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Abstract—Characteristic properties of one-dimensional models of transient gas-liquid two-phase flows
in long pipelines are investigated. The methods for studying the hyperbolicity of the systems of equa-
tions of multi-fluid and drift-flux models are developed. On the basis of analytical and numerical studies,
the limits of the hyperbolicity domains in the space of governing dimensionless parameters are found,
and the impact of the closure relations on the characteristic properties of the models is analyzed. The
methods of ensuring the global unconditional hyperbolicity are proposed. Explicit formulas for the
eigenvelocities of the system of the drift-flux model equations are obtained and the conclusions about
their sign-definiteness are drawn.
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The development of models for multiphase flows is an important fundamental problem, which has a wide
range of practical applications. In particular, an urgent problem is to construct a closed self-consistent model
for a transient one-dimensional gas-liquid flow in a well or a pipeline. These flows are encountered in many
technological processes in oil/gas and nuclear industries. Despite a large number of different applications,
no commonly accepted model describing such flows has been developed so far.

In the oil and gas industry, two models are most widely used in studying multiphase flows in pipes [1],
namely, a multi-fluid model and a more simplified drift-flux model. The systems of equations contain the
conservation laws averaged over the cross section of the pipe and supplemented with a number of simpli-
fying assumptions. The drift-flux model includes two mass balance equations for the gas and liquid phases
and one momentum equation for the mixture. The multi-fluid model is based on the multi- continuum ap-
proach. It contains the mass and momentum balance equations for each phase. Different implementations of
these approaches are the basis for commercial multiphase flow simulators used for oil and gas applications
(PIPESIM, ECLIPSE, OLGA, LedaFlow, MAST, etc.). For the closure of equations, a number of additional
relations are used, which lead to the fact that the system loses hyperbolicity, and the mathematical formula-
tion of the initial-boundary-value problem becomes ill-posed. In this case, the model ceases to describe real
physical phenomena, and a non-physical instability is observed in the numerical solution [2]. Thus, an ur-
gent problem is to find the criteria of hyperbolicity of the existing systems of equations and to construct new
unconditionally hyperbolic models of two-phase flow. The development of such approaches is necessary, in
particular, for the design of industrial simulators of transient multiphase one-dimensional flows [3].
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Fig. 1. Scheme of two-phase flow in the pipeline (a) and the pipe cross-section (b).

Despite decades of research, the problem of the loss of hyperbolicity of the multi-fluid model remains
unsolved [4]. The often used assumption for the closure of the model is the condition, convenient from a
practical point of view, of equality of the pressures in the phases. However, this simplification significantly
restricts the region of hyperbolicity of the model [1, 5, 6]. Some publications deal with different modifica-
tions of the classical two-fluid model with a single pressure, which make the system of equations hyperbolic
over a wide range of governing parameters (see e.g. [4, 7–9]). However, there is no generally accepted
formulation developed so far for the system of governing equations for the two-fluid model.

The properties of the drift-flux model equations were studied by many authors (see, e.g. [10–13]). The
characteristic equation of the system is of third order, it can be written in explicit form and formally solved.
However, the resulting expressions for the roots are not suitable for interpretation, and no simple and quite
general criterion of hyperbolicity is known. For studies, additional assumptions are usually employed,
and a simplified form of the system is analyzed. This work is devoted to the development of models of
gas-liquid flows in pipelines, the design of the methods for studying the hyperbolicity of these models, and
finding the conditions of hyperbolicity for the systems of constitutive equations in a wide range of governing
parameters, typical of various gas-liquid flows. In the first part of the article, the class of the flows under
study is described and the corresponding system of equations is presented. The goal of finding the roots of
the characteristic equation of the system is formulated. In the second part, in the framework of the two-fluid
approach we consider two modifications of the classical two-fluid model, which allow us to expand the
region of hyperbolicity: (i) a model with account for the liquid level gradient and (ii) a model with account
for the interfacial pressure forces. On the basis of analytical and numerical studies, the boundaries of the
regions of hyperbolicity of the model in the space of governing parameters are found. The third part is
devoted to the analysis of the characteristics of the drift-flux model in two formulations, differing by the
form of the momentum equation for the mixture. The conclusions are drawn about the sign-definiteness of
the eigenvalues, which make it possible to determine the number of incoming and outgoing characteristics
at the boundaries of the calculation domain and to give the correct formulation of the initial-boundary-value
problem [14].

1. FORMULATION OF THE PROBLEM

We consider a transient isothermal gas-liquid flow in a straight circular pipe inclined to the horizontal
at an arbitrary angle. The pipe diameter is much smaller than its longitudinal dimension: d≪ L (Fig. 1a).
When modeling this kind of flows, instead of the full equations for each phase and tracking the phase
interface, it is common to use one-dimensional non-stationary equations of balance laws for the effective
flow parameters obtained by averaging over the cross section of the pipe. The equations of the conservation
laws are written in the form:

A
∂U
∂ t

+ B
∂U
∂x

= C, (1.1)
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where U(x, t) = (u1(x, t), . . . , un(x, t))T is the vector of unknown functions, A(U(x, t), x, t) and
B(U(x, t), x, t) are n× n matrices, and C(U(x, t), x, t) is the vector of right sides of the system of equa-
tions. Usually, the components of the vector U are velocities, densities and volume fractions of the phases,
and also the pressure. The assumption of equal phase pressures is often used, which makes it possible to
reduce the number of unknowns. Such system lies, in particular, in the basis of two widely used models of
gas-liquid pipe flows, namely, the drift-flux and multi-fluid models, which are considered in this study.

In the case of a non-degenerate matrix A, system (1.1) can be reduced to the form:

∂U
∂ t

+ B̃
∂U
∂x

= C̃. (1.2)

According to [15], system (1.2) is called hyperbolic, if there exists a non-singular matrix ΩΩΩ, diagonalizing
B̃, so that

ΩΩΩ−1B̃ΩΩΩ = ΛΛΛ = diag [λ1, . . . , λn]

and all the eigenvalues λk of the matrix B̃ are real-valued. If the values of λk are different, the system is
called strictly hyperbolic.

For the solution of Eqs. (1.1), it is required to formulate additionally the sufficient number of initial and
boundary conditions, corresponding to the type of the equations. An initial-boundary-value problem for a
hyperbolic system may be incorrect if the equations change type.

The loss of hyperbolicity may indicate that the model ceases to describe the considered phenomenon. In
this case, non-physical oscillations develop in the numerical calculations, which does not make it possible
to obtain a grid-convergent solution, stable with respect to the initial data. In the general case, for system
(1.1) the hyperbolicity and stability criteria do not coincide, and the hyperbolic system can exhibit hydrody-
namic instability [2]. However, these problems become equivalent when studying the stability of a uniform
steady-state solution of system (1.1) with the right-hand side independent of U, and when considering high-
frequency disturbances. The stability conditions for different models of one-dimensional two-phase flows
were investigated, for example, in [2, 16, 17] and the literature cited therein. In [16, 17], it was shown,
in particular, that, for the multi-fluid model with account for the liquid level gradient, the development of
instability of the phase interface in a stratified flow is associated with the change of regime, namely, the
transition from the stratified two-layer flow to the slug or annular flow.

In the present work, we investigate the limits of the domains of hyperbolicity of the models that deter-
mine the range of parameters in which a well-posed (in Hadamard) mathematical formulation of the initial-
boundary-value problem exists. The investigation of the stability of solutions of the hyperbolic systems
formulated is beyond the scope of this study and requires further considerations.

The first step in establishing the type of the system of equations is the solution of the characteristic
equation. If its roots are real-valued and distinct, the set of eigenvectors of the matrix of system (1.2) is
complete, the matrix B̃ can be diagonalized, and the system is strictly hyperbolic. In the case of multiple
real-valued roots, it is necessary to find the eigenvectors directly and to check their completeness [14]. Since
in the general case it is impossible to write the solution of the characteristic equation explicitly, in addition
to the analytical study, numerical methods are also used to establish the hyperbolicity of the system.

2. THE MULTI-FLUID MODEL

Within the multi-continua approach [6], one-dimensional transient mass and momentum equations for
each phase, averaged over the cross section of a long tube (d≪ L, see Fig. 1a) and supplemented with the
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relation for the volume fractions and the equations of state of the phases, take the form [1]:

∂ (αiρi)

∂ t
+

∂ (αiρiui)

∂x
= 0, (i = l, g), (2.1)

∂ (αiρiui)

∂ t
+

∂ (αiρiu2
i )

∂x
=−αi

∂ p
∂x

+ αiρigsin β + F p
i + Fτ

i , (2.2)

αl + αg = 1, (2.3)

ρi = ρi(p). (2.4)

Here, x is the coordinate measured along the pipe; t is the time; the indices “l”, “g” refer to the liquid and
gas phases, respectively; αi, ρi, and ui are the averaged values of volume fractions, densities, and velocities
of the phases; p is the averaged pressure, assumed to be identical in both phases; g is the gravity force
acceleration; β is the angle of pipe inclination to the horizontal; F p

i are the phase interaction forces due to
the pressure (hereinafter, the interfacial pressure forces) for i-th phase; Fτ

i are the friction forces, including
the interfacial and wall friction.

The assumption of the equality of average phase pressures in the cross-section can be violated due to
capillary effects or fast processes, when the motion of the phases on the pipe diameter scale is important [6].
We note that there is a class of unconditionally hyperbolic models, actively developed in recent years, which
are based on the assumption of different pressures in the phases [18–20]. However, these models contain a
larger number of equations and require additional closure relations. This is why they are not used so far in
industrial simulations of gas-liquid pipe flows.

In many engineering applications, to make the systems closed, it is assumed that F p
i = 0 and Fτ

i are
specified as algebraic functions of the parameters αi, ρi, and ui, approximating experimental measurements
of the friction for different flow regimes (see, for example, [1, 21, 22]). Thus, depending on the flow regime,
different forms of closure relations for Fτ

i are used.
Under the assumptions formulated, system (2.1)–(2.4) turns out to be non-hyperbolic [5, 6, 14], and

its uniform steady-state solution is unstable [2]. In this paper, we consider two modifications of original
system (2.1)–(2.2), which make it possible to preserve the classic model conditionally hyperbolic, namely,
the account for the gradient of the liquid phase level [22] and the interfacial pressure forces [7].

2.1. The model taking into account the liquid level gradient. We will restrict the range of applicability
of the original model [1] by the stratified two-layer near-horizontal flows, when the light-weight gaseous
phase moves above the heavy liquid layer (see Fig. 1b). In this case, it is necessary to take into account the
additional pressure gradient associated with the presence of a gradient of the liquid level hl . According to the
equations of the thin-layer theory [23], the transverse pressure distribution in the liquid layer is determined
by the hydrostatic relation ∂ pl/∂y =−ρlg cos β .

Integrating this equation with account of the conditions on the interface pl∣y=hl
= p, we obtain pl = p +

(hl − y)ρlg cos β . As a result, under the assumption that the fluid is incompressible or weakly compressible,
in the right side of the momentum equation for the liquid phase (2.2) an additional term arises [16, 17, 22]:
−αlρlg cosβ ∂hl/∂x.

When both phases are incompressible, the characteristic equation takes the form:

(αlρg + αgρl)λ 2 − 2(αlρgug + αgρlul)λ

+ αlρgu2
g + αgρlu

2
l − αlαgρlg cosβ

dhl

dαl
= 0.

From the condition of non-negativity of the discriminant, we obtain the condition of hyperbolicity of the
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system:

us ≤ φ

√(
αl +

αg

η

)
dh̃l

dαl
cos β . (2.5)

Here

us =
∣ul − ug∣

cg
, φ =

1
Fr

=

√
gd

cg
, η =

ρg

ρl
,

dh̃l

dαl
=

dh̃l

dγ
dγ
dαl

is the derivative of the dimensionless liquid level h̃l = hl/d (see Fig. 1b), which can be determined using the
value of the volume fraction αl and the following geometrical relations:

hl = R − Rcos
γ
2
, αl =

γ − sinγ
2π

.

From (2.5), it is clear that, as the pipe inclination angle increases, the hyperbolicity region reduces. Figure 2
shows the limits of the hyperbolicity region defined by inequality (2.5) for the flow of oil-gas type (see
table). For water–air flow, the hyperbolicity region will be qualitatively similar. Note that lim

αl→0
dh̃l/dαl =

lim
αl→1

dh̃l/dαl = ∞, and for intermediate values of αl the derivative dh̃l/dαl is finite. Clearly, the system

remains hyperbolic on the entire range of values of the volume fraction αg only for sufficiently low slip
velocities us. The highest slip velocity is denoted as umax

s . In a stratified two-layer flow in the pipeline,
the slip velocity can exceed umax

s , so the limits of the hyperbolicity region do not cover the entire range of
applicability of the model.

We note that Eq. (2.5) coincides with the stability condition for the phase interface in the inviscid-flow
case (Fτ

i = 0) for long wavelength disturbances and determines the transition from the stratified two-layer
flow to the slug or annular flow regime [16, 17].

2.2. The model with account for the pressure forces at the interface. We will now consider the mod-
ification of model (2.1)–(2.4) proposed in [7] and taking into account the interphase pressure force in the
form:

F p
i =− pI∂αi/∂x, pI = p − p∗.

Here, p∗ is the pressure at the interface, different from the pressure p. For simplification, in [7] it was
assumed that the gaseous phase is distributed in the fluid in the form of spherical bubbles, which defines
a reasonably simple shape of the interface, and subsequently allows one to obtain a closure relation for
pI . In the general case of gas-liquid flows with arbitrary shape of the phase interface, it is not possible to
formulate the closure relation for pI . However, the addition of differential terms associated with the pressure
difference across the interface makes a positive effect on the expansion of the limits of hyperbolicity of the
model.

If we assume that p∗= const, then, as shown in [7] for incompressible media, the hyperbolicity condition
takes the form:

pI = p − p∗ ≥ αlαgρlρg

αlρg + αgρl
(ul − ug)2.

The case of compressible fluids is investigated in [8], where the conditions of hyperbolicity are estab-
lished for some specific closure relations for pI .

We will now consider the general case of compressible media and assume that

pI = χ
αlαgρlρg

αlρg + αgρl
(ul − ug)2, (2.6)

where χ is a constant, and a proper selection of this constant ensures that the system of the governing
equations is hyperbolic on the widest possible range of parameters.
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Fig. 2. Regions of hyperbolicity of system (2.1)–(2.4) with account of the liquid-level gradient for the flow type oil-gas
flow type (see table) and for Φ = 614.3 (d = 0.1 m): (1, 2) β = 0∘, 60∘.

With account of Eq. (2.6), the characteristic equation for system (2.1)–(2.4) in dimensionless form reads:(
αg + η(1 − αg)K2)(ul − λ

)2(
ug − λ

)2

−
(α2

g χη(1 − αg)u2
s

(1 − αg)η + αg
+ η(1 − αg)

)
(ug − λ )2 (2.7)

−
(

K2(1 − αg)2χηαgu2
s

(1 − αg)η + αg
+ αg

)
(ul − λ )2 +

αgχη(1 − αg)u2
s

(1 − αg)η + αg
= 0.

Here, K = cg/cl , and λ , ul , and ug are scaled to the velocity cg.
Consider a special case, where the density of the gas is negligibly small compared to the density of the

liquid phase: η → 0. In this case, the characteristic equation is simplified significantly, and its roots can be
found explicitly:

λ1,2 = ul , λ3,4 = ug±1.

In the general case, the problem is reduced to finding the number of real-valued roots of the 4-th order
characteristic equation with variable coefficients. This was done using a numerical implementation of the
Jenkins–Traub algorithm [24]. In a wide range of values of the problem parameters (volume fractions,
velocities, densities), typical of different flows (including mixtures of oil-gas and water-air types, see table),
we investigated the number of the real-valued roots of the characteristic equation. The possible variants
of the hyperbolicity region are shown in Fig. 3. As a result of variation of the governing dimensionless
parameters η and K, the optimal values of χopt were found, for which the system of equations is hyperbolic
over the entire range of values of the volume fraction αg ∈ (0, 1) and over the maximum possible range of
the slip velocity us < umax

s = maxχ ∣ul − ug∣/cg (see Fig. 3). In the case when one volume fraction is zero,
the matrix A becomes singular, and the definition of hyperbolicity for system (1.1) is not applicable.

Figure 4 and the table present the calculated values of χopt and umax
s as the functions of the dimensionless

parameters η and K. It is clear that for small η the influence of K on χopt and umax
s is small. This is because

the parameter K enters in Eq. (2.7) only as the product ηK2. It has been also found that for a given η
with increase in K (K → 0 corresponds to the case of incompressible liquid) the parameters χopt and umax

s
increase up to a certain value and then remain almost constant.
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Fig. 3. Region of hyperbolicity for η = 0.6, K = 0.6, χ = 1.6 (a) and parameters of the oil-gas flow type (table) (b).

Fig. 4. The dependences χopt (K) (a) and umax
s (K) (b): (1–6) η = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35.

Using closure relation (2.6), we managed to establish the hyperbolicity of the system of equations
(2.1)–(2.4) up to a sufficiently high slip velocity, generally not achieved in oil and gas wells and pipelines. It
makes it possible to consider the model proposed as hyperbolic over the entire range of parameters, typical
of practical applications.

3. THE DRIFT-FLUX MODEL

For modeling the multiphase flows in long pipelines, the so-called drift-flux model is often used. In
the isothermal formulation, the model involves the mass balance laws for each phase, only one momentum
equation for the mixture, and an algebraic relation between the phase velocities.

Under the assumption of absence of sources and constant cross-sectional area, the mass balance equations
of the phases averaged over the cross section of the pipe have the same form as for multi-fluid model (2.1).

The algebraic formula relating the velocities of the phases is often written as [25]:

ug = C0um + ud , (3.1)

where um = αgug + αlul is the mean-volume velocity of the mixture, C0 = C0(αg, um, p) is the profile
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Typical values of parameters for two types of gas-liquid flows

Flow type ρl , kg/m3 ρg, kg/m3 cl , m/s cg, m/s η K χopt umax
s

Water-air 1000 1.23 1500 331 0.00123 0.22 2.08 0.72

Oil-gas 900 0.7 1470 430 0.00078 0.29 2.07 0.72

parameter which takes into account the cross-sectional distributions of the gas volume fraction and the
velocities, and ud = ud(αg, um, p) is the drift velocity. The relation can also be specified in the form of a
slip law [13]:

ug − ul = Φ(αg, ug, p). (3.2)

Equation (3.2) supplemented with the definition of the mean-volume velocity of the mixture can be
written in the form (3.1). It is assumed that the system of differential equations of the drift-flux model is
supplemented by the algebraic relation between the velocities in the form (3.1), and the profile parameter
C0 and the drift velocity vd are regarded as given functions of the variables αg, um, and p. In this case, the
velocities of the phases are the functions of the same variables. Additional physical restrictions are imposed
on the closure relation (3.1). In the pure-gas flow, the effects of nonuniform distributions of the volume
fraction and the velocity across the cross-section, as well as the buoyancy effects, are absent, hence it is
expected that

C0(1, um, p) = 1, ud(1, um, p) = 0. (3.3)

In the literature, there are various formulations of the momentum equation for the mixture. In [13], this
equation is obtained by summing up the momentum equations of the multi-fluid model (2.2) for each phase:

∂
∂ t

(
αgρgug + αlρlul

)
+

∂
∂x

(
αgρgu2

g + αlρlu
2
l + p

)
= Ql + Qg. (3.4)

Here, Qi are the algebraic source terms for each phase.
In the model for transient well flow of [26], which is used, in particular, in the commercial reservoir-

flow simulator ECLIPSE (Schlumberger), the momentum equation for the mixture is written in a non-
conservative form in terms of the volume-averaged velocity of the mixture. In the applications, a quasi-
steady-state version of the momentum equation is used, in which, in the momentum equation for the mixture,
either the time derivative of the velocity or the full acceleration terms are neglected. In the literature, the
last modification is called the no-pressure-wave model, since it does not take into account the propagation
of rapid pressure waves in the space and describes the propagation of disturbances with the mass transfer
velocity [27]. The total pressure difference is expressed as the sum of the terms responsible for gravity,
friction and, in the quasi-stationary case, acceleration [26]. In this study, we use the following form of the
momentum equation for the mixture:

ε1ρm
∂um

∂ t
+ ε2ρmum

∂um

∂x
+

∂ p
∂x

= Qm, (3.5)

where ρm = αlρl + αgρg is the density of the mixture and Qm are the algebraic source terms. The coeffi-
cients ε1 and ε2, which take values 0 and 1, are introduced to consider the different variants of the model.

System of Eqs. (2.1), (3.4), and (3.5), supplemented with identity (2.3), the relations for the phase veloc-
ities, and dependencies (2.4) are closed systems of three differential equations for three unknown functions
αg(x, t), um(x, t), and p(x, t).

The characteristic properties of systems (2.1), (3.4), and (2.1), (3.5) in the general case are determined,
among others, by the form of relation (3.1). The implementation of the above condition (3.3) ensures the
reduction of both systems to the equations of one-dimensional motion of compressible gas with αg = 1.
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The questions of the limits of applicability of each modification of the drift-flux model and its relation
with the original multi-fluid model are considered in [28]. It is shown that the drift-flux model for disperse
flow in the classical formulation (2.1), (3.4) follows from the balance laws, when imposing the condition
that the characteristic scale of the problem is much greater than the relaxation length of the phase velocities.
To derive the equations of the drift-flux model in the formulation (2.1), (3.5), it is necessary to assume
additionally that either the volume fraction of the dispersed phase is small or velocity slip of the phases can
be neglected, or the acceleration of the mixture as a whole can be neglected.

3.1. The classical formulation. In [10–12], the assumptions of the constancy of C0 and ud , and the
incompressibility of the liquid were used. In [10, 11], the authors used additional assumptions of negligibly
small terms corresponding to the gaseous phase in comparison with the similar terms for the liquid phase in
(3.4) and the validity of the perfect gas law ρg(p), which allowed them to obtain the explicit expressions for
the characteristic velocities:

λ1 = ug, λ2,3 = ul±
√

p
αgρl(1 − αgC0)

. (3.6)

From (3.6), we obtain the hyperbolicity condition for the system under study:

αgC0 < 1. (3.7)

The authors of [12] used the above mentioned assumptions and reduced the system to an equivalent
form in Lagrangian coordinates, with one of the equations taking the form of a transport equation. Under
additional assumptions ud = 0 and Qg + Ql = 0, they also obtained that system (2.1), (3.4) is similar
to the system of equations of one-dimensional gas dynamics in Lagrangian coordinates, and calculated its
characteristic velocities.

In [13], for the class of closure relations (3.1) restricted by a differential condition on the slip velocity
and including the case of constant C0 and ud , the authors obtained the first terms of the expansion of the
characteristic velocities of the system in power series in small parameters which have the meaning of the
fluid compressibility, the Mach numbers based on the slip velocity and the sound velocity, and the ratio of
the gas and liquid densities.

We note that the algebraic relation between the velocities with C0 = const ∕= 1 and ud = const ∕= 1,
considered in [10–12], does not ensure the reduction of system (2.1), (3.4) to the equations of single-phase
flow with αg = 1. Hyperbolicity condition (3.7) is violated also for sufficiently high gas volume fractions.
In [29], from physical considerations it is also shown that the violation of condition (3.7) results in the
incorrect behavior of the system: from the expression for the surface density of the liquid flow αlul =
(1 − αgC0)um − αgud , it follows that if αgC0 ≥ 1 the liquid flow is negative for any, arbitrarily large,
positive volume flow of the mixture.

We will now consider the closure relations C0 = C0(αg) and ud = ud(αg), which satisfy (3.3). The
characteristic equation of the system in this case cannot be written explicitly since it is too cumbersome.
The coefficients of the characteristic equation for the dimensionless characteristic velocities λ̃ = λ/cl are
the functions of five dimensionless parameters, namely, the volume fraction αg, the density ratio of the
phases η , the ratio of the sound velocities K, the Mach number based on mixture velocity Mm = um/cl ,
and the Mach number based on the drift velocity Md = ud(0)/cl . Over the range of parameters, typical of
the wellbore flows, (Mm, Md)≪ 1. Following the procedure of [13], we can obtain the zero terms of the
expansions of the characteristic velocities in powers of small Mm and Md:

λ̃1 = O
(
Mm, Md

)
,

λ̃2,3 =±
[(

αg

K2η
+ 1 − αg

)
(1 − (1 − η)αgC0(αg))

]−1/2

+ O(Mm, Md).
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The condition of non-negativity of the expression under the square-root sign is necessary for global
hyperbolicity of system (2.1), (3.4). Numerical experiments show that for sufficiently small values of Mm

and Md this condition is necessary and sufficient. Regardless of the particular type of relations C0 = C0(αg)
and ud = ud(αg) satisfying (3.3), for all sufficiently small Mm and Md the roots of the characteristic equation
of system (2.1), (3.4) are real-valued and different when and only when

(1 − η)αgC0(αg)< 1. (3.8)

Figures 5 and 6 illustrate this statement. In Fig. 5, we have plotted the closing relations used. For the
profile parameter, we used the dependence:

C0(αg) = C0
0

⎧⎨
⎩

1, αg < b,

(
1 +

(
C0

0 − 1
)(αg − b

1 − b

)2)−1

, b≤ αg ≤ 1,

(3.9)

where C0
0 ≥ 1, 0≤ b≤ 1.

The dependence for the drift velocity reads:

ud(αg)

cl
= Md

⎧⎨
⎩

1, αg < b1,

1 −
(

αg − b1

1 − b1

)2

, b1 ≤ αg ≤ 1.
(3.10)

Figure 6 shows the region of hyperbolicity of system (2.1), (3.4) for the closure relations C0(αg) = C0
0

and (3.9), (3.10). The values of η and K are used as for the oil-gas flow in table, Md = 1.5×10−4, C0
0 = 1.2,

b = 0.6, and b1 = 0.9. According to the calculation results shown in Fig. 6a, the limits of the region of
hyperbolicity of the system at low Mach numbers coincide with those obtained from (3.8). From Fig. 6b, it
follows that the use of closure relation (3.9) ensures the hyperbolicity of the system for all values of αg and
Mm lesser then the threshold value of 0.38, which is never achieved in the applications.

Thus, the correction of the non-physical behavior of closure relation (3.2) at high gas volume fractions
also has a positive effect on the characteristic properties of the system, expanding the hyperbolicity region
of (2.1), (3.4) in the range of parameters important for practical applications. In this case, condition (3.8) is
less strict than condition (3.8), imposed by physical reasoning to ensure the hyperbolicity of the simplified
system.

3.2. The formulation of ECLIPSE. The model without pressure waves (ε1 = ε2 = 0) was considered
earlier in [27]. The type of the system was classified as mixed hyperbolically-parabolic, with the character-
istic velocity equal to infinity of multiplicity two. The work also contains an expression for a single finite
characteristic velocity. The properties of the generalized drift-flux model for three-phase flow with account
for mass transfer between the phases were analyzed in [30].

We introduce the following notation:

1
ρmc2

m
= ∑

i=g,l

αi

ρic2
i

, ωi = αi
ρmc2

m

ρic2
i

, Ψg =
∂

∂αg
αgug,

where ci and cm are sound velocities in the phases and in the mixture, and ωg + ωl = 1.
The characteristic equation for system (2.1), (3.5) takes the form:

(λ − Ψg)(ε2um − ε1λ )(ωgug + ωlul − λ ) − c2
m) = 0. (3.11)

The root of the equation λ1 = Ψg does not depend on the form of the momentum equation for the
mixture. The characteristic velocity λ1 is not related to the compressibility of the phases and thus describes
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C0
0

C0

(
(1 − η)C0

0

)−1
αg αg

Md

ud

Fig. 5. (a) The dependence of the profile parameter C0 on the gas volume fraction αg: (1) C0 = C0
0 ; (2) dependence (3.9);

(3) condition (3.8). (b) Dependence of the dimensionless drift velocity ud on αg: (1) ud = Md ; (2) dependence (3.10).

Fig. 6. Regions of hyperbolicity for the closure relations C0 = C0
0 , (3.10) (a) and (3.9), (3.10) (b): (1) limits of the hyper-

bolicity region obtained from condition (3.8).

the propagation of slow waves of the volume fraction with the mass transfer velocity. In the general case,
λ1 is the function with alternating signs, and the corresponding characteristic can be incoming on both
boundaries of the region in which the solution is constructed.

Solving Eq. (3.11) for the case of the non-stationary momentum equation for the mixture (ε1 = ε2 = 1),
we obtain the two remaining roots:

λ2,3 =
1
2

(
um + ωgug + ωlul±

√
D
)
, D =

(
um − ωgug − ωlul

)2
+ 4c2

m > 0.

Thus, in the general case of the transient momentum equation for the mixture all eigenvalues are real-
valued and distinct, and system (2.1), (3.5) is strictly hyperbolic. When there is no velocity slip um = ug = ul ,
the expression for the characteristic velocity becomes λ2,3 = um± cm, similar to the characteristics of the
equations of one-dimensional motion of a compressible gas, which justifies the name of the speed of sound
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λ Mcrit
m

αg αg

Fig. 7. (a) Dependence of the dimensionless characteristic velocities λ2,3 and the sonic velocity cm in the mixture on the
gas volume fraction αg: (1, 2) λ2 for Mm = 0.001, 0.003; (3, 4) ∣λ ∣3 for Mm = 0.001, 0.003; (5) cm. (b) Dependence of the
critical Mach number on the gas volume fraction: (6) numerical solution of (3.12); (7) approximating dependence um = cm.

in the mixture. The dependence of cm on αg for K < 1 and η≪ 1 has a minimum:

cmin
m

cl
= 2K

(
η1/2 + O(η3/2)

)
, αmin

g =
1
2

(
1 + (1 − K2)η

)
+ O(η2).

Therefore, over the range of parameters um ∼ ui ≪ cmin
m , typical of wellbore flows, the characteristics

λ2,3 have different signs and describe the perturbations propagating up- and downstream.
In the case of the stationary momentum equation for the mixture (ε1 = 0, ε2 = 1), Eq. (3.11) becomes

quadratic. The second root is

λ2 = ωgug + ωlul − c2
m

um
.

For the systems with the transient and steady-state momentum equation for the mixture, the conditions
of the change of sign of one of the characteristic velocities, which determine an analog of a sonic surface,
coincide:

um
(
ωgug + ωlul

)
= c2

m. (3.12)

Figure 7 is plotted for the closure relations from [31], obtained by the calibration with respect to a large
set of experimental data used in the simulation of wellbore flows. For this type of closure relations, the
phase velocities and the characteristics are the functions of six dimensionless parameters, namely, αg, η , K,
Mm, Md = u0

d/cl (where u0
d = u0

d(p) = ud(0, um, p)), and the dimensionless diameter of the pipe d̂ (defined
in [31]). For η and K, we used the values as for the oil-gas flow in the table, Md = 1.5×10−4 and d̂ = 47,
which are typical of wellbore flows. Figure 7a shows the dependences of the sonic characteristic velocities
λ̃2,3 = λ2,3/cl on αg. In Fig. 7b, we have plotted the dependence of the critical Mach number Mcrit

m on the
gas volume fraction, obtained from the numerical solution of Eq. (3.12), and the approximating dependence
Mcrit

m = cm/cl .
Eliminating the spatial derivative of the mixture velocity using Eq. (3.5), from the sum of continuity

equations (2.1) in the case of a stationary momentum equation for the mixture we obtain:

∂ p
∂ t

+ λ2
∂ p
∂x

= C,

where C is the sum of the algebraic terms.
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Accordingly, one of Eqs. (2.1), (3.5) can be reduced to the form of the transport equation for pres-
sure. Thus, in this case the pressure is a Riemann invariant, which is transported along the characteristic
dx/dt = λ2. Since for the characteristic velocities of the flow the signs of λ2 and the mixture velocity do
not coincide, for the system with a stationary momentum equation for the mixture the formulation of the
boundary condition for the pressure at the outlet of the pipe is uniquely determined.

Finally, in the case of the non-inertial momentum equation for the mixture (ε1 = ε2 = 0) the root λ1 is
the only one, which agrees with the results of [27].

Summary. Two modifications of the classical two-fluid model describing a transient two-phase flow in a
long pipeline are considered: (i) a model with account for the liquid level gradient and (ii) a model, which
takes the interfacial pressure forces into account. In the case of incompressible media, with account of the
gradient of the liquid phase level a dimensionless criterion is found analytically, which ensures the hyper-
bolicity of the original system of equations. For flows of the oil-gas type and for different pipe inclination
angles, the regions of hyperbolicity of the system in the space of governing parameters of the flow are plot-
ted. It is shown that this modification of the classical two-fluid model is hyperbolic only in a narrow range
of values of the governing parameters. A dimensionless characteristic analysis of the model with account
for the interfacial pressure forces is performed. In the case of compressible media, the closure relation for
the pressure at the interface is proposed. To find the number of real roots of the characteristic equation,
a numerical realization of the Jenkins–Traub algorithm is employed. Over a wide range of values of the
problem parameters, typical of different flows (including oil and gas flows), the regions of real-valued roots
of the characteristic equation are constructed. For a given type of flow, the optimal closure relation and the
maximum slip velocity are given, below which the characteristic equation has only real-valued roots, and
the system remains hyperbolic.

A characteristic analysis is performed for the system of equations of the drift-flux model in the classical
formulation, with the closure relations using the profile parameter and the drift velocity, dependent of the
gas volume fraction and ensuring the correct reduction of the system to the equations of one-dimensional
motion of a compressible gas with the gas volume fraction tending to unity. The terms of the zero order
are calculated in the expansions of the characteristic velocities in powers of the Mach numbers based on the
mixture velocity and the drift velocity. The necessary condition for global hyperbolicity of the system is
found, which is also the sufficient condition at low Mach numbers, as follows from numerical experiments.
A characteristic analysis of the drift-flux model in the formulation of ECLIPSE is performed for arbitrary
closure relations. Analytical expressions for the characteristic velocities are obtained, and it is shown that
the system is strictly hyperbolic. One of the characteristics does not depend on the compressibility of the
phases and is associated with slow perturbations of the gas volume fraction, propagating with mass transfer
velocity, whereas the two other characteristics correspond to rapid pressure perturbations. An analog of the
sonic surface for the system is determined, and the conclusions are drawn about the sign-definiteness of the
eigenvalues and the correct formulation of the initial-boundary-value problem.

The authors thank the management of Schlumberger Moscow Research for the opportunity to publish
this work. The work was performed with financial support of the Schlumberger Moscow Research.
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