2.16)

and the true pressure

p = gρ0

[
L − x +

x∫

L

β (x)dx + z

x∫

L

α(x)dx

]
+ pa,
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UNIDIRECTIONAL FLOWS OF BINARY MIXTURES 143

so that p = pa at x = L, where pa = const is the atmospheric pressure. For temperature, at the free boundary
x = L the following condition is satisfied:

kθx + σ(θ − θout) = Q, (2.17)

where k is the thermal conductivity of the mixture, σ the heat-transfer coefficient, θout the surrounding
medium temperature, and Q the given heat flux. Boundary conditions (2.7) remain unchanged. Assume that
at the lower rigid wall the condition for temperature (2.4) is satisfied. Therefore, a1, b1, and γ(0) can be
expressed by formulas (2.13). If P1 ∕= 0, then a0 = 0 and conditions (2.9) are valid. Relation (2.17) yields
the equalities

a0(k + σL) + σa1 =
2Pβ2

D
(Q0 + σh0

out),

k

(
D
χ

α ′(L) − b0

)
+ σ

(
D
χ

α(L) − b0L − b1

)
= Pβ2(Q1 + σh1

out),

kγ ′(L) + σγ(L) = Pβ2(Q2 + σh2
out).

(2.18)

It is thus assumed that

θout = h0
outz

2 + h1
outz + h2

out, Q = Q0z2 + Q1z + Q2,

where hj
out and Q j ( j = 0, 1, 2) are constants.

Hence,

a0 =
2Pβ2

D(k + σL)
(Q0 + σh0

out − σ f0),

b0 =
1

k + σL

[
Pβ2(σ f1 − Q1 − σh1

out) +
D
χ
(
kα ′(L) + σα(L) − σα(0)

)]
.

(2.19)

Since a0 = 0,
Q0 = σ( f0 − h0

out).

The last equality in (2.9) and (2.19) yield the relation

kα ′(L) + σα(L)−σα(0) +
β1

β2

χ
P1

(k + σL)α ′(0) =
Pβ2χ

D

[
Q1 + σ(h1

out− f1)
]
. (2.20)

Thus, the boundary conditions for w(x) consist of equalities (2.2), (2.11), and (2.16) and the following
equality that follows from (1.5) and (2.20):

kw(IV)(L) + σw′′′(L)−σw′′′(0) +
β1

β2

χ
P1

(k + σL)w(IV)(0) =
Pβ2χg

Dν
[
Q1 + σ(h1

out− f1)
]
. (2.21)

3. EXAMPLES OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS

Linear temperature distribution over the walls. Consider the solution of Eqs. (1.1)–(1.3) for the linear
form of the function α of x from (1.4), which is determined by formulas (1.14), (1.17), and (1.18). Note
that in this case the temperature and concentration functions are linear in z. This means that, when solving
the problem of binary mixture flow between two rigid walls with boundary conditions (2.4), (2.5), we must
set f0 and h0 to be equal to zero and, thus, a0 = 0. In addition to the conditions for velocity (2.1) and (2.2)
and for temperature and concentration (2.4), (2.5), and (2.7), we will specify the average concentration in
the layer cross-section z = 0

1
L

L∫

0

c(x)dx = c0 = const.
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Fig. 1. Density profile for 70% isopropanol aqueous solution.

Note that the conditions listed yield eleven equations for the constants α0, α1, b0, b1, C1, . . . , C7. The
problem is formulated correctly, can be solved completely, and for 70% propanol aqueous solution its so-
lution is shown in Figs. 2–4. The physical characteristics of the mixture at average temperature 25∘C and
average isopropanol concentration c0 = 0.7 were calculated from the data given in [15] and are presented in
Table 1.

In Figs. 1 and 2 the coordinate dependence of the mixture density and velocity is presented. Since
the thermal diffusion coefficient is positive, anomalous thermodiffusion takes place: the light component
(isopropanol) is concentrated near the less heated wall x = 0, which is demonstrated by the velocity graph.

In Figs. 3 and 4 the dependence of the mixture temperature and concentration on the coordinates are
presented on the assumption that x and z vary on the range from 0 to 1. It should be noted that the flow
regime obtained is only possible for a relatively small temperature gradient of about 5∘C for the initial
temperature equal to 25∘C. The light component concentration then varies from 0.5 to 0.9 at the initial
average concentration 0.7.

Parabolic temperature distribution over the walls. Consider the solution of Eqs. (1.1)–(1.3) with ve-
locity given by formula (1.19) and temperature and concentration determined using relations (1.20)–(1.22).
We will use this solution for describing the flow between two rigid walls the upper of which is thermally
insulated (see Sect. 2, (2.13)–(2.15)). In boundary condition (2.4) we will set f1 = 0.

Introduce the dimensionless parameters

w∗ =
wL
ν
, θ∗ =

θ
θ0
, x∗ =

x
L
, z∗ =

z
L
, α∗ = αL,

a∗1 = a1νL2, f ∗0 =
f0L2

θ0
, f ∗2 =

f2

θ0
,

where L is the characteristic linear dimension and θ0 the average mixture temperature.
In what follows all calculations will be performed for the dimensionless quantities in whose notation

the asterisk is omitted. Using formulas (1.19) and (1.20), boundary conditions (2.1), (2.3), and (2.12), and

Table 1

ρ0, kg/m3 ν , m2/s β1, 1/K β2 χ , m2/s D, m2/s Dθ , m2/(Ks)

885.03 2745× 10−8 1005× 10−6 2789× 10−5 689× 10−10 245× 10−12 1010× 10−15
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Fig. 2. Velocity profile for 70% isopropanol aqueous solution.

Fig. 3. Temperature distribution in 70% isopropanol aqueous solution.

the last equalities in (2.15) enables us to separate the problem of finding the functions w(x) and α(x). For
the constants we obtain a system of linear algebraic equations from which find the values c1, . . . , c6, the
constant c7 remaining unknown by virtue of the restrictions on α(x) from (2.15).

In calculations we used the parameters for the mixture of water and aqueous solution of sodium chloride
with concentration of 28.5 pro mil, which corresponds to the chemical composition of sea water. In Table 2
we present the physical parameters corresponding to the average temperature 12.5∘C, reestablished from the
data of [16, 17] using the least squares method.

Figure 5 demonstrates the velocity distribution depending on the quantity f0 from boundary condition
(2.4), which corresponds to the heat flux from the lower wall. The higher f0, the more intense the heat flux
from the lower wall, which leads to a more intense mixing and, hence, to a change in flow direction. This
can be seen from the velocity profiles shown in the figure. Curve 1 plotted for f0 = 0.0001 demonstrates
two flow zones, whereas curves 2 and 3, corresponding to f0 = 0.001 and 0.01, respectively, display a more

Table 2

ρ0, kg/m3 ν , m2/s β1, 1/K β2 χ , m2/s D, m2/s Dθ , m2/(Ks)

1020.32 1277× 10−9 1742× 10−7 −76×10−5 106× 10−9 6106× 10−12 −172× 10−17
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Fig. 4. Concentration distribution in isopropanol aqueous solution.

Fig. 5. Sodium chloride aqueous solution velocity profiles for different f0 values.

frequent transition from direct to reverse flow zones and vice versa. Since the coefficient Dθ is here negative
(see Table 2), normal thermodiffusion can be observed: the heavier sodium chloride moves into the less
heated region and near the less heated wall x = 1 the velocity is greater than anywhere in the layer.

Summary. The obtained solutions that describe unidirectional thermal diffusion flows are an important
generalization of the well-known Birikh solution [2] to include the case of steady-state binary mixture flow.
Restrictions on the temperature and concentration functions, for which the initial system of equations can
be completely integrated, are written down. Formulations are proposed for boundary-value problems that
describe the flow in the layer between rigid walls for the given law of temperature distribution over the
walls or in the absence of heat flux across them. Restrictions on the physical characteristics of the mixture,
for which the solution and/or boundary conditions have a simpler form, are found. Solution examples are
constructed for two boundary-value problems that describe unidirectional flows of binary mixtures with
linear and quadratic temperature distributions over the rigid walls. In view of nonlinearity and high order
of the initial equations, the solutions obtained are of interest not only for possible physical applications but
also as examples of exact solutions of equations of mixed type. For example, they can be used for checking
the correctness of numerical methods.
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