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Abstract—Free internal waves in a vertically nonuniform stratified flow are considered with account of
the coefficients of horizontal turbulent transport. The dispersion equation and the wave decay rate are
derived in the linear approximation. The vertical component of the Stokes drift velocity and the wave
fluxes of heat and salt are determined in the second order of the wave amplitude. It is shown that it is the
vertical component of the Stokes drift velocity which is nonzero, when turbulent viscosity and diffusion
are taken into account, that mainly contribute to the wave transport. The wave flux of salt is greater than
the turbulent flux. Taking the flow into account leads to a decrease in the vertical wave fluxes but the
wave flux of salt remains greater than the turbulent flux.
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Internal waves are presented everywhere in the ocean, since the generating energy sources are always
working; these are atmospheric pressure disturbances, wind stresses on the sea surface, the interaction of
flows and tides with bottom relief inhomogeneities [1], flow instability [2], etc. The internal waves exist due
to density stratification which is presented everywhere below the upper mixed layer. The vertical transfer
in the sea medium is usually associated with small-scale turbulence which is alternate in nature and is
accounted for by introducing “effective” turbulent transfer coefficients. The turbulent viscosity effect on the
internal waves was studied in [1, 3], where it was shown that the internal waves are decaying.

Nonlinear effects that accur during internal wave propagation manifest themselves in the generation of
mean (on wave scale) flows [4, 5]. The vertical velocity of the induced flow has opposite signs on the leading
and backward fronts of the packets; for this reason, the integral vertical transfer is absent from the internal
wave region. In the inviscid case the vertical component of the Stokes drift velocity for a fixed internal-wave
mode is zero. In the presence of turbulent viscosity and diffusion the vertical component of the Stokes drift
velocity and the wave fluxes of heat ⟨u3T ⟩ and salt ⟨u3S⟩ are nonzero [6, 7] (here, u3 is the vertical velocity
component and T and S are the wave disturbances of the temperature and the salinity, while the angular
brackets mean the averaging over the wave period).

Below we consider the mean flow effect on these wave fluxes, the vertical component of the Stokes drift
velocity, and the total wave transfer. Under actual sea conditions the coefficients of the vertical turbulent
transfer are 3 to 5 orders smaller than those of the horizontal transfer; because of this, here we study only
the effect of the horizontal transfer coefficients on the internal waves with allowance for mean flows.

1. FORMULATION OF THE PROBLEM

We will consider free internal waves in a vertically nonuniform flow with account for horizontal tur-
bulent viscosity and diffusion in the Boussinesq approximation. The vertical distribution of the internal
wave amplitudes, the dispersion equation, and the wave decay rate are found in the linear approximation.
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VERTICAL FLUXES INDUCED BY WEAKLY NONLINEAR INTERNAL WAVES 13

The vertical component of the Stokes drift velocity and the wave fluxes of heat and salt are determined in
the second order of the wave amplitude.

The dimensionless variables are introduced following formulas given in [6, 7] (here, the primes denote
the dimensional physical quantities)

x′i = Hxi, (i = 1–3), t ′ = t/ω∗, U ′
0 = Hω∗U0, V ′

0 = Hω∗V0,

u′i = Hω∗ui, ρ ′ = ρ ′
0(0)ρ , ρ0(x3) = ρ ′

0(0)ρ0(x3),

P′ = ρ ′
0(0)H

2ω2
∗P, K′ = Kμ , M′ = Mμ , ζ ′ = Hζ ,

where ω∗ is the characteristic wave frequency, x1 and x2 are two horizontal coordinates, x3 is the vertical
coordinate, the x3 axis is upward directed, ui (i = 1–3) are two horizontal components and the vertical
component of the wave flow velocity, ρ and P are the wave disturbances of the density and the pressure,
ρ0 is the undisturbed mean water density, H is the sea depth, K and M are the coefficients of horizontal
turbulent viscosity and diffusion, μ = K′, and ζ is the vertical displacement of the free surface of the sea.
Two components of the mean flow velocity U0 and V0 are assumed to depend on x3. The coefficients of
horizontal turbulent transfer are constant. In the Boussinesq approximation the system of hydrodynamics
equations for the wave disturbances takes the form:

∂u1

∂ t
+ ui

∂u1

∂xi
+ U0

∂u1

∂x1
+ V0

∂u1

∂x2
+ u3

dU0

dx3
=− ∂P

∂x1
+ ε2K

(
∂ 2u1

∂x2
1

+
∂ 2u1

∂x2
2

)
, (1.1)

∂u2

∂ t
+ ui

∂u2

∂xi
+ U0

∂u2

∂x1
+ V0

∂u2

∂x2
+ u3

dV0

dx3
=− ∂P

∂x2
+ ε2K

(
∂ 2u2

∂x2
1

+
∂ 2u2

∂x2
2

)
, (1.2)

∂u3

∂ t
+ ui

∂u3

∂xi
+ U0

∂u3

∂x1
+ V0

∂u3

∂x2
=− ∂P

∂x3
+ ε2K

(
∂ 2u3

∂x2
1

+
∂ 2u3

∂x2
2

)
− ρ , (1.3)

∂ρ
∂ t

+ ui
∂ρ
∂xi

+ U0
∂ρ
∂x1

+ V0
∂ρ
∂x2

= ε2M

(
∂ 2ρ
∂x2

1

+
∂ 2ρ
∂x2

2

)
− u3

∂ρ0

∂x3
, (1.4)

∂ui

∂xi
= 0. (1.5)

Here, ε2 = μ/ω∗H2 is a small parameter proportional to the horizontal turbulent viscosity μ .
The boundary conditions on the free surface (x3 = 0) are as follows:

P − g1ζ = 0, g1 =
g

ω2∗H
, (1.6)

K
∂u3

∂x1
= 0, K

∂u3

∂x2
= 0, (1.7)

∂ζ
∂ t

+ U0
∂ζ
∂x1

+ V0
∂ζ
∂x2

= u3. (1.8)

The dynamic conditions (1.6) and (1.7) determine the absence of the normal and tangential stresses,
while Eq. (1.8) is the kinematic condition on the free surface [8]. In the case of the data used below the
parameter g1 is very large: g1 ∼ 103; hence it follows that in Eq. (1.6) ζ ≈ 0. The condition ζ = 0, or the
“solid top” condition for the internal waves, filters out the surface waves [9]. In view of Eq. (1.8), u3(0) = 0.
Precisely this condition on the surface will be used below.
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The boundary conditions at the bottom are the solid top condition and the absence of tangential stresses
(smooth slip condition [3])

u3(−1) = 0, (1.9)

K
∂u3

∂x1
= 0, K

∂u3

∂x2
= 0, x3 =−1. (1.10)

In view of the fact that the vertical transfer coefficients are neglected, the tangential stresses at the bottom
are zero.

2. LINEAR APPROXIMATION

We will seek the solutions of the linear approximation in the form:

u0
3 = u30(x3)Aeiθ + c.c., u0

1 = u10(x3)Aeiθ + c.c., u0
2 = u20(x3)Aeiθ + c.c.,

P1 = P10(x3)Aeiθ + c.c., ρ1 = ρ10(x3)Aeiθ + c.c.,
(2.1)

where c.c. denotes compex conjugate terms, A is the amplitude coefficient, θ is the wave phase, ∂θ/∂x1 = k,
and ∂θ/∂ t = −ω (k is the wavenumber and ω is the frequency). It is assumed that the wave travels along
the x1 axis.

Substituting Eqs. (2.1) into system (1.1)–(1.5) yields the relation between the amplitude functions u10,
u20, ρ10, and P10 and u30

u10 =
i
k

∂u30

∂x3
, Ω = ω − k ⋅U0,

P10 = (iΩ − ε2Kk2)
1
k2

∂u30

∂x3
+

i
k

∂U0

∂x3
u30,

(iΩ − ε2Mk2)ρ10 = u30
dρ0

dx3
,

(iΩ − ε2Kk2)u20 = u30
dV0

dx3
.

The function u30 satisfies the equation

(iΩ − ε2Mk2)

{
iΩu30 − d

dx3

[
(iΩ − ε2Kk2)

1
k2

∂u30

∂x3

+
i
k

∂U0

∂x3
u30

]
− ε2Kk2u30

}
+ N2u30 = 0. (2.2)

The boundary conditions for u30 are as follows:

x3 = 0 : u30 = 0, (2.3)

x3 =−1 : u30 = 0. (2.4)

The boundary conditions (1.9) and (1.10) are fulfilled automatically.
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Equation (2.2) includes the small parameter ε ; following the method described in [8, 10] we will repre-
sent the solution u30 and the frequency ω as asymptotic series in ε

u30(x3, ε) = w0(x3) + εw1(x3) + ε2w2(x3) + . . . , (2.5)

ω = ω0 + εω1 + ε2ω2 + . . . (2.6)

After the substitution of expansions (2.5) and (2.6) into Eq. (2.2) we arrive at the following boundary
value problem for w0 in the zeroth approximation in ε

d2w0

dx2
3

+ k2 N2 − Ω2
0

Ω2
0

w0 +
k

Ω0

d2U0

dx2
3

w0 = 0, (2.7)

where −dρ0/dx3 is the square of the Brunt–Wäisälä frequency and Ω0 = ω0 − kU0 is the wave frequency
with the Doppler shift.

The boundary conditions for w0 are as follows:

w0(0) = 0, w0(−1) = 0. (2.8)

In the no-flow case (U0 = 0) the boundary value problem (2.7), (2.8) has a numerable set of eigen-
functions (modes). Any value of the wavenumber k is associated with a certain value of the frequency
ω0 < max(N) corresponding to the given mode. At U0 ∕= 0 a discrete spectrum of real frequencies can no
exist [11]. This is due to the singularity in Eq. (2.7) at Ω0 = 0 (only hydrodynamically stable solutions are
considered). In the presence of this singularity there exists a critical layer in which the phase velocity of
the wave is equal to the flow velocity. However, under the actual sea conditions on the scales of observable
internal waves the phase wave velocity can often be two and three times greater than the flow velocity. For
this reason, the dispersion curves change only slightly, when the flow is taken into account [12]. This is
illustrated by the calculations of the dispersion curves of the two first modes presented below.

The next term in expansion (2.5) is determined from the equation

d2w1

dx2
3

+ k2 N2 − Ω2
0

Ω2
0

w1 +
k

Ω0

d2U0

dx2
3

w1 =
ω1

Ω0

(
2k2w0 − 2

d2w0

dx2
3

− kw0

Ω0

d2U0

dx2
3

)
= f1(x3). (2.9)

The boundary conditions for the function w1 are as follows:

w1(0) = 0, w1(−1) = 0. (2.10)

The condition of the solvability of the boundary value problem (2.9), (2.10) is as follows:

0∫

−1

f1 w0 dx3 = 0.

For ω1 ∕= 0 this condition is not generally fulfilled and the boundary value problem (2.9), (2.10) has no
solutions.

The next approximation w2 in the parameter ε satisfies the equation

Ω2
0

[
− k2 +

d2

dx2
3

]
w2 + N2k2w2 + kΩ0

d2U0

dx2
3

w2

= (−ω2 − iMk2)

(
d2w0

dx2
3

Ω0 − k2Ω0w0 + k
d2U0

dx2
3

w0

)

+ Ω0

[
ω2

(
k2w0 − d2w0

dx2
3

)
− iKk2 d2w0

dx2
3

+ iKk4w0

]
= Φ.

(2.11)
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16 NOSOVA, SLEPYSHEV

Fig. 1. Vertical temperature (a) and salinity (b) profiles.

Fig. 2. Time dependence of the vertical displacements of the temperature contours; (1–4) relate to ξ1 to ξ4.

The boundary conditions for the function w2 are as follows:

w2(0) = 0, w2(−1) = 0. (2.12)

The condition of the solvability of the boundary value problem (2.11), (2.12) is as follows:

0∫

−1

Φw0 dx3 = 0.

Hence we derive the expression for ω2

ω2 =−i

0∫

−1

(
M1k4

Ω2
0

N2w0 − Kk2 d2w0

dx2
3

+ k4Kw0

)
w0

Ω0
dx3

[ 0∫

−1

(
N2

Ω3
0

2k2 +
k

Ω2
0

d2U0

dx2
3

)
w2

0 dx3

]−1

. (2.13)

The diffusion equation for the wave disturbances of salinity takes the form:

∂ s
∂ t

+ (u1 + U0)
∂ s
∂x1

+ (u2 + V0)
∂ s
∂x2

+ u3
∂ s
∂x3

+ u3
∂S0

∂x3

= ε2 ∂
∂x1

(
M

∂ s
∂x1

)
+ ε2 ∂

∂x2

(
M

∂ s
∂x2

)
,

where S0(x3) is the mean salinity profile.
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Fig. 3. Vertical profile of the Brunt–Väisälä frequency (a); vertical profiles (b) of the flow velocity components U0 (1) and
V0 (2); and the eigenfunction (c) of the 15-minute internal waves.

We will seek the solutions of the linear approximation in the form:

s1 = s10(x3)Aeiθ + c.c. (2.14)

The function s10 is expressed in terms of u30

s10 =− iu30

Ω + iε2k2M
dS0

dx3
. (2.15)

3. NONLINEAR EFFECTS

The velocity of the Stokes drift of the fluid particles is determined by the formula [13]

us =

〈 t∫

0

(udτ ⋅∇)u

〉
,

where u is the Eulerian wave velocity field and the angular brackets mean the averaging over the wave
period. On the second order of wave amplitude the vertical component of the Stokes velosity takes the form:

u3s =
2δω
ω2

0

d
dx3

(w2
0)A1A∗

1. (3.1)

Here, δω = ε2ω2/i is the wave decay rate due to turbulence and A1 = Aexp(δω ⋅ t). When the coeffi-
cients of turbulent viscosity and diffusion are zero, K = M = 0, the decay rate and the vertical component
of the Stokes drift velocity are also zero.
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Fig. 4. Dispersion curves (a); mode I without (1) and with (2) flow and mode II without (3) and with (4) flow; frequency
dependence of the wave decay rate (b) for mode II without (1) and with (2) flow; and same (c) for mode I.

We will determine the wave flux of salt ⟨u3S⟩ accurate to the terms of the order of ε2 taking Eqs. (2.14)
and (2.15) into account

⟨u3S⟩
∣A2

1∣
=−2w2

0

(
δω + ε2k2M

)
Ω−2

0
dS0

dx3
. (3.2)

The wave flux of heat ⟨u3T ⟩ is determined by the same Eq. (3.2) with the vertical salinity gradient
dS0/dx3 replaced by the vertical temperature gradient dT0/dx3.

4. RESULTS OF THE CALCULATIONS

The vertical wave fluxes of heat and salt are calculated for the internal waves observed in the full-scale
experiment south-west to the town of Eupatoria during the third stage of the 44th sailing of the research ship
Mikhail Lomonosov. Figure 1 presents the vertical profiles of the temperature and the salinity in the mea-
surement area. In Fig. 2 we have plotted four realizations of the temperature contour elevations calculated
according to the data of the GRAD instruments, that is to say, the gradient-distributed temperature transduc-
ers [14]. The first instrument was placed in a 5 to 15 m layer, while the second to fourth ones were on the 15
to 25, 25 to 35, and 35 to 60 horizons. It can be readily seen that intense oscillations with the period of about
15 min in the 15 to 25 m layer are in antiphase with those in the 25 to 60 m layer, which indicates the second
mode oscillations. The maximum elevation amplitude was 0.5 m. The vertical profiles of the Brunt–Väisälä
frequency and two flow velocity components are presented in Fig. 3a and 3b. The boundary value problem
(2.7), (2.8) for the internal waves is numerically solved using the implicit third-order Adams scheme. The
wavenumber is determined by means of the shooting method using the fulfillment of the boundary condi-
tions (2.8) as a criterion. The eigenfunction of the 15 minute internal second-mode waves are presented in
Fig. 3c.
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Fig. 5. Vertical fluxes of salt in the presence (1) and absence (2) of flow.

The wavenumber is 0.032 rad/m. The normalizing multiplier A1 is determined from the known value of
the maximum amplitude of vertical displacements (maxζ3 = 0.5 m) using the relation dζ3/dt = u3

ζ3 =
iw0

Ω0
A1 exp(ikx − iω0t) + c.c.

Hence it follows that

A1 =
Ω0maxζ3

2max ∣w0∣ .

Thus, the vertical displacement amplitude is proportional to w0. The function w0 extrema correspond
to the maximum vertical displacements according to the experimental data (Figs. 2 and 3c), since in the
experiment the second mode was observable. The wavelength of the 15 minute internal second-mode waves
is 196 m, while the typical value of the horizontal turbulent transfer coefficient is 1 m2/s. The dispersion
curves are plotted in Fig. 4a in the presence and the absence of a flow. Curves 1 and 2 correspond to the first
mode with and without flow and curves 3 and 4 to the second mode with and without flow. In the presence
of a flow the dispersion curves lie somewhat higher than in the case of its absence.

The boundary value problem of determining the function w2 is numerically solved using the implicit
third-order Adams scheme at K = 2M; the unique solution orthogonal to w0 and the wave decay rate δω are
determined. The decay rate of the 15 minute internal second-mode waves δω = −7.24× 10−4 rad/s. The
dependence of the wave decay rate on the wave frequency is presented in Fig. 4c and 4b, for the first and
second mode waves, in the presence and the absence of the flow. Curves 1 and 2 correspond to the cases of
the absence and the presence of the flow. At a fixed wave frequency the absolute value of the second-mode
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Fig. 6. Profiles of the overall wave fluxes of salt in the presence (1) and absence (2) of flow.

Fig. 7. Profiles of the overall wave fluxes of heat in the presence (1) and absence (2) of flow.

wave decay rate is greater than that of the first mode. Taking the flow into account leads to a decrease in the
absolute value of the decay rate.

The wave fluxes of salt are calculated for the vertical salinity profile presented in Fig. 1b. The vertical
wave fluxes of salt ⟨u3S⟩ (3.2) for the 15 minute internal second-mode waves are presented in Fig. 5a. In the
presence of the flow the wave flux of salt is smaller than in its absence. The wave fluxes of salt S0u3s at the
expense of the vertical component of the Stokes drift velocity are shown in Fig. 5. Generally, the absolute
value of the wave flux is smaller in the presence of the flow than in its absence.

The overall wave flux qs = ⟨u3S⟩ + S0u3s is chiefly determined by the second term, that is, the vertical
component of the Stokes drift velocity, and is smaller in the presence of the flow than in its absence (Fig. 6).
The vertical wave flux of heat qT = ⟨u3T ⟩ + T0u3s is also mainly determined by the vertical component
of the Stokes drift velocity and is smaller in the presence of the flow than in its absence (Fig. 7). The
vertical salinity gradient dS0/dz is not greater than 0.1 ‰/m, while the typical value of the vertical turbulent
diffusion coefficient in the stratified sea medium on the shelf area M3 ∼ 10−4 m2/s [15]; for this reason the
turbulent flux of salt s f =−M3dS0/dz is of the order of 10−5‰ m/s and is smaller than the wave flux of salt
(Fig. 6).
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Summary. The vertical component of the Stokes drift velocity is nonzero, when turbulent viscosity and
diffusion are taken into account. The vertical wave fluxes of salt ⟨u3S⟩ and heat ⟨u3T ⟩ are also nonzero.
The overall wave fluxes of heat and salt are mainly determined by the vertical component of the Stokes drift
velocity and, when the flow is taken into account, are smaller in absolute value than the corresponding fluxes
in the no-flow case. The wave fluxes of salt are greater than the turbulent ones.
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