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Abstract—The results of a numerical and experimental investigation of the flow structure in symmet-
ric and nonsymmetric flows around V-wings with attached shocks on the leading edges are presented.
Emphasis is placed on the appearance of new critical points, including vortex Ferri singularities, in
the shock layer and transformations in the flow structure with increase in the angles of attack and yaw.
In particular, it is established that the flow structure in the plane of symmetry of the flow around V-wings
without yaw, which involves the Mach-type shock configuration, undergoes a jumpwise variation with
increase in the angle of attack. Additionally to one Ferri singularity of the node type located at the corner
point of the transverse wing contour in the plane of symmetry of the flow, there arise two more critical
points, those of flow divergence and convergence. The latter point is the second Ferri singularity; it is
located nearer to the bridge-shaped shock of the Mach-type shock system and can be of both the node
and the saddle type. In the latter case there appear two vortex Ferri singularities located at the vertices
of the contact discontinuities proceeding from this critical point on both sides of the plane of symmetry.
Certain data on the position of the critical points relative to the wing contour bend are presented as
functions of the wing geometry, together with the transformation of the topological shock-layer flow
pattern in the presence of yaw. The comparison of the results calculated within the framework of the
Euler model with the experimental data on the shock-layer flow structure obtained using a special opti-
cal method for visualizing conical flows showed their good agreement.

Keywords: supersonic flows, V-wing, conical flows, Mach-type shock configuration, vortex Ferri singu-
larities.
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The existence of flow regimes with Ferri singularities floating above the windward side of V-wings in
the plane of symmetry of the flow in the presence of a Mach-type shock configuration was first noticed in
[1, 2]. The same studies describe the cases in which internal shocks proceed from triple points; they belong
to the weak family and admit the branching into two shocks of the strong family, of which one is incident
on the wing wall, while the other hits the contact discontinuity proceeding from the branching point of the
bow shock. When the branching of the weak internal shock cannot occur, the supersonic region behind
it is closed by a submerging shock. At the times, when the above-mentioned studies had been published,
the possibilities of the computery did not make it possible to use high-resolution computation grids. For
this reason, certain inferences made in [1, 2] were though true but only qualitative. This concerns with
the treatment of the flow structure on the axis of symmetry in the shock layer which was made on the
basis of the pressure distributions along the axis of symmetry and over the wing surface and the constant-
entropy contours (streamlines) which, owing to an inadequate accuracy of the calculations, did not allow
one to determine the flow direction in the vicinity of the central chord of the wing. New possibilities of the
computational technologies in connection with the problem under consideration were demonstrated with
reference to a certain succession of the regimes of flow around V-wings, in particular, in [3] but the authors
of that study did not made a necessary analysis of the flow structure and the factors generating it.
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Fig. 1. V-wing in the Cartesian coordinate system; γ and β are the angles of vee and wing vertex and α and ϑ are the
angles of attack and yaw (a); computation grid for calculating flow between the wing panels (b).

Below, on the basis of the developed second-order computational code, we present certain results [4] of
the calculations of symmetric and nonsymmetric flows around V-wings of different geometry at the Mach
number M = 3 and moderate yaw angles and compare the results with the experimental data obtained using
direct-shadow optical method for visualizing supersonic conical flows [5]. A time-dependent method was
used on special grids with the boundary conditions which took account for the characteristic properties of
the disturbed flow in the vicinity of the leading edges of the wings of different geometries with attached
shocks.

1. METHOD OF SOLUTION

In the generalized coordinate system the system of Euler equations for calculating conical flows takes
the form:
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In Eq. (1.1) t is time, ρ is the density, (u, v, w) are the velocity V vector components in the (x, y, z)
directions of the Cartesian coordinate system (Fig. 1), p is the pressure, and e is the internal energy of the
perfect gas.

The dimensionless variables are determined in accordance with the formulas

ρ =
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, p =
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In Eqs. (1.2) the primes denote the dimensional quantities, while the subscript ∞ refers to the values of
the corresponding parameters in the freestream. Here L′ is the scale length, X = (x, y, z), and V = (u, v, w).
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The self-similar variables ξ = x/z, η = y/z, and ζ = z are introduced. It is assumed that the z axis
coincides with the central chord of the wing (Fig. 1a).

The generalized coordinates are introduced as follows: ξ = ξ (x, y), η = η(x, y), and ζ = z. It is assumed
that the flow possesses the conical symmetry which is equivalent to the condition Uζ = 0.

In the z = 1 section the system of Euler equations takes the form (1.1). The metric coefficients and the
transformation Jacobian are calculated for a given gridpoint distribution in the physical space in accordance
with the formulas

ξx = J ⋅ yη , ξy =−J ⋅ xη , ηx =−J ⋅ yξ , ηy = J ⋅ xξ , J−1 = xξ ⋅ yη − xη ⋅ yξ .

We will consider flow regimes with shocks attached to the leading edges of a V-wing. To calculate the
flow between its panels having swept leading edges the computation grid is constructed by the set of points
of intersection between the lines K1T2 and K2T1 (Fig. 1b). The coordinate lines of the same direction are
determined by the trace of the leading edge K1 of the left panel of the wing in the z = 1 plane (one gridpoint
of the coordinate lines) and the points uniformly located on the opposite panel from the corner point O to
a certain point T2. The position of point T2 is preassigned in the vicinity of the trace of the second leading
edge K2 so that the corresponding coordinate line passes only through the regions of the undisturbed flow
or the uniform flow behind the plane shock attached to the right leading edge. The coordinate lines of the
second direction relate the trace of the right leading edge K2 with the points on the left panel from the corner
point O to a certain point T1, whose position is given in accordance with the requirements for point T2.
The gridpoints of the computation grid are determined by the points of intersection of the corresponding
coordinate lines.

The impermeability condition is imposed on two boundaries OT1 and OT2 of the computation domain
OT1ST2O located on the wing surface (Fig. 1b), while the condition of the flow “conicity” with respect to
points K1 and K2 is preassigned at two opposite boundaries ST1 and ST2. This is permissible, since the wing
panels are plane and the traces of the shocks attached to the leading edges coincide with certain coordinate
lines proceeding from points K1 and K2. The conditions in the undisturbed flow are preassigned only at
point S. This formulation of the problem furnishes certain advantages in the numerical modeling which are
due to the fact that sharp edges, in which nonunique values of the gasdynamic parameters are realized, are
excluded from consideration. Moreover, the analytical solution of the problem of flow past a wedge is not
fixed on the boundaries, this solution in any case differing from that obtained on the difference grid owing to
special features of numerical methods. This approach to specifying the boundary conditions can be used not
only when attached shocks but also centered expansion waves are formed on the leading edges of a wing.

The impermeability condition on the wing surface is satisfied by means of correcting the velocity vector
after any integration step by discarding the normal component of the vector.

The problem is solved by time integration on the basis of the explicit McCormack scheme until the steady
state is attained. To suppress oscillations on the shock fronts the smoothing procedure of the type of artificial
viscosity is introduced. It can conveniently be represented in the form:

Ui = (1 − 2ε)Ui + ε(Ui−1 + Ui+1),

where ε is a small parameter. For a gridpoint on the wall we have

U1 = (1 − 2ε)U1 + 2εU2.

The second-order approximation turned out to be necessary, since in the transitional regimes from the
symmetric flow with several critical points in the shock layer to flow at yaw [6] the accuracy of the first-order
schemes is insufficient.
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Table 1

N 1 2 3 4 5

γ , deg 80 40 120 120 120

β , deg 45 45 90 75 60

2. RESULTS OF THE CALCULATIONS OF THE M = 3
FLOW PAST UNYAWED WINGS

Here, we present certain results of the calculations of flows past wings at the freestream Mach number
M = 3 and the geometrical parameters given in Table 1. All the calculations were performed at the same
difference scheme parameters on the grids with n = 800 and 1600 gridpoints on any panel. The data on
the flow structure are chiefly presented by the numbered pressure contours (pressure ratio to that in the
undisturbed flow) and the streamlines (lines with arrows).

In Fig. 2 we have presented the results of the calculations of symmetric flow around wing 1 (Table 1)
which make it possible to trace the transformation of the flow structure in the shock layer, as the angle of
attack α varies from 15.75 to 33∘. The full flow patterns in the region bounded by the bridge-shaped and
internal shocks of the Mach-type shock configuration are supplemented with the enlarged fragments of the
flow pattern in the vicinity of the axis of symmetry which contain the described special features of the flow
structure.

At low angles of attack the classical streamline pattern is observable, when all the streamlines arrive at
a node located at the bend point of the transverse wing contour (is not presented). Further on (α < 16∘)
the streamlines proceeding from the branching points of the Mach-type shock configuration form a “beak”
in which all streamlines that have passed across the bridge-shaped shock of the Mach-type configuration
find themselves, and end at the wing contour bend point (Fig. 2a). With further increase in the angle of
attack on the ranges from 16.25∘ to 17∘ (Fig. 2b) and from 17∘ to 33∘ (Fig. 2c–2e) the flow is qualitatively
restructured. Two more critical points appear in the plane of symmetry. The lower point located nearer to
the bend in the contour is the divergence point for certain streamlines that have passed across the shocks
attached to the leading edges and the internal shocks of the Mach-type shock configuration. The upper
point is at first the node-type Ferri singularity for all the streamlines that have passed through the Mach-type
shock system above the streamlines arriving at the lower divergence point (Fig. 2b) and then it becomes a
saddle point (Fig. 2c–2e). In the latter case two flows streaming from below, from the divergence point,
and from above, from the bridge-shaped shock, form a critical point (Ferri singularity), together with two
contact discontinuities proceeding from it on either side of the plane of symmetry and rolling together with
other streamlines into two vortex Ferri singularities. The appearance of two more critical points on the axis
of symmetry of the flow at a certain angle of attack and then of two vortex Ferri singularities at the vertices
of the contact discontinuities proceeding from the upper critical point of the saddle type is precisely the
essence of the phenomenon called the Ferri point floating on the windward side of a V-wing in the presence
of the Mach-type shock configuration, another than the treatment of the calculated results in [1, 2].

In the case presented in Fig. 2e the calculation of the branching points on the bow shock shows that the
internal shock belongs to the weak family, which is indicated by the diagram of the interaction between
the shock polars in Fig. 3a. In Fig. 3 the fragments of the flow in the vicinity of the right branching point
(Fig. 2e) are presented, together with the pressure (a) and Mach number (b) contours. An analysis shows
that in the flow regime under consideration the internal shock cannot have its own branching point. For
this reason, the supersonic region downstream of this shock is most probably closed by a submerging shock
“resting” by its ends with zero intensities upon the contact discontinuity proceeding from the corresponding
branching point on the bow shock, on one hand, and on the internal shock at the point in which the sonic
velocity on the sphere is reached, on the other hand.
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Fig. 2. Symmetric M = 3 flow around the wing with γ = 80∘ and β = 45∘ at the angles of attack α = 15.75 (a), 16.75 (b),
20 (c), 25 (d), and 33∘ (e) (pressure contours and streamlines).

Figure 4 presents the arrangement of the new critical points in the plane of symmetry relative to the point
of bend in the transverse contour. The descending regions of the curves are realized approximately with
transition of the internal shock to the weak family at the interaction point. For the wing of the geometry
under consideration at M = 3, in accordance with the accurate calculations of the branching point on the
bow shock, this transition is realized at an angle of attack α ≈ 29∘. The calculations used the Mach number
of the freestream velocity component normal to the ray of the conical coordinate system passing through
the branching point, whose coordinates are determined from the results of numerical calculations, and the
intensity of the shock attached to the leading edge.

We note that, in accordance with the calculations, the pressure at the branching point in the internal
flow region at relatively small angles of attack is higher than the pressure on the wing wall directly behind
the internal shock normally incident on the wall; however, the relationship between these characteristic
pressures changes with increase in the angle of attack. The intersection of the angle-of-attack–pressure
curves at these points is realized at α ≈ 20∘ (Fig. 2c). The coordinate α of their intersection approximately
indicates the angle of attack at which the convexity of the internal shock changes from the direction toward
the leading edge (Fig. 2b) to that toward the central chord of the wing (Fig. 2c and 2d). The change in
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Fig. 3. Fragment of the flow in the vicinity of the right branching point on the bow shock: pressure (a) and Mach number
(b) contours on the sphere.

Fig. 4. Position of the critical points in the plane of symmetry of the wing with γ = 80∘ and β = 45∘ relative to the point
of bend in the transverse contour; (1, 2) calculations on the n = 800 grid and (3, 4) n = 1600; (1, 3) relate to the divergence
point and (2, 4) to the Ferri singularity.

the convexity direction is realized via the appearance of an inflection point on the internal shock of the
Mach-type configuration.

Below we present certain results of the calculations of flow around wing 2 (Table 1) with a fairly small
angle of vee γ = 40∘. For this wing the flow patterns realized at M = 3 can involve both regular and Mach-
type reflections of the plane shocks attached to the leading edges from the plane of symmetry. In the case
of the regular interaction flow past an “internal” wing with the leading edge at the point of the plane shock
arrival onto the plane of symmetry was calculated. For this wing the undisturbed flow is the uniform flow
behind the shock attached to the leading edge. A fragment of the corresponding flow structure containing
two additional critical points in the plane of symmetry (which is a wall for the main wing), of which the
upper point, or the Ferri singularity of the node type, corresponds to the angle of attack of the main wing
α = 21∘, is presented in Fig. 5a. This result was obtained on the n = 1600 grid.

Figure 5b illustrates the regime of the flow around the original wing at α = 23.8∘ corresponding to the
exact solution with a plane shock reflected from the plane of symmetry and belonging to the strong family
in the plane normal to the corresponding conical ray (reflection line) [7]. Here, the numerical realization of
the exact solution is presented.

FLUID DYNAMICS Vol. 49 No. 6 2014
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Fig. 5. Symmetric M = 3 flow around the wing with γ = 40∘ and β = 45∘ at the angles of attack α = 21∘ (a), α = 23.8∘
(exact solution with the plane strong-family shock reflected from the plane of symmetry) (b), and α = 32∘ (pressure
contours, streamlines, and contours of the Mach number based on the total velocity) (c).

In Fig. 6 we have plotted the dependences of the pressure on the angle of attack at three characteristic
points of the disturbed region. The first is located downstream, at the point of branching of the shock
reflected from the plane of symmetry (curve 1, α < 23.8∘). The second is on the wing wall (curve 2) behind
the bridge-shaped shock of the Mach-type shock configuration, near the “internal” wing (α < 23.8∘) and
behind the internal shock near the main wing (α > 23.8∘). The third point is behind the branching point
of the Mach-type shock configuration near the main wing (curve 3, α > 23.8∘). In the same diagrams of
the flow around the wing the characteristic points numbered in accordance with the numbers of the curves
are presented. The vertical segment of the broken line corresponds to α = 23.8∘, that is, the boundary of
transition from the regular to the Mach-type interaction between the shocks attached to the leading edges of
the wing. Clearly that in the on-design flow regime (exact solution, Fig. 5b) the pressure level behind the
internal shock I belonging to the strong family coincides with that on the wall (curve 2, Fig. 6) at α = 23.8∘.

FLUID DYNAMICS Vol. 49 No. 6 2014
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Fig. 6. Angle-of-attack-dependence of the pressure at three characteristic points of the disturbed region; (1) at the branching
point of the shock reflected from the plane of symmetry; (2) on the wing wall; and (3), behind the point of branching of
the Mach-type shock configuration; I is the pressure behind the internal shock and II is the exact value of the pressure
approached by the pressure at point (1).

This property of the pressure behind the bridge-shaped shock of the Mach-type shock configuration near a
V-wing was established in [8] at the passage to the limit α→ αc from below. Here, αc is the angle of attack
corresponding to the on-design flow regime with a leading-edge shock belonging to the strong family.

We note that downstream of the branching point of the shock the pressure near the internal wing (Fig. 6,
curve 1) is much higher that pressure I, as the angle of attack approaches from below the angle of attack
corresponding to the exact solution (II is the accurately calculated pressure level approached by the pressure
at the above-mentioned characteristic point). This means that in the vicinity of the branching point in
the shock layer there exists an elevated-pressure region with respect to the pressure at the center of the
bridge-shaped shock, while the normal force acting in this case on the wall of the “internal” wing, suffers a
discontinuity as the on-design flow regime is reached. This fact was noticed before in [2].

In Fig. 5c we have presented the flow structure near the wing under consideration with the pressure con-
tours and streamlines, its enlarged fragment in the vicinity of the plane of symmetry of the flow containing
the critical points and the vortex Ferri singularities, and the flow structure with the Mach number contours
and streamlines at α = 32∘. These data pertain to a flow regime which is close to the breakdown of the
conical flow near a finite-length wing due to the passage of the total flow velocity in the upper vicinity of
the floating Ferri singularity (upper critical point in Fig. 5c) through the speed of sound [1]. In this case, the
total velocity in this vicinity differs from the critical velocity by less than 3%. We also note that, as in the
case of flow around wing 1 (Table 1), in the vicinity of the branching points under the contact discontinuity
the Mach number based on the flow component on the sphere becomes greater than unity at α ≈ 29∘. Thus,
in this case (Fig. 5c) downstream of the branching point under the contact discontinuity there is supersonic
flow on the sphere, which is in agreement with the internal shock shape and the structure of the pressure
contours.

In Fig. 7 the data on the moment of appearance and the position of the critical points for wing 3 (Table 1)
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Fig. 7. Position of the critical points in the plane of symmetry of the wing with γ = 120∘ and β = 90∘ relative to the point
of bend in the transverse contour; (1) is the divergence point and (2) is the Ferri singularity.

are presented; these were obtained on the n = 1600 grid. On the angle-of-attack range considered there are
no wing flow regimes with supersonic flow beneath the contact discontinuity at the branching point. The
critical velocity is reached only at α ≈ 27.5∘. Apparently, by virtue of this fact, the curves describing the
position of the critical points in the plane of symmetry have no descending regions (Fig. 7), as distinct from
the corresponding dependences for wing 1 (Table 1 and Fig. 4).

3. RESULTS OF THE CALCULATIONS OF FLOW AROUND A YAWED
WING AT M = 3. COMPARISON WITH THE EXPERIMENTAL DATA

In this section we present the results of the calculations of flow around wing 3 (Table 1) which allow one
to make conclusions about the restructuring of the shock-layer flow pattern containing three critical points
in the plane of symmetry and two vortex Ferri singularities in flow at the angle ϑ = 0 (Fig. 1a) with increase
in the yaw angle and their comparison with the experimental data obtained using the optical method [5].

In Fig. 8 the variation in the flow structure in the compressed layer near wing 3 with increase in the angle
of yaw ϑ is shown at the angle of attack α = 25∘. The Mach-type shock configuration (pressure contours)
and streamlines (arrowed curves) are presented. We note that in the first three flow regimes (Fig. 8a–8c), the
contact discontinuity proceeding from the left branching point enters into the left vortex Ferri singularity,
while the contact discontinuity proceeding from the branching point enters into the right vortex singularity.
In the layer there are two critical points of the saddle type and a vortex Ferri singularity of the node type on
the right panel. With increase in the angle of yaw (Fig. 8d), when the streamlines neighboring the contact
discontinuity proceeding from the left branching point (or the contact discontinuity itself) do not enter in
the number of the streamlines forming the left vortex Ferri singularity, a new vortex singularity is formed
above the right panel surface, while the upper left vortex singularity becomes less clearly expressed.

Figure 9 presents the fragments of the shock-layer flow structure at the same angle of attack with further
increase in the angle of yaw ϑ . The color shades illustrate the pressure variation. According to the results of
the calculations the upper vortex Ferri singularities vanish at ϑ ≈ 14∘ and at ϑ ≈ 15∘ only one vortex Ferri
singularity in the vicinity of the right wing panel can be observable (Fig. 9d).
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Fig. 8. Flow structures in the compressed layer on the wing with γ = 120∘ and β = 90∘ at M = 3 and the angles of attack
α = 25∘ and yaw ϑ = 0 (a), 2 (b), 4 (c), and 6∘ (d).

In Fig. 10 we have presented the experimental data on the optical investigation of the flow structure on
wing 3 and compared them with the results of the calculations within the framework of the inviscid gas
model (Section 2). In Fig. 10a the representative points of the experimental regimes reviewed in Table 2 are
shown in the (ϑ , α) plane.

In the same figure curves (1–4) corresponding to the boundaries of the parameter ranges with different
wing flow regimes are plotted for M = 3. Curve 1 corresponds to transition from the shock to the shockless
flow in the layer above the right wing panel, 2 to transition from the attached shock to a centered expansion
wave on the leading edge of the left panel, 3 to unconditional transition from the regular to the Mach-type
interaction between the shocks proceeding from the leading edges, and 4 to the shock detachment from the
leading edge of the right panel [6]. The grid of the other numbered curves corresponds to different intensities
of the internal shock on the left panel wall. We note first that at the intensity p = 1.6 of the shock incident on
the wall turbulent boundary layer separation starts to form [9]. It becomes developed at p≈ 2.5 and higher.

In accordance with the terminology adopted, in these cases the λ shock configuration accompanying
boundary layer separation is clearly observable and the contact discontinuity proceeding from the corre-
sponding branching point is visible in the shadowgraphs. Clearly that the difference in the flow structure,
compared with the data of the calculations within the framework of the inviscid gas model, might be ex-
pected only at the three upper representative points (particularly, at the right representative point). In the
presence of a positive yaw angle (Fig. 1a) the internal shock intensity is higher on the left panel of the wing
under consideration than on the right panel. Thus, at ϑ > 0 turbulent boundary layer separation is first
generated on the left panel. In these cases, the calculated and experimental results will be compared only
for the flow structures in the shock layer above the right panel of the wing.

In the combinations of the shadowgraphs and calculated data obtained for cases 1 and 2 of Table 2
(Fig. 10b and 10c) it can be seen that boundary layer separation is absent and only its thickening is visible,
which is due to the action of the shocks incident on the wall whose shapes are distorted in the vicinity of
the wall as a result of the interaction with the boundary layer. However, this has no effect on the flow in the
vicinity of the plane of symmetry of the wing. The flow structures are in complete agreement.

FLUID DYNAMICS Vol. 49 No. 6 2014
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Fig. 9. Fragments of the flow in the shock layer on the wing with γ = 120∘ and β = 90∘ at M = 3 and the angles of attack
α = 25∘ and yaw ϑ = 8 (a), 10 (b), 14 (c), and 15∘ (d).

Table 2

N 1 2 3 4 5 6

α , deg 15 20 20 25 25 22.1

ϑ , deg 0 0 5 1 6 17.6

In Fig. 10d–10g, we have presented the flow patterns, of which the first three pertain to the range of
insufficiently developed separation of the turbulent boundary layer (cases 3 to 5 in Table 2). Only the last
flow pattern (case 6 in Table 2) can be associated with the parameter range with developed separation.
However, even in this flow regime, despite the presence of boundary layer separation from the left panel,
any visible differences between the experimental and calculated flow structures in the shock layer on the
right wing panel cannot be observable on this parameter range. On the left panel the separation has only a
local effect.

Thus, the results of the calculations within the framework of the Euler model quite adequately reproduce
the salient features of the actual shock-layer flow structure in the regimes of transition from the symmetric
to nonsymmetric flow around V-wings if only the intensity of the contact discontinuity generated by the
λ shock configuration is not comparable with (or greater than) the intensity of the contact discontinuities
proceeding from the branching points of the bow shock [6].
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Fig. 10. Ranges of existence of different flow regimes for the wing with γ = 120∘ and β = 90∘ at M = 3 and the represen-
tative points of the experimental regimes (b–g, see Table 2) (a) and flow shadowgraphs and data of calculations (pressure
contours and streamlines) in the above-noted regimes.
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4. CONDITION OF THE EXISTENCE OF THE VORTEX
FERRI SINGULARITIES

The question of the reasons for the Ferri singularity floating on the windward side of a V-wing was
formulated in [1]. In that study this phenomenon was attributed to large losses of the total pressure in the
normal shock (bridge-shaped shock in the Mach-type shock configuration) as compared with the losses
in the system of oblique and normal shocks (shock on the leading edge and internal shock in the vicinity
of the wing wall). The data on the existence of the vortex Ferri singularities were absent. Later, with
increasing possibilities of the computational technologies, the vortex Ferri singularities were detected. Their
appearance and disappearance was attributable to the intensity of the generating contact discontinuities
[10, 11], since on the boundary of the elliptic region of the conical inviscid-gas flow there are no singularities
other than the contact discontinuities proceeding from the branching points on the bow shock.

In the actual flow boundary layer separation from the wing panels develops at a sufficient intensity of the
internal shocks. In these cases, on the boundary of the elliptic region (internal relative to the shock waves
and Mach cones) there appear new singularities due to the contact discontinuities generated by λ shock
configurations above the boundary layer separation zone. Depending on the relation between the contact
discontinuity intensities, on the boundary of the elliptic region of the conical flow new singularities in the
shock-layer flow structure, as compared with those in an inviscid gas, can arise, including new vortex Ferri
singularities [6].

For the wings, whose geometric parameters are given in Table 1, it is the quantity ΔK used in [6, 10, 11]
that was chosen as the contact discontinuity intensity: ΔK = (K1 − K2)/K1, K = Sk, k = 1/(1 − κ). Here, K
is the total pressure recovery coefficient determined in terms of the entropy function S, κ in the specific heat
ratio, and K1 and K2 are the total pressure recovery coefficients calculated on the either side of the contact
discontinuity proceeding from the branching point on the bow shock in the Mach-type shock configuration,
K1 corresponding to the gas particles which have passed across two shocks in the three-shock configuration
and K2 to those that have passed across only one shock. The quantity ΔK is determined as a result of the
accurate calculation of the branching points using their coordinates obtained from the numerical calculation
data and is based on the Mach number Mn of the undisturbed flow velocity component normal to the ray of
the conical coordinate system passing through the branching point and the intensity of the shock attached to
the leading edge.

In Fig. 11 curves (1–5) present the ΔK(α) dependences for wings 1 to 5 (Table 1) in M = 3 flow without
yaw. For wing 2 the data are presented for α > 23.8∘, when the Mach-type shock configuration occurs near
the wing. The bends in curves 4 and 5 at certain values of α are due to different structures of the branching
points. At the angles of attack smaller than those corresponding to the bends in the ΔK(α) curves plotted
in Fig 11 the branching point structure includes, apart from the shocks, a centered expansion wave which
vanishes, when the values of α become greater than the coordinates of the bend points. Since the step in the
angle of attack at which the numerical calculations were conducted, was not less than 0.25∘, the data I and
II have a corresponding error.

As follows from an analysis of the theoretical and experimental data presented above, the vortex struc-
tures (vortex Ferri singularities [6, 10, 11]) in the shock layer are formed by contact discontinuities and the
neighboring streamlines, while their “intensity” (Figs. 2 and 8–10) depends on the intensity of the corre-
sponding contact discontinuity which is characterized here by the quantity ΔK.

According to the calculations, the intensity of the contact discontinuity proceeding from the left branch-
ing point on the bow shock of wing 3 (Table 1) vanishes at α < 17.5∘, when the representative point of the
regime approaches curve 2 (Fig. 10a), at which the disturbance produced by the left panel is zero. In this
case, the vortex Ferri singularity located above the right panel surface (Fig. 9d) descends on the wall and is
no longer of the vortex-type transforming in the streamline node. This occurs at ΔK ≈ 0.15 [11]. At large
angles of attack, when an increase in the yaw angle does not lead the representative point of the regime to
curve 2 (Fig. 10a), the vortex Ferri singularity remains within the shock layer above the right panel, only
changing its intensity and the distance from the wall. It should be added that in flow around the wing under
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Fig. 11. Intensities of the contact discontinuities proceeding from the branching points on the bow shock as functions of α
for wings 1 to 5 (Table 1) in M = 3 flow without yaw; I relate to the values of ΔK at which the vortex Ferri singularities are
realized in the shock layer on the wing on either side of the plane of symmetry of the flow and II are the points at which the
velocity on the sphere is critical at the branching points.

consideration at the angles of attack α < 14∘, when the contact discontinuity intensity ΔK < 0.15, the vortex
Ferri singularities are not formed in the shock layer [11].

Together with the data presented in Fig. 11, the data presented above allow us to suppose that there exists
a certain minimum “threshold” value ΔK∗ ≈ 0.15 such that the contact discontinuity cannot generate any
vortex singularity if its intensity is less than ΔK∗.

We will now compare the data on flow around wing 3 (Section 3, Figs. 8 and 9) with the inference made
above. In the wing flow regimes presented in Fig. 8 the intensity of the contact discontinuities proceeding
from the left and right branching points is considerably greater than ΔK∗ (ΔK ≈ 0.3). Because of this,
at the yaw angle ϑ = 6∘ (Fig. 8d) the near-wall right and upper vortex Ferri singularities formed by the
above-mentioned contact discontinuities are clearly expressed objects in the shock layer. With increase in
the yaw angle the intensity of the contact discontinuity proceeding from the right branching point decreases
and becomes less than ΔK∗ at ϑ ≈ 14∘. The upper vortex Ferri singularity disappears (Fig. 9c). At the same
time, the intensity of the left contact discontinuity, which forms the vortex Ferri singularity above the right
panel surface, increases and reaches its maximum value ΔK ≈ 0.4 at ϑ = 15∘. In this case, a single clearly
expressed vortex Ferri singularity is observed in the shock layer above the right panel surface (Fig. 9d).

Thus, the analysis made above indicates that at M = 3 the condition ΔK∗ ≈ 0.15 performs well in deter-
mining the appearance and disappearance of vortex Ferri singularities in the shock layers of conical flows.
The question of the applicability of this criterion at other Mach numbers calls for further investigation.

Summary. A comprehensive theoretical and experimental investigation of the flow structure in the shock
layers on a set of V-wings in M = 3 flow at angles of attack and yaw with shocks attached to the leading
edges is made.

It is shown the flow structure in the plane of symmetry near the V-wings in flow without a yaw angle
undergoes a jumpwise change with increase in the angle of attack, when the Mach-type shock configuration
is realized. In addition to one Ferri singularity of the node type located at the bend point on the transverse
wing contour, two more critical points, those of divergence and convergence (second Ferri singularity)
appear in the plane of symmetry of the flow, where they are located near the bridge-shaped shock of the
Mach-type shock configuration. The latter point can be of both the node and the saddle type. In the latter
case vortex Ferri singularities are located at the vertices of the contact discontinuities proceeding from the
critical point on either side of the plane of symmetry. The flow restructuring with increase in the yaw angle
is considered.
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It is established, in particular, that the shock-layer flow structure containing the three above-mentioned
critical points and the two vortex Ferri singularities goes over into a structure having a critical point at the
wing contour bend, namely, the flow convergence point or the Ferri singularity on the windward panel, into
which the streamlines proceeding from the leading edges enter, and the vortex singularity located above the
panel surface, at the vertex of the contact discontinuity proceeding from the Ferri singularity on the wing
wall.

It is shown that, as concerns the generation and development of the flow structures containing the vortex
Ferri singularities, the results of the calculations within the framework of the inviscid gas model are in good
agreement with the experimental data on the optical flow visualization in the plane normal to the central
chord of the wing over a wide range of the angles of attack of yaw.

It is shown that the appearance and disappearance of the vortex Ferri singularities is governed by the
intensities of the contact discontinuities that form these singularities. It is established that there exists a
threshold minimum value of the parameter characterizing the contact discontinuity intensity equal to ap-
proximately 0.15 at the freestream Mach number M = 3. If the intensity of the contact discontinuity on the
boundary of the internal disturbed region of the conical flow is less than this value, than the corresponding
contact discontinuity is not able to generate a vortex Ferri singularity.

The study was carried out with the support of the Russian Foundation for Basic Research (project No. 12-
01-343a). The calculations were performed on a supercomputer of the Russian Academy of Sciences.
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