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Abstract—The tensile stress of threads appearing in the capillary breakup of jets of high-molecular
polymeric solutions with concentrations of 0.003–0.03% is measured. As a stress sensor, the droplets
adjacent to the thread were used. The forces acting on the threads are found. It is shown that, under
the stretching, the rheologic behavior of the liquid in the thread differs from that in the conditions of
contractile flow in the droplet. The inertial effects in the thinning of the threads between the jet droplets
are analyzed.
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A capillary breakup of a jet is one of the fundamental processes of hydrodynamics. Despite of long
history of its research, started from the works of Savart, Plateau, and Rayleigh [1–3], this process attracts the
attention of researches until now. This is because the capillary jets are widely encountered in engineering. It
is sufficient to mention ink jets [4], jet radiators of space stations [5], fuel atomization processes [6], coating
technologies [7], and many other applications [8].

Of specific interest are polymeric jets, the forms of breakup of which differ from those for Newtonian
fluids [4, 9–18]. Sometimes they become the elements of new technologies. For instance, due to polymeric
additives the stability of jets increases, and the printing quality in ink jets is improved [4]. The effect of the
formation of self-thinning threads in the breakup of jets or liquid bridges is used not only for the production
of nanothreads [19, 20] but also as a method of studying the rheology of liquids under stretching [12, 21, 22].

The main feature of the breakup of polymeric jets is the transformation of bridges between the jet droplets
into homogeneous liquid threads, slowly thinning with time (Fig. 1). A self-thinning thread between the jet
droplets is the result of the capacity of polymeric liquids to accumulate considerable reversible deformations
under stretching.

A theoretical analysis of the thread thinning process is based on specific assumptions on the liquid rheol-
ogy, the flow character, and the stress distribution in the thread. In the first approximation, it is assumed [12]
that the flow in the thread is inertialess, the thread is homogeneous in the length, and is axially symmetric.
The existence of the thread is attributable to the balance between the external stresses (axial stress σx at the
edges and the capillary pressure α/r) and the inner stresses (the tensor of extra stresses τ and the pressure p)

σx = τx − p, −α/r = σy = τy − p.

Here, r is the thread radius, α is the surface tension coefficient, and the tensors σσσ and τττ are represented
by the physical components in the cylindrical coordinates (x, y, ϕ) (Fig. 1c). Due to the orientation of
polymeric molecules along the thread axis, τy = 0 [23].

The further step in the formulation is the specification of the theological equation for the tensor τττ and
the assumption that the axial physical component σx is much smaller than the radial physical component σy:
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Fig. 1. Breakup of a jet of 0.01% PEO solution. The jets moves from left to right with a velocity of 1.7 m/s (a). Uniform
cylindrical thread between the droplets in the breakup of a jet of 0.03% PEO solution (b). Model of the thread (c).

∣σx∣ ≪ ∣σy =−α/r∣ [12, 23, 24]. Along with the approximation σx = 0, other hypotheses also exist. Thus,
in [25] it is assumed that σx = α/r.

In the present study, we verify the assumption that the value of σx is finite and is determined by the
process of liquid flow from the thread to the droplet and the capillary pressure in the droplet Pd. If the
droplet is free of internal stresses in the motion in the droplet, then σx = Pd. However, if when the elastic
liquid enters in the droplet the stresses relax with respect to the length, the appearance of a positive axial
stress σ∼α/r is possible, which prompts the flow [26]. On the other hand, if the liquid is viscous, rather
than elastic, the fluid deformation in the course of entering in the droplet creates the viscous stresses, which
oppose the flow, σx < 0 [23, 25, 27].

Investigations of the breakup of polymeric jets are usually consist in recording the breakup patterns and
comparing them with the analytical solutions or numerical results [28]. The information on the stress state
of the liquid in the droplet plays the key role in understanding the jet breakup mechanisms of real liquids
and the construction of the corresponding mathematical models. In addition, the knowledge of the stress
distribution in the jet is necessary for the development of new rheometric tests of various liquids, carried out
using jet breakup [29, 30].

This study was performed with the aim to develop a method of measurement and determination of the
stresses in a fragmented jet of a real liquid. The stress state of the jet is, first of all, the tensile force Ff of
the capillary thread connecting the neighboring droplets. Its value Ff = 2πrα + σxπr2 is determined as the
sum of the force exerted on the surface (2πrα) and the forces acting in the volume πr2σx.

At first sight, the problem of measurement of a variable force of the order of several tens of micronewtons
in a moving jet seems to be very difficult. The first results of such experiments are given in [17]. The
experiment involves a mechanical action on the jet. The jet flows out of a transversally oscillating nozzle,
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Fig. 2. Droplet of the jet with adjacent threads.

which results in the formation of an unusual, zigzag shape of the jet in the late stage of the jet breakup. In
this jet, a pair of threads, adjacent to each droplet, forces the droplet to move along a curvilinear trajectory,
the subsequent computer analysis of which makes it possible to determine the tensile forces on the threads.

In this study, we present an alternative method of measuring the tensile force on the thread directly in the
polymeric jet, without any external action on the jet. The results of first experiments are published in [31].

1. THE METHOD

The measurement of the tensile force on the thread is based on the analysis of the shape of the droplet,
adjacent to the thread. The axial forces exerted on the droplet by the threads cause a droplet deformation
and a deviation of its shape from spherical. With increase in the tensile strength in the threads, this deviation
increases. Thus, the droplet itself plays a role of a sensor of the force acting on the droplet from the thread.

Consider a jet droplet with adjacent threads in the cylindrical coordinates, with the z-axis directed along
the thread axis (Fig. 2). Let the position z = 0 correspond to the maximal radius of the droplet y = R0.
It is assumed that both droplets, adjacent to the thread, are identical. The surface tension of the liquid is
assumed to be constant and equal to its static value. We neglect the liquid motion inside the droplet and
the corresponding inertia forces. The effect of internal stresses is assumed to be small. Thus, we consider
a static droplet which is in the equilibrium under the action of only the capillary forces and the external
stretching force F directed along the symmetry axis. Under these assumptions, the capillary pressure Pd and
the stretching stress in the droplet are constant, and the droplet shape R(z) satisfies the Laplace equation:

Pd = α
(

1
R

(1 + R′2)
−1/2 − R′′(1 + R′2)

−3/2
)

= const. (1.1)

Here, α and ρ are the surface tension coefficient and the density of the liquid, R′= dR/dz, R′′= d2R/dz2.
The differential equation of the droplet shape (1.1) can be represented in dimensionless form

dY
dZ

= Y1,
dY1

dZ
=

1 + Y 2
1

Y
− K(1 + Y 2

1 )
3/2
. (1.2)

where Y = R/R0 and Z = z/R0 are the dimensionless radial and axial coordinates of the droplet profile,
K = PdR0/α , R0 is the droplet radius in the section z = 0. The boundary conditions for Eqs. (1.2) take the
form: Y (0) = 1, Y1(0) = 0.

The parameter K characterizes the deviation of the droplet shape from spherical. For instance, K = 2 for
a spherical droplet; K = 1 for a cylindrical droplet; and for intermediate variants K ∈ (1, 2). This parameter
also determines the stretching force:

F = 2παR0 − PdπR2
0 = 2παR0(1 − K/2).

In particular, F = 0 for a spherical droplet (K = 2) and F = 2παR0 for a cylindrical droplet (K = 1).
The algorithm of the determination of F is as follows. By varying the parameter K and solving numeri-

cally Eq. (1.2), we can find such value of K for which the theoretical profile of the droplet Y (Z, K) is most
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close to the experimental tabular profile Yi(Zi), i = 1, . . . , N. The best approximation is determined using
the least-square method, i.e. by the minimum of the expression [32]

Φ(K) = (1/N)
N

∑
1

[
Y (Zi, K) − Yi(Zi)

]2
.

The value of K∗ for which the functional Φ(K) attains the minimum was taken as the parameter to be
found. Then, using the formula given above we calculated the stretching force F = 2παR0(1 − K∗/2).

The use of the droplet as a force sensor has certain restrictions. First, the time of external action on the
droplet should be much greater than the period of proper oscillations of the droplet. The period of the first
mode of inertial oscillations of the spherical droplet is Ti ≈ (ρR3

0/8α)1/2 [33]. Assuming for the estimate
that ρ = 1000 kG/m3, α = 0.07 N/m, and R0 = 0.25 mm, we obtain Ti = 1/64× 10−4 s. Accordingly, the
method is applicable for processes whose characteristic time is much greater than Ti = 1/64×10−4 s.

The liquid viscosity has a double effect. On one hand, it damps the proper oscillations of the droplet,
which is a positive factor for using the method. On the other hand, it retards the droplet response on the
variation of the acting force. This retardation can be estimated as Δtν ∼ ηR0/α , η is the liquid viscosity
[29]. For example, for η = 0.01 Pa×s, α = 0.07 N/m, and R0 = 0.25 mm the estimate gives the value
Δtν = 3.6×10−5 s. Hence, a small shear viscosity almost does not retard the response of the droplet shape
on the force exerted.

Obviously, it is not possible to neglect the internal stresses in the liquid in the transition region between
the thread and the droplet, where the elastic stresses in the flowing liquid are relaxed, but can still be large.
This is why the solution of differential Eq. (1.2) can be used for the approximation of the droplet shape only
outside this transition region.

2. THE EXPERIMENT

We investigated the aqueous solutions of polyethylene oxide (PEO, mean molecule mass M = 4 mln)
and polyacrylamide (PAA, M = 11 mln) with the weight concentrations of 0.003, 0.01, and 0.03%. The
static surface tension coefficient of the liquids under study was found using the hanging-droplet method
[34]. The results are presented in Table 1. The static surface tension of the solutions PAA and PEO differs
only slightly from that of water (see Table 1) and hence the effects of dynamic surface tension were not
taken into account.

For the characteristic strain rates (100–1000 s−1, the shear viscosity of the solutions PEO and PAA does
not exceed 3 and 10 mPa s, respectively [35]. All measurements were performed at the temperature of
25–26∘C.

The scheme of the experiment is shown in Fig. 3. For the creation of the jets, we used medical needles
with inner diameters di = 0.25 and 0.34 mm. The needles were cut to the length of 10 mm, and their ends

Table 1

Liquid Concentration, % α , mN/m

Water 0 71.8±0.3

PEO 0.003 67.3±0.4

PEO 0.01 62.2±0.3

PEO 0.03 62.1±0.2

PAA 0.003 71.8±0.2

PAA 0.01 72.1±0.1

PAA 0.03 71.8±0.2
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Fig. 3. Scheme of the experiment: (1) syringe pump, (2) pulse lamp, (3) condenser (Frenel lens), (4) photo camera.

were polished. The liquid was supplied by a KDS-200 syringe pump, connected with the outlet capillary
(needle) by a flexible silicon pipe. The liquid flow rate was Q = 5 and 10 ml/min for needles with diameters
di = 0.25 and 0.34 mm. The mean flow velocity v0 = 4Q/πd2

i was equal to 1.69 and 1.84 m/s. The
Reynolds number, estimated using the minimal shear viscosity of the solutions, was Re ∼ 100. The well-
known estimate [36] of the length of formation of the Poiseuille velocity profile l = 0.035Re×di indicates
that the Poiseuille profile is formed inside the capillary (l ∼ 1 mm). After reaching the nozzle, the profile
relaxes to a plane form on the same length l. Hence, in the free jet, the velocity profile can be regarded as a
plane one. The processing of the jet photographs showed that the diameter of the unperturbed part of the jet
near the nozzle differs from the nozzle diameter by not more than 5%. Accordingly, in the calculations the
initial velocity in the jet near the nozzle was taken equal to v0.

The breakup of the jet was recorded using a Canon7D digital camera, supplied with a micro-objective
and extension rings to enlarge the image scale. The resolution was 455 pixel/mm. A pulsing illumination
(with the duration of 5 μs) in a passing light was used. The outlet capillaries were mounted on a vertical
runner. This made it possible to displace the observation point to distances up to 100 mm along the vertical
and record different stages of the jet breakup.

3. THE METHODS OF PROCESSING THE RESULTS

The analysis of the droplet shape and the calculation of the thread tensile stress were performed using a
computer program of image processing, designed by the authors on the basis of the MatLab package.

The algorithm included the distinguishing of the jet edges and the measurement of the droplet profile
with adjacent threads in the tabular dependence Ri(zi) (i = 1, N1), where the longitudinal coordinate zi was
initially determined accurate to a constant; N1 ∼ 300 is the number of measurement points. The interval
Δ = zi+1 − zi between the points corresponds to the pixel size in the photograph.

In measuring the thread profile, we used the technique of subpixel resolution, which consists in a linear
interpolation of the intensity between the pixels. The value of a local threshold of intensity in determining
the thread edge was chosen by photographing and processing a cylindrical calibre of a known diameter.

To establish the fitness of the maximum of the droplet radius to coordinate origin z = 0, we used a
local polynomial approximation of the experimental dependence Ri(zi). A point z∗ was found, at which the
approximating function attained a maximum. The value R at this point was taken equal to the radius R0.
Using the transform zi = zi − z∗ (i = 1, N1), the location of the maximal radius was fitted to z = 0.

As mentioned above, the liquid flow in the droplet may result in a deviation of the droplet shape from
static. This deviation is most clear in the transition region between the thread and the droplet. To track the
effect of the droplet transition region on the results of measurement of the tensile stress on the thread and to
eliminate this effect, we used the following scheme of processing the droplet shape.

For each droplet, the functional Φ was minimized with respect to the parameter K on a sequence of
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Fig. 4. Example of processing the image of 0.01% PEO droplet (a). Search for the best theoretical approximation: (1) the-
oretical profiles of the droplet for different values of K; (2) best variant (K = 1.685) for the measured profile of the droplet
(3); the arrow shows the last experimental point analyzed. (b) Dependence of the stretching force F (4) and the functional
Φ (5) along the droplet length; (2, 3) theoretical and experimental profiles shown in (a); N0 is the number of pixels falling
within R0; the arrow shows the limit, over which the effects of internal forces in the liquid should be taken into account.

expanding intervals of z. At each step, the N−th interval started from the coordinate z = 0 and ended by the
coordinate zN of the point N (N < N1) lying on the profile under consideration. Thus, the dependences of
the parameters K(N), Φ(N), and Φ(N) on the number of the points considered N were obtained. A typical
example of the processing is shown in Fig. 4.

The reliability of the results increases with increase in the number of points N [32] under the condition
that the use of the static model (1.2) does not goes beyond the range of its applicability. Indeed, starting from
a certain fairly large number N, the quantities Φ and F are stabilized. At a certain critical value of N, a sharp
growth of the value of Φ is observed, which is attributable to the fact that an interval of the jet with internal
stresses in the liquid is included in the analysis. On this interval, the static model is no longer applicable,
the theoretical description differs from the real profile of the jet, and Φ grows sharply. In Figs. 4a, 4b, the
boundary of the range of applicability of model (1.2) is shown by arrows.

The measured value of the force was taken equal to the plateau in the graph F(N).

To estimate the accuracy of measurement of the stretching force, we processed the spherical droplets
without adjacent threads, when it is known a priori that F = 0. In this case, the numerical algorithm gave
the values of the force of 0.1–0.2 μN, which corresponded to the error of an individual measurement. At the
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Fig. 5. Photographs of successive vertical segments of the jet (1–3) of 0.01% PEO solution. Initial velocity of the jet is
1.7 m/s.

same time, the range of measured tensile stresses on the threads was 5–45 μN. Accordingly, the accuracy of
measurement of the stretching force using the method considered is sufficiently high (∼ 1%).

The accuracy of measurement of the thread diameter is∼ 1% for thick threads and ∼ 5% for the thinnest
threads (diameter of 25 μm). To increase the accuracy of determination of the geometrical parameters of
the jet, the image processing method used was calibrated by photographing two cylinders with diameters of
1.272 and 0.132 mm, measured by a high-accuracy micrometer.

Both threads adjacent to the same droplet were processed, i.e. the profiles were analyzed for z > 0 and
z< 0. No noticeable difference for upper and lower threads was observed. This indicates the absence of the
gravity force effect on the droplet shape in the vertical jet.

4. THE RESULTS AND ANALYSIS

In Fig. 5 we present the examples of photographs of PEO jet breakup at different distances from the
nozzle outlet. Although no disturbances were applied to regularize the breakup, the latter has a regular
nature (Fig. 1a).

The Rate of Jet Breakup

At first, we determined the time dependences of the thread diameter 2r(t). The thread diameter was
measured in the middle between the droplets. The time t of motion of the thread element from the nozzle
to the current location h was determined from the solution of the equation of constant-acceleration motion
h = v0t + gt2/2 for t, where g = 9.8 m/s2 is the gravity force acceleration. The data for 0.01% solutions of
PEO and PAA are shown in Fig. 6.

The thinning of an viscoelastic thread, whose rheology is described by the Oldroyd model, is given by
the function [23]:

r = r0 exp(−t/3θ). (4.1)
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Fig. 6. Time dependences of the thread diameter, obtained as a result of processing the photographs of jet breakup (1–6) and
the approximation by the exponential function r = r0 exp(−t/3θ ) (7): (a) 0.01% PEO solution, (b) 0.01% PAA solution.
Values of t are given accurate to a constant.

Table 2

Polymer Concentration, % θ , ms

PEO 0.003 0.68±0.06

PEO 0.01 1.80±0.14

PEO 0.03 4.88±0.20

PAA 0.003 1.56±0.17

PAA 0.01 6.44±0.35

PAA 0.03 16.8±3.70

where r0 is the initial radius of the thread and θ is the relaxation time. The values of the relaxation times θ
of the liquids considered are found by the approximation of the experimental data by theoretical dependence
(4.1) (see Fig. 6 and Table 2).

Nonuniformity of the Thread Diameter

In the fragmented jet, the threads between the droplets seem to be uniform in the length (see Fig. 5).
An enlarged fragment of the jet of a more concentrated solution is shown in Fig. 1b. However, the digital
processing of the images indicates that characteristic contractions may appear on the thread near the droplet
(Fig. 7). The diameter nonuniformity is the result of the fluid inertia. For a quantitative estimate of the
action of inertia, we will use a system of quasi-one-dimensional motion equations of a thin capillary jet
[15], without specification of the rheological equation for the liquid.

Integrating the momentum equations over the thread radius (Fig. 1c) and comparing the inertia term with
the other terms of the sum, we obtain the condition when the inertia effect may be neglected:

ρ
L/2∫

x

(
∂v
∂ t

+ v
∂v
∂x

)
dx≪ 2α

r
. (4.2)

Here, x is the longitudinal coordinate measured from the middle of the thread, L is the thread length, and
v is the axial velocity (Fig. 1c).

We will estimate the value of the integral on the left-hand side of Eq. (4.2), using the quantities r(t)
and L, measured in the experiment. For the uniaxial stretching, from the continuity equation we have
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Fig. 7. Successive thread profiles (1–5) in the fragmented jet of 0.01% PEO solution. Coordinate x is determined accurate
to a constant.

v = (∂v/∂x)/x and ∂v/∂x =−2d(lnr)/dt, accordingly:

∂v
∂ t

+ v
∂v
∂x

=
∂ 2v

∂x∂ t
x + 2

(
∂v
∂x

)2

x =−2
d2 lnr

dt2 x + 8

(
d lnr

dt

)2

x.

Substituting this result in Eq. (4.2), after the integration we obtain:

ρ
(

L2

4
− x2

)[
4

(
d ln r

dt

)2

− d2 lnr

dt2

]
≪ 2α

r
. (4.3)

From (4.3) it follows that the effect of inertia forces is most pronounced in the middle of the thread
(x = 0), and hence there the thread may be thinned slower than at the edges, becoming nonuniform in the
length. The physical explanation of this fact is simple. In the middle of the thread, the capillary pressure
accelerates a thread segment with the length L/2, while at the edge of the thread the length and the mass of
the accelerated part is smaller, and the thread here is thinned faster. Thus, the condition of neglect of the
fluid inertia in the thread thinning takes the form:

ρL2

4

[
4

(
d lnr

dt

)2

− d2 lnr
dt2

]
≪ 2α

r
. (4.4)

If, from an experiment or a theory, we know the thread thinning kinematics r(t) then we can estimate the
validity of the above inequality. For a thread thinning in accordance with the exponential law (4.1), from
(4.4) it follows:

ρv2
i ≪ 2α/r. (4.5)

where vi = v(L/2) = L/3θ is the velocity of the liquid supply in the droplet. Inequality (4.5) reflects the
smallness of the pressure head at the edge of the thread ρv2

i , as compared with the doubled capillary pressure
in the thread α/r.
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Fig. 8. Axisymmetric disturbances of the thread diameter to the left and to the right from the droplet (a) and their measured
profiles (b, c). 0.03% PEO solution. Coordinate x is determined accurate to a constant.

Thus, from the condition of inertialess flow the uniformity of the thread in the length follows, since
each thread element is thinned independently of the neighboring elements. It is assumed that the opposite
statement is also valid, i.e. the uniformity in the length indicates the inertialess nature of thread thinning.

The substitution of the data L = 1 mm, α = 62 mN/m, θ = 18 ms, r = 0.05 mm, ρ(L/3θ)2 = 34.3 Pa,
2α/r = 2480 Pa for the threads of 0.01% solution of PEO in (4.5) shows that inequality (4.5) is valid.
Nevertheless, the measured profiles of the threads in Fig. 7 show that, against the background of retainment
of uniformity in the whole, a local nonuniformity of the thread starts to develop. This indicates a high
‘sensitivity’ of the longitudinal profile of the thread with respect to the inertia forces. Being manifested at
the initial stage of thread thinning, the nonuniformity increases with the further thinning of the thread. The
similar patterns of jet breakup were obtained in numerical simulations [37].

A local contraction at the thread edge retards the liquid motion along the thread, which results in the
appearance of a droplet-shaped disturbance (Figs. 8–9). Earlier, such disturbances were not observed in the
jet breakup. They were registered only in a single thread formed by thinning of a droplet of a concentrated
polymeric solution between two discs [19, 20].

The appearance of the disturbances at the thread edge indicates the beginning of the thread breakup. The
thread rupture process occurs fast, and it is difficult to catch it using individual photographs. Nevertheless,
some photographs (Fig. 9) show that the rupture of the thread occurs at its ends.

Tension of the Thread

The processing of a large number of photographs of polymeric-jet breakup showed that the droplet shape
is well described by the solution of Eq. (1.2), which is valid only for a static droplet. Certain deviations from
the static profile are observed only in the transition region between the thread and the droplet (at distances
of about 1–2 diameters of the thread). This indicates that the liquid motion in the droplet does not affect
noticeably the droplet shape.

The results of measurement of the full stretching force F vs. the quantity 2πrα are presented in Fig. 1.
The graphs are obtained by the combination of the results of processing different droplets in instant photos
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DYNAMICS OF CAPILLARY BREAKUP OF ELASTIC JETS 837

Fig. 9. Rapture (breakup) of the thread near the droplet. 0.03% PEO solution.

of the jet breakup. The diameter of the jet was taken equal to its value in the middle of the thread.
In Fig. 10, the measured value of F is compared with a hypothetical value equal to the difference Ff 0 −

Fi, where Ff 0 is the tensile force of the thread, calculated with neglect of the liquid flow from the thread to
the droplet, and Fi is a propulsion force, appearing due to the liquid flow into the droplet.

In the absence of the run-over effects, the axial stress in the thread σx is equal to the capillary pressure in
the droplet Pd with the opposite sign σx = −Pd, and the tensile force is Ff 0 = −Pdπr2 + 2πrα . Using the
formula Pd = Kα/R0, we obtain Ff 0 = (2πrα)(1 − Kr/2R0).

The propulsion force Fi is directed from the thread to the droplet and is equal to Fi = πr2ρv2
i , where vi

is the inflow rate. For a thread with a length of L, thinning in accordance with the exponential law (4.1),
the inflow rate is constant and equal to vi = Ld lnr/dt = L/3θ . The mean length of the threads between the
droplets of the jet is ∼ 1 mm. With account of the values of θ given in Table 2, we can obtain the values of
vi and Fi for a thread with diameter of 0.1 mm (see Table 3). Clearly, the propulsion may noticeably affect
the thinning of threads only for solutions with the concentration of 0.003%.

The dependence of the quantity Ff 0 − Fi on 2πrα , obtained theoretically with account for the capillary
pressure in the droplet and the propulsion force but with neglect of the possible flow of liquid from the thread
to the droplet, is shown in Fig. 10 for four ranges of diameters of the droplets measured: 2R0 ≤ 0.4 mm,
0.4 < 2R0 ≤ 0.6 mm, 0.6 < 2R0 ≤ 0.9 mm, and 2R0 > 0.9 mm.

The data demonstrate a small but regular difference between the measurements and the theoretical pre-
dictions obtained using simple hypotheses. It is assumed that the difference is associated with the neglect of
the process of liquid flow from the thread to the droplet.

Elastic Stresses in the Thread

The data in Fig. 10 make it possible to calculate the axial stress in the thread σx without the assumption
of smallness of the end effects σx = Δσx − Pd, where Δσx = (F − (Ff 0 − Fi))/πr2 is the contribution of
the end effects in the axial stress. If Δσx > 0, the additional end stress pulls the liquid from the thread to the
droplet, in the opposite case it prevents the flow into the droplet.

Table 3

Polymer Concentration,% vi, m/s Fi, μN (2r = 0.1 mm)

PEO 0.003 0.490 1.884

PEO 0.01 0.185 0.268

PEO 0.03 0.0683 0.0366

PAA 0.003 0.213 0.356

PAA 0.01 0.0517 0.0209

PAA 0.03 0.00198 0.000307
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Fig. 10. Dependences of the measured stretching force F (1) and the theoretical value (Ff 0 − Fi) (2–5) on 2πrα for
droplets of different diameters: (2–5) 2R0 ≤ 0.4 mm, 0.4 < 2R0 ≤ 0.6 mm, 0.6 < 2R0 ≤ 0.9 mm, 2R0 > 0.9 mm; (6)
functional dependence F = 2πrα; PAA c = 0.003, 0.01, 0.03% (a–c); PEO c = 0.003, 0.01, 0.03% (d–f).
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Figure 11 shows the dependences of the quantities Δσx/(α/r) and Δσx/τx on the thread diameter, which
indicate the level of the effect of liquid flow from the thread to the droplet, as compared to the capillary
pressure pc = α/r and the excess axial stress in the thread τx = σx + α/r = ΔσxPd + α/r. The absence
of the end effect means that Δσx/(α/r) = Δσx/τx = 0. When the end effect is maximal Δσx/τx = 0.5 (see
Sec. 5), Δσx/(α/r) = 1 − Pd/(α/r). For thin threads, (α/r≫ Pd)Δσx/(α/r) ∼= 1.

From Fig. 11, it follows that the end effect is small for liquids considered, and in the first approximation
the value of this effect is independent of the thread diameter and the polymer concentration in the solution.
Nevertheless, this effect takes place, and below we will discuss the reason for it. Note that the mean value
Δσx/τx for liquids considered was equal to 0.196. Then, the balance between the internal and external
stresses in the thread takes the form:

0.196τx − Pd = τx − α/r.

Earlier, it was assumed that−Pd = τx − α/r [12, 21, 23, 24]. We note that, with account of the mentioned
balance of the forces in the thread, the exponential law of its thinning (4.1) retains. At the same time, the
value of the elongation viscosity, determined from the experiment with a thinning thread, increases in 1.24
times.

Flow in the Droplet

In the inertialess approximation, when condition (4.5) is satisfied, the longitudinal component of the
stress tensor σx is constant along the thread axis and is determined by the process of liquid flow from the
thread to the adjacent microvolumes (droplets).

Following the approach of [16], we will consider the motion of the liquid near the droplet symmetry
axis (Fig. 12), where the liquid is subjected to an unilateral compression, and the stresses in it relax. When
the effects of the orientation viscosity are larger than those of the shear viscosity, a quasi-one-dimensional
equation of motion written for the symmetry axis of the droplet takes the form [16]:

ρ
(

∂v
∂ t

+ v
∂v
∂ s

)
=

∂
∂ s

(τ − p) − τ
v

∂v
∂ s
. (4.6)

where s is the longitudinal coordinate, v is the velocity on the droplet axis, τ is the axial component of the
tensor of excessive stresses inside the droplet. The values of v and τ are assumed to be constant across the
flow section.

In the inertialess approximation, the integration of (4.6) from s0 to ∞ gives the value of the full axial
stress in the thread:

σx = (τ p)s=s0 =−Pd −
∞∫

s0

τ
v

∂v
∂ s

ds. (4.7)

To estimate the integral in (4.7), we assume the radial character of the flow on the droplet axis:

v =
Q
s2 ,

∂v
∂ s

=−2Q
s3 , Q =

q
2π(1 − cosψ0)

. (4.8)

where q = πr2vi is the volume flow rate of the incoming liquid, vi is the velocity at the end of the thread
(vi = L/3θ0 for the exponential thinning (4.1)), r is the thread radius, and ψ0 is half-angle at the cone apex
(Fig. 12).

To describe the thread thinning and the rheology of the flow in a microvolume, we will use the Oldroyd-B
theological relation [23]: (

∂τ
∂ t

+ v
∂τ
∂ s

)
= 2τ

∂v
∂ s
− τ

θ1
. (4.9)
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Fig. 11. Dependences Δσx/(α/r) (1) and Δσx/τx (2) on the thread diameter; PAA c = 0.003, 0.01, 0.03% (a–c); PEO c =
0.003, 0.01, 0.03% (d–f); (3) approximation of the dependence Δσx/τx by a constant value; the value of the approximation
parameters is shown in the graphs.

In this relation, the stress relaxation time θ1 may differ from the relation time θ in the stretching of the
thread.

We assume that the stresses start to relax at the point where the radius of the conical jet is equal to the
thread radius: s0 = r/sin ψ0 ≈ r/ψ0. The flow in the droplet is assumed to be quasi-steady. The steadiness
condition is satisfied when the time of motion of a liquid particle in the droplet R0/vi is much smaller than
the characteristic time of thread thinning 3θ = L/vi, i.e. when the droplet radius is much smaller than the
thread length: R0≪ L.

Substituting kinematic relations (4.8) in (4.9), we obtain the differential equation:

d lnr
ds

=−4
s
− s2

θ1Q
, τ(s0) = τx.

After the integration with account of Q∼= r2vi/ψ2
0 for small ψ0, we obtain the distribution of the stresses

in the droplet:

τ = τxξ−4eA(1−ξ 3), ξ =
s
s0
, A =

r
3viθ1ψ0

=
r

ψ0L
θ
θ1
.
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Fig. 12. Scheme of flow from the thread to the droplet.

Substituting this solution in (4.7) gives:

σx =−Pd + 2τx

∞∫

1

eA(1−ξ 3)

ξ 5 dξ . (4.10)

Thus, the end effect is determined by the integral

Δσx

τx
= 2

∞∫

1

eA(1−ξ 3)

ξ 5 dξ .

This effect is maximal in the case of elastic behavior of the liquid in the flow into the droplet A =
ψ−1

0 (θ/θ1)× (r/L)→ 0 and attains Δσx/τx = 1/2. The minimal effect, Δσx/τx = 0, is observed for the
instant relaxation of the stresses in the droplet:

A = ψ−1
0 (θ/θ1)× (r/L)→ ∞.

The character of the dependence of Δσx/τx on the diameter, shown in Fig. 13a is close to that, observed
in the experiment (Fig. 11). The calculation results for different values of the parameter A are presented
in Fig. 13b. The mean value of Δσx/τx obtained in the experiment is equal to 0.196, which corresponds to
A ≈ 1.55. In the experiment, the ratio of the thread radius to its length r/L varies on the range 0.01–0.1.
We assume that ψ0 ≈ 1, i.e. almost the maximal possible angle (115 degrees) of the radial flow in the thread.
Then, for the description of the experimental results, we should assume that θ/θ1 = 0.0155–0.155, i.e. the
stress relaxation time in the compressing flow in the droplet is in many times smaller than the relaxation time
in the stretching of the thread. The fast relaxation of the stresses in the droplet is also indicated by the fact
that the entire length (up to the region of transition into the thread) the droplet shape is well approximated
by the solution of Eq. (1.2), describing the static droplet shape.

The statement that the stresses in the droplet relax instantaneously when the liquid enters in the droplet,
and hence σx = −Pd (≪ pc) [12, 21, 23, 24], was formulated earlier only as a hypothesis. In the present
study, we obtained the experimental data which confirm this approximation. The physical reasons for such
behavior of the polymeric solution are still unclear, and their explanation lies beyond the scope of this paper.

The results obtained give a new insight on the rheological behavior of polymeric solutions in elongation
flows. In particular, we note that the calculations of breakup of polymeric jets, known in the literature,
which are usually based on a rheological model with a single relaxation time, independent of the type
and rate of deformation, conceptually cannot describe the real jet breakup process. Moreover, we may
assert that the calculation of any elongational flow, including the transition from the stretching deformation
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Fig. 13. End effect of liquid run-over as a function of the radius-to-length ratio of the thread (a) for ψ0 = 1, θ/θ1 = 1, 0.1,
0.01 (1–3) and the dimensionless parameter A = (r/L)× (θ/θ1)× (1/ψ0) (b), (4) value A = 1.55 for Δσx/τx = 0.1963.

to the compression deformation (for example, the liquid motion through a channel with a variable cross
section) must take into account the change of the rheological behavior of the liquid with the change of the
deformation type.

Summary. A method of measurement of the tensile force of threads between the droplets of a polymeric
jet, based on the analysis of photographs of capillary breakup of polymeric jets, is developed.

The value of the stress in the thread is found, and the quantitative estimates of the end effect of liquid
flow from the thread into the droplet are obtained. The effect is manifested in the elastic pulling up of the
thread, which results in additional growth of the stresses. The value of the effect is small for the polymers
considered, but may be significant for other polymeric liquids.

The analysis of the data obtained makes it possible to conclude that the rheological behavior of the liquid
in the flows in the thread and in the adjacent droplet are different. This is manifested in a sharp decrease in
the liquid relaxation time in the process of flow from the thread into the droplet, as compared to the liquid
relaxation time in a thinning thread.

A high sensitivity of the forms of jet breakup with respect to the action of inertia forces is detected.
This work was supported by RFBR (No. 12-08-00067a).
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