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Abstract—An exact solution of MHD equations with plane waves describing the solid-body motion of
an ideally conducting gas in a given uniform gravitational field is derived. The motion is due to a piston
producing a shock wave propagating throughout the initial equilibrium state with a decreasing density.
The solution involves an arbitrary function of the Lagrangian variable, whose choice influences the flow
pattern.
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Shock wave acceleration at the expense of a decrease in the initial density can occur in the stellar and
planetary atmospheres exposed to local heating or ionization. Within the framework of gas dynamics this
effect was detected by L.I. Sedov [1] in solving the problem of strong blast in a variable-density medium in
the absence of counterpressure. On the other hand, when an initial constant pressure is taken into account,
the density decrease automatically leads to an increase in the speed of sound and, therefore, in the shock
wave velocity, thus producing the preconditions for the loss of the medium inertia, the instability, and the
development of different dynamic processes.

A very simple example of the exact solution of the problem of a piston that starts to move at a constant
velocity within a pressureless gas and produces an accelerating shock wave, when a certain law of decrease
in the initial equilibrium density is fulfilled, is presented in [2, problem 25.37]. In a more realistic situation
the effects of the counterpressure and the electromagnetic and gravitational fields must be taken into account,
together with the relativistic effects. The exact solutions of this problem within the framework of the special
and general relativity but without regard for the counterpressure were given in [3], while the solutions with
the counterpressure in the special theory without gravitation were announced in [4], those with account of
the frozen-in transverse magnetic field and the counterpressure but without gravitation within the framework
of the Newtonian mechanics are presented in [5, 6], and the solutions in the linear formulation are given in
[7, 8]. The general overview of the earlier studies can be found in [9]. An investigation of a class of self-
similar problems without regard for magnetic fields with a power-law decrease in the initial density is given
in [10].

In [5, 6] the “blow-up” effect was found to exist, when a shock wave goes to infinity for a finite time; the
effect is due to the unlimited growth of the speed of sound ahead of the shock wave. Within the framework
of the relativity theory the state with an infinite temperature is attained for a finite time and at a finite distance
from the beginning of the motion [4].

The solution is constructed by the inverse method [11]. If the solutions ahead of and behind the shock
wave involve, at least, two arbitrary functions of one variable, then, together with the law of motion of the
shock wave, they are determined by three conditions at the discontinuity. In this study, we consider the case
of the solid-body motion of a medium with a frozen-in magnetic field which makes it possible to construct
a solution with one more arbitrary function of the Lagrangian variable, whose behavior has a considerable
effect on the motion.
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1. EQUATIONS AND RELATIONS AT THE DISCONTINUITY

We will consider a class of solutions of the one-dimensional problem with plane waves and a frozen-in
transverse magnetic field within the framework of the Newtonian mechanics. The process is adiabatic and
the gas is perfect. The Lagrangian coordinate ξ is used.

Let x(ξ , t) be the law of the medium motion, ξ = x(ξ , 0), v = xt is the velocity, ρ = ρ0(ξ )/xξ is the
density, p = f (ξ )ργ is the pressure, γ is the constant adiabatic exponent, H = H0(ξ )/xξ is the magnetic
field, q = H2/(8π) is the magnetic pressure, and the constant g means the gravitational field. In what
follows it is assumed that 1 < γ < 2. The subscripts t and ξ refer to partial derivatives and zero means the
initial state of the magnetic field.

Then the equation of motion takes the form [12]:

ρ0vt + (p + q)ξ + ρ0g = 0. (1.1)

The absence in the nature of magnetic currents leads to the continuity of the function H0(ξ ) across the
discontinuity, while the function f (ξ ) related with the entropy distribution increases. Moreover, at the shock
wave the conditions of the continuity of the law of motion and the conservation of the mass, momentum,
and energy fluxes are fulfilled.

A continuous mass variable m(ξ ) can conveniently be introduced by the equation mξ = ρ0. Then the
conditions at the discontinuity surface t = ts(m) take the form:

[x]10 = 0,
[
v − (p + q)t ′s

]1
0 = 0,

[
v2

2
+

pxm

γ − 1
+ qxm − (p + q)vt ′s

]1

0
= 0,

(1.2)

where the brackets denote the difference between the quantities in the states 1 (behind the shock wave) and
0 (ahead of it). The gas motion is produced by a piston with a fixed coordinate m0 and the given law of
motion xp(t) = x(t, 0).

Ahead of the shock wave the gas is assumed to be in equilibrium

p0 + q0 = g(m∞ − m) + q0(m∞) = B0 − gm, (1.3)

where m∞ is the total gas mass and q0(m) and x0(m) are arbitrary functions. At m = m∞, where p0 = 0, the
magnetic field is assumed to be bounded.

2. A SOLUTION WITHOUT GRAVITATION

To understand the role played by gravitation we will consider the solution of Eqs. (1.1) and (1.2) at g = 0
which possesses the blow-up effect.

Ahead of the shock wave p0 + q0 = B0. Behind the shock the motion with homogeneous deformation
takes place

x = v(ξ )t, ρ =
ρ0(ξ )

v′t
, p =

C1

tγ , q =
C2

t2 . (2.1)

Then at the discontinuity we have

vts = ξ , ρ0v =

(
C1

tγ
s

+
C2

t2 − B0

)
t ′s,

ρ0
v2

2
+

(
C1

(γ − 1)tγ−1
s

+
C2

ts

)
v′ =

B0 − (2 − γ)C2v′2

γ − 1
+

(
C1

tγ
s

+
C2

t2

)
vt ′s.

(2.2)
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After ρ0 and v have been eliminated, we arrive at a quadratic equation for v′ = F(ts) which gives the
differential equation with separating variables

1
v

dv
dts

=
F(ts)

1 − tsF(ts)
, (2.3)

F(t) =− γ − 1
2C2(2 − γ)

[
(γ + 1)C1

2(γ − 1)tγ−1 +
3C2

2t
+

B0t
2

−
((

(γ + 1)C1

2(γ − 1)tγ−1 +
3C2

2t
+

B0t
2

)2

+
2C2(2 − γ)

γ − 1

(
(γ + 1)B0

γ − 1
+

C1

tγ +
C2

t2

))1/2]
.

The root of the equation 1 − tF(t) = 0 can easily be obtained in the case in which v′ = 1/ts. From
Eqs. (2.2) there follows

B0 − C1

tγ
∗
− C2

t2∗
= 0.

In this case, for a finite time t∗ the shock wave goes at infinity at the speed of sound which, in turn,
increases without bound.

The blow-up regime can also occur without magnetic field, when C2 = 0 and p = B0 is constant. In this
case, Eq. (2.3) is fully integrable

v =
ξ
ts

= v0
p1 − p0tγ

0

p1 − p0tγ
s

(
ts
t0

)(γ−1)/2

, t∗ =

(
1
p0

)1/γ
,

where v0 > 0 and t0 > 0 are the piston velocity at the initial moment and the moment itself, so that the
Lagrangian variable is measured from the point v0t0 > 0.

In the vicinity of ξ = ∞ the initial density

ρ0 =
(p1 − p0tγ

s )t ′s
vtγ

s
∼ (p1 − p0tγ

s )4 ∼ 1
ξ 4 .

Thus, the total mass is constant. As the motion is produced, the shock wave velocity, together with the
initial speed of sound a0 = (γ p0/ρ0)1/2, increase without bound, as ξ 2.

The work done by the piston

A =
p1v0

γ − 1
(t1−γ

0 − t1−γ
∗ ) (2.4)

is also finite.
Formula (2.4) shows that the work done by the piston may be small but important as a catalyzer of the

shock acceleration development, since in the initial state ahead of it there is an infinite energy “sea”, even
at a small value of p0. Clearly that the problem solution is model but physically it can be realized as a
mechanism of the local loss of stability of the hot-gas equilibrium.

When gravitation is taken into account (Eq. (1.1)), a solution of the type (2.1) is generally impossible in
the case of the initial equilibrium state (1.3). An analog can be furnished by the law of motion of the form

x =−1/2gt2 + v(ξ )t, (2.5)

which shows that behind the shock wave the gas particles start to move toward the gravitation field source
with time. In this case, the entire flow pattern considerably changes.
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3. GRAVITATION FIELD INFLUENCE

The law of motion (2.5) leads to a fairly complicated first-order equation whose solution is qualitatively
investigated. However, a simpler exact solution with a single arbitrary function of the Lagrangian variable
m can also be constructed assuming that behind the shock wave we have the solid-body motion x = at2/2 +
u(m) and p and q are functions of m.

Then from the equation of motion (1.1) it follows that

p + q = B1 − (a + g)m, p =
f (m)

u′γ
, q =

q0(m)

u′2
, (3.1)

where B1 = const. With account for Eq. (1.3), there are four arbitrary functions of the mass m, namely, x0, u,
q0, and ts, of which three are determined by the conditions at discontinuity (1.2) and one remains arbitrary.

The law of momentum flux conservation is immediately integrated and yields

ts =
C

B1 − B0 − am
, (3.2)

where C = const. If we assume that B1 = (a + g)m∞ + q0(m∞), then the pressure p(m∞) = 0, together with
the initial pressure p0 (on-design regime). In this case, the magnetic field is equalized. At smaller B1 the
shock wave does not reach the gas layer edge even for infinite time and is actually stopped. At greater B1

the arbitrary discontinuity breaks down at the edge of the layer, whose thickness is finite. Then the constant
C = t0gm∞, where t0 is the moment of the beginning of the piston motion. Choosing the measurement units
as g = 1, m∞ = 1, and t0 = 1 we have ts = 1/(1 − m).

The condition of the energy flux continuity can be transformed to the conservation of the generalized
enthalpy [

(D − v)2

2 + γ p
(γ − 1)ρ + 2q

ρ

]1

0
= 0, (3.3)

where D = dx0/dt = x′0/t
′
s is the discontinuity velocity.

Equation (3.3) is linear with respect to q0; for this reason, after some algebra and with account for integral
(3.2) in can be reduced to the equality

q0 =
1

2 − γ

(
D
ts
− a

)(
D
ts
− γ + 1

2
a − γ − γq0(1)ts

)
(3.4)

with the restriction q0 ≥ 0.
Hence there follows the asymptotics of the shock wave velocity, as t→ ∞

D = 2γq0(1)t2. (3.5)

After the function D(t) has been specified, together with its asymptotics, all the other functions are
determined using integral (3.2), Eq. (3.4), and the continuity of the law of motion x0 = at2

s /2 + u.

4. EXAMPLES OF FLOWS

We will consider several examples.
(a) Let a magnetic field be absent. Then we have

D =

(
γ + 1

2
a + γ

)
t,

x0 =

(
γ + 1

2
a + γ

)
1

2(1 − m)2 = ξ .
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Here, the additive constant is omitted. Hence follows that the initial density ρ0 = mξ ∼ ξ−3/2.
In this case, even at an arbitrarily small piston acceleration a the shock wave goes to infinity at the

acceleration γ in the units of g.
(b) Let the initial magnetic field be constant, q0 = q0(1). Then the velocity D is determined by the greater

solution of the quadratic equation (3.4). Using the leading term of asymptotics (3.5) D ≈ γq0t2 gives the
following result

x0 ≈ γq0t3
s

3
=

γq0

3(1 − m)3 .

The initial density ρ0 ≈ (γq0/81)1/3ξ−4/3.
(c) At large t the case of a “shivery” shock wave can also be considered, when D = 2q0(1)t2 +

Asin(ω/t). In this case, the magnetic pressure is determined by Eq. (3.4) with the replacement ts =
(1 − m)−1.

Summary. With reference to simple examples pertaining to a class of exact solutions of the MHD equa-
tions corresponding to the special motion of a conducting gas behind a shock wave, it is shown that, despite
the decelerating influence of the gravitational field, under certain conditions determined by a decrease in
the initial gas velocity even a very small piston acceleration can produce the shock wave motion at a finite
acceleration. The presence of a magnetic field only enhances this effect leading to an unbounded growth of
the discontinuity acceleration.

The study was carried out with the partial support of the Russian Foundation for Basic Research (project
No. 14-01-00056).
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