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Abstract—To describe the evolution of an interface between two immiscible media, an equation for a
volume fraction function is derived, with the interface curvature effect being described by a “continuum
model” of a surface tension force. A numerical study of the Rayleigh–Taylor instability problem is
performed for different density ratios ρ1/ρ2 on the interface, including the real cases corresponding to
available experimental data. At the initial stage, the instability development is independent of ρ1/ρ2 and
consistent with the Taylor linear theory, then (for ρ1/ρ2 < 5) a spiral-like Kelvin–Helmholtz instability
structure is observed. For ρ1/ρ2 < 2, the instability development pattern remains symmetric until large
times when (same as for large ρ1/ρ2) an asymmetry appears. The surface tension and the viscosity
result in the suppression of the Rayleigh–Taylor instability disturbances and secondary small-scale ir-
regularities of the interface.
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One of the most interesting and intriguing phenomena in mechanics of fluid, gas, and plasma is the
Rayleigh–Taylor instability (RTI), developing on an interface between layers of a heavy (upper) and light-
weight (lower) liquid media. This instability is observed from micro- to astrophysical scales, for example
in the Crab nebula. The atomization of interstellar gas ejected from the galaxy plane by magnetic fields
and cosmic rays may occur in accordance with the RTI scenario. Similar processes take place in supernova
bursts [1, 2], in artificial and natural objects with thermonuclear synthesis, in controlled combustion reac-
tions and fires, in Earth’s mantle, oceans and atmosphere with a significant influence on the climate. One
effect associated with RTI is the turbulence development and the intensification of mixing due to convective
transport. At the recent international conferences on turbulent mixing, much attention was payed to the RTI
effects (for example, see [3]). An example of substantial interest of the international community in this
problem is the cooperation of the biggest world centers in the numerical simulation of RTI [4]. The largest
known calculation of three-dimensional RTI [1] was carried out for a cubic domain with 30723 grid points,
which required about two weeks and 65536 processors (i.e. the full power of the biggest IBM BlueGE/L
supercomputer).

Most experimental and numerical studies of RTI were performed within the classical formulation for two
layers of immiscible media or for a stratified medium with a step-wise or liner density profile (for example,
see [5]). The evolution of RTI in conditions close to real environmental flows is still not clear understood.
Recently, it was shown [6] that in the breaking of internal waves in stably stratified flows the RTI effects
are also manifested, which possibly initiate the transition to turbulence. The breaking of internal waves is
one of the main sources of geophysical turbulence; however, the mechanisms of the instability developing
in the convective breaking of the waves are not still well studied. For a more clear understanding of specific

748



THE EFFECTS OF DENSITY DIFFERENCE AND SURFACE TENSION 749

features of RTI, the investigations of disturbance evolution on the interface between two layers with different
densities remain topical.

To describe the development of RTI, it is necessary to design adequate methods for the resolution of the
interface between the regions of immiscible media. The obvious conditions here are the smallness of the
calculated interface, as compared to other characteristic length scales, and the efficiency and stability of the
numerical algorithm.

One widely used method for the resolution of the interface is the concept of the volume fraction of the
medium (VOF) [7], defining the function f of the volume fraction, which is equal to unity in the region
occupied by the denser medium and zero in the region of the less dense medium. The equation formulated
for f corresponds to the motion of the volume fraction function with the fluid. To approximate advection, in
[7] a special ‘donor-acceptor’ procedure was developed, which included the upwind or downwind schemes,
depending on the surface orientation. The VOF method was used in many papers, for example, for modeling
a solid-body rotation [8] and RTI. Ensuring a sharp interface, this approach results in the generation of false
isolated structures, like floating fragments [8].

To reduce the errors and improve the description of the interface, different modifications of the VOF
method and other approaches were proposed, for example, the MUSCLE schemes [9] with high-order in-
terpolations. In these schemes, to control the false oscillations, appearing in the high-order methods near
discontinuities, the functions-limiters are introduced for the “total-variation diminishing” (TVD). In partic-
ular, a TVD limiter in the form of a “contraction” operator, proposed in [9], gives satisfactory results both
for velocity and density distributions, and for the function f . On the other hand, the interface is no longer
so sharp as in the VOF method. It can have the thickness of several grid cells. Nevertheless, in this case the
location of the interface can be determined by finding the points at which f = 0.5.

To describe the interface at small linear scales, it becomes significant to take into account the effects of
surface curvature and surface tension. One of effective numerical approaches for the account of the surface
tension is the ‘continuum model’ [10].

In the present work, we will study the evolution of RTI on the interface between immiscible fluid media
with different density ratios (ρ1/ρ2) (characterized by the Atwood number A = (ρ1 − ρ2)/(ρ1 + ρ2)) using
numerical methods developed in [9-12]. The calculated characteristics are compared with the linear theory
[13], the experimental studies of the “water-benzene” and “water–air” interfaces [14], and the numerical
results of other authors. The development of RTI is a classical problem of fluid mechanics, used in some
studies [7–11, 15–21] for the verification of the interface resolution methods and the account of the surface
tension effects. In particular, in [15–20] the effect of the density ratio on the evolution of RTI was detected.
However, the modeling of real conditions and the comparison with experimental data were performed only
in a small number of publications, and the results of the comparison (for example, in [15]) were often
unsatisfactory.

1. MAIN EQUATIONS AND NUMERICAL SCHEMES

As the basic equations, we used the Navier–Stokes and continuity equations, and the equation for the
volume fraction f for incompressible flow with account of surface tension [11]:
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where ui are the velocity components, xi are the coordinates, g is the gravity force acceleration, μ is the
dynamic viscosity, ρ is the density, p is the pressure, and t is time. The values ρ1 and μ1 correspond to the
heavier fluid with f = 1, and the values ρ2 and μ2 to the light-weight fluid (gas) with f = 0.

For solving the main equations, as in [11, 12], we use a fairly simple procedure of simultaneous iterations
of the velocity and pressure values, obtained from (1.1)–(1.2). This procedure is based on the artificial-
compressibility method, with the relaxation with respect to a pseudo-time to satisfy the continuity equation.
The differential equations (1.1)–(1.3) are approximated on a straggled grid to prevent the mismatch of the
velocity and pressure fields: the velocity components are determined at the centers of the grid cell sides,
and the scalar quantities p, f , ρ , and μ at the cell centers. For the derivatives over time and pseudo-time,
we used the first-order schemes. For the terms with the molecular diffusion in (1.2) we used the central
differences.

In [12], a hierarchy of five different methods of approximation of the advection terms in (1.2)–(1.3)
is given, and these methods are verified with the reference to the dam-break problem. In particular, the
“donor-acceptor” procedure, used in the VOF method [7], ensured a sharp interface but resulted [12] in the
appearance of false structures like “floating fragments”, as in [8]. The most satisfactory results with a fairly
thin interface of a smooth shape were obtained using the MUSCL scheme with QUICK interpolations and
TVD limiters of the contraction operator type, proposed in [9]. This scheme is used in the present study
for the approximation of advection. In a more detail, the algorithms of solution of Eqs. (1.1)–(1.3) (with-
out surface tension) are described in [12], where a good agreement of the calculations with experimental
data was achieved. Following the CSF model [10, 11], the surface tension effects are introduced in the
Navier–Stokes equations (1.2) in the form of the volume forces:

Fi =
σκni

ρ [ f ]
, κ =−∂n∗m

∂xm
, n∗m =

nm√
nknk

, [ f ] = f2 − f1 = 1. (1.4)

Here, σ is the surface tension coefficient, κ is the interface curvature, and ni is the normal vector to the
interface.

The most correct representation of the smoothed volume fraction function fs assumes its smooth variation
across the interface of a finite thickness (of the order of several grid cells) due to the convolution of f with the
interpolation function of the core [10]. However, in the first approximation the function fs can be taken equal
to the volume fraction function, found numerically [11] (i.e. in the simplified version of the CSF model,
f = fs) in connection with the possible smearing of the distributions f (xi) due to the scheme viscosity.
A finite-difference analog of (1.4) for two-dimensional flows with the boundaries corresponding to walls
and symmetry planes is given in [11], together with the details of numerical realization of Eqs. (1.1)–(1.3)
with account of the surface tension for the description of RTI of the interface between two immiscible media.
In [9, 11, 21], the viscosity and surface tension effects on the development of RTI in the linear stage are
considered for ρ1/ρ2 = 2, and a good agreement between the theoretical estimates and the experimental
data is obtained.

2. RESULTS OF THE MODELING

For the comparison with the experimental results of [14], obtained for the verification of linear theory
[13], and the calculations made using a vortex sheet method [15], at t = 0 a small cosine disturbance of the
horizontal interface between the layers of two immiscible media was introduced:

ys(x) = ys0 cos(2πx/λ ), ys0≪ λ .

Here, λ (= 2L) is a wave length of the imposed vertical (over the y-axis) disturbance, and L is the width
of the calculation domain width in the x-coordinate (see Fig. 1, at the left, for t = 0). In this case, the velocity
was assumed to be zero.
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A similar disturbance was introduced not only in [13–15] but also in numerical studies [18–20]. In [9, 11,
16, 17, 21] a small cosine disturbance, attenuating exponentially with distance from the interface (horizontal
plane), was imposed on the velocity distributions.

The initial field of the volume function takes the form: f (x, y) = 1 for y > ys (for the denser medium),
f (x, y) = 0.5 at y = ys (in a thin transition zone between the media, with the thickness δ ≪ λ , the values of f
vary from 0 to 1). The initial pressure distribution is hydrostatic. The left and right boundaries are assumed
to be symmetry planes, and the top and bottom boundaries to be solid walls. The size of the grid sells, as in
[11], was taken equal to: Δx = Δy = L/40. The height of the calculation domain was taken equal to 8L (from
ymin =−4L to ymax = 4L) for ρ1/ρ2 < 5 and increased to 16L (ymin =−12L, ymax = 4L) for ρ1/ρ2 ≥ 5, with
account of the asymmetrical development of RTI with a deep penetration of thin denser-medium jets into
the less dense medium, as observed in [14, 15].

In the first series of calculations, we considered the RTI on the “water-benzene” interface at room tem-
perature (20∘C) for the following parameters: ρ1 = 998 kg/m3, ρ2 = 879 kg/m3, μ1 = 1.00×10−3 kg/(m s),
μ2 = 6.52×10−4 kg/(m s), σ = 0.035 kg/s2. The other parameters were taken as in variant 45 of the experi-
ments [14] (different “variants” correspond to different conditions of measurements [14], and the numeration
of the variants corresponds to that in [14]): g = 305 m/s2, λ = 0.03 m, ys0 = 0.015λ , where g is the sum
of the accelerations of the gravity force and the moving set-up. We note that the quantities λ and yso were
explicitly specified in [14]. They were found using the information presented in Figs. 12 and 16 from [14].

The Reynolds number representing the viscosity effect is defined as Re = (λg)1/2λ/ν (for example, in
[9] this form was used in describing the RTI with a constant viscosity ν = ν1 = ν2, where ν1 = μ1/ρ1 and
ν2 = μ2/ρ2), and the mean kinematic viscosity of two media was ν = (μ1 + μ2)/(ρ1 + ρ2) [17]. We can
also introduce the instability parameter Φ = 4π2σ/[(ρ1 − ρ2)gλ 2], which characterizes the surface tension
effect [10, 11, 12]: for 0 < Φ < 1, the disturbance growth is retarded and for Φ ≥ 1 completely stops due
to the action of the surface tension. For the above values of parameters in variant 45 of the experiment [14],
the Reynolds number is fairly large Re = 1.03× 105, and the instability parameter is small: Φ = 0.0422.
We may expect that the viscosity and surface tension effects will be insignificant. To check the latter effect,
we performed calculations separately for Φ = 0 and Φ = 0.0422, which showed (see Figs. 1a, 1b, and 2) that,
although the surface tension makes a slight impact on the details of RTI structures, the general instability
development pattern turns out to be the same in both cases. Moreover, both the modified and simplified
versions of the CFS model give identical results, particularly for a small relative value of the surface tension
coefficient. Accordingly, we used the simplified model, in which fs = f . We also estimated the effect of
viscosity by varying the value of g by one or two orders of magnitude: the results were almost unchanged
(not shown in Figs. 1, 2).

Figures 1 and 2 show the isolines f = 0.5, corresponding to the “water-benzene” interface, and the
dependence of the hyperbolic arccosine of the mean disturbance amplitude ya = (ys(x = 0) + ys(x = L))/2
on the normalized time t∗ = t(0.25gA/L)1/2.

The development of RTI for t∗< 1 agrees with linear theory [13], i.e. it follows the linear instability laws.
For 1 < t∗ < 2, the secondary disturbances of the Kelvin–Helmholz instability (KHI) type develop due to
the increase in the velocity shear between the counter-directed flows of two media. For t∗ > 2, an intense
vortex of the KHI breaks up, which is accompanied by a spiral swirl of the flow, the mutual penetration of
the jets of two media increases, and several vortices of the KHI are formed on the interface (Fig. 1). For
t∗ > 2.6, irregularities develop gradually on the interface, which is likely associated with the large Reynolds
number effects.

For small amplitudes of the initial disturbance, the value of ya (Fig. 2) corresponds to the experimental
data for t∗ ∼ 0.8. The deviation of the experimental points for t∗ ∼ 0.6 is attributable likely to the mea-
surement errors in [14], in particular, to the limitation of the photo camera resolution at the initial instants
of time for fairly small values ys0 ∼ 0.45 mm. With increase in ys0, the nonlinear stage of the RTI devel-
opment begins at smaller t∗ (Fig. 2). The instability development pattern does not change (Fig. 1) but is
shifted in time. This is because the transition from the linear to nonlinear stage occurs at a certain fixed
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Fig. 1. Isolines of the volume fraction ( f = 0.5) on the interface between water ( f = 1) and benzene ( f = 0) for t∗ = 0, 1.1,
1.3, 1.5, 1.7, 1.9, 2.1, 2.3, and 2.5 (from left to right): (a–c) Φ = 0, 0.0422, 0.333; ys0/L = 0.03 (a, b), 0.08 (c).

interface amplitude (ya ∼ L, according to the data of [14, 17]), i.e. as the value ys0 increases, the ratio ya/ys0

corresponding to this transition decreases.

The comparison with the data of [14] was performed also in [15], where a vortex sheet method was used
for modeling. However, in [15] two last experimental points for t∗ ∼ 0.8 were omitted (see Fig. 2). These
points where specially discussed in [14] in comparison with theory [13], and a much greater value of the
stability parameter was taken (Φ = 1/3) than in variant 45 of [14]. This is why the results of [15] may
be insufficiently accurate and the conclusions incorrect. In particular, curve 3 in Fig. 2, corresponding to
the calculations [15], lies much lower than the last two experimental points (for t∗ ∼ 0.8) and is broken
too early (at t∗ ∼ 1.1), which indicates the shortage of the algorithm of inviscid calculations in [15]. For
comparison with the data [15], in our calculations (Fig. 1c) we took the same parameters Φ = 0.333 and ys0

as in [15]. The comparison of the amplitude of RTI shows the agreement of the results. A small discrepancy
is associated probably with the specific features of the numerical algorithm, in particular, with the infinite
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Fig. 2. Evolution of the relative amplitude of the interface: (1) linear theory [13]; (2) measurements in the “water–benzene”
system [14]; (3) calculations using the vortex sheet method [15]; (4–9) calculations for Φ = 0 and ys0/L = 0.01, 0.02, 0.03,
0.05, 0.08, and 0.10; (10) calculation for Φ = 0.0422 and ys0/L = 0.03; (11) calculation for Ψ = 0.333 and ys0/L = 0.08.

Reynolds number in [15]: due to additional damping effect of the viscosity, in our calculations curve 11 in
Fig. 2 lies slightly lower than curve 3. The increased effect of surface tension also leads to damping the
growth rate (see curves 8 and 11 in Fig. 2) and opposes to the spiral swirl of KHI (Fig. 1c).

In the second series of calculations, we considered RTI on the “water–air” interface, for which at a
temperature of 20∘C the parameters were: ρ1 = 998 kg/m3, ρ2 = 1.20 kg/m3, μ1 = 1.00× 10−3 kg/(m s),
μ2 = 1.82× 10−5 kg/(m s), σ = 0.073 kg/s2. The other parameters in measurement variants 2, 7, and
28, described in detail in [14], were in the ranges 193 m/s2 ≤ g ≤ 503 m/s2, 0.0102 m ≤ λ ≤ 0.038 m,
0.0295 ≤ ys0/λ ≤ 0.0625, which gives the values 0.004 ≤ Φ ≤ 0.068, 2.03× 104 ≤ Re ≤ 1.62× 105.
The calculations of [15] were performed for Φ = ys0/λ = 0.04, which corresponds approximately to the
middle of the intervals for Φ and ys0, i.e. represents well the realizations of the measurements [14] and is
close to the conditions of variant 2 (where Φ = 0.0335 and ys0 = 0.041λ ).

For comparison, in this study as the basis (Fig. 3) we took the same values (Φ = ys0/λ = 0.04 as in [15].
The acceleration is taken equal to g = 193 m/s3, as in variant 2 of experiments [14], and from the definition
of Φ we obtain λ = 0.0193 m (which is close to λ = 0.0211 m from variant 2). The corresponding Reynolds
number (Re = 3.65×104) is fairly large, and the instability parameter is fairly small, so we could expect that
the viscosity and surface tension effects were small. However, the results presented below clearly illustrate
the presence of both these effects.

In modeling the RTI in the “water–air” system (Figs. 3, 4), the results are well reproduced both for
the linear stage and the nonlinear stage (with the saturation of the disturbance amplitude growth for large
times). If the density difference on the interface is not too large, at the nonlinear stage the KHI effects
are manifested, with the growth of typical mushroom-like convective structures, which is clear in Fig. 1
for ρ1/ρ2 = 1.14 and the results of [11] for ρ1/ρ2 = 2. On the other hand, for ρ1/ρ2 ≫ 1 (in particular,
ρ1/ρ2 = 829 in the “water–air” system) the KHI effects are absent. Instead, the fast and deep asymmetric
penetration of the denser medium into the lower dense medium occurs. In this case, narrow long jets of
water are formed between thick and high columns of air with smoothed upper boundaries (see Fig. 3 for
t∗ > 1), as in [14, 15].

The neglect of the surface tension, i. e. the use of the CSF model with σ = 0, for t∗ > 1 results in the
distortion of the interface for y/L ∼ 0.6. This distortion increases with time, and at t∗ ∼ 1.8 the interface is
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Fig. 3. Isolines of the volume fraction ( f = 0.5) on the “water–air” interface at the instants t∗ = 0.5, 1.0, 1.5, 1.9, 2.1, and
2.3 (from left to right): Φ = 0 (a) and 0.04 (b).

fragmented near the right boundary (Fig. 3a). In the calculations with a varied parameter g (the results are not
presented in the graphs), these effects are manifested earlier for larger Reynolds numbers. On the other hand,
taking the surface tension into account in accordance with model (1.4) makes it possible to predict more
adequately the evolution of counter-directed jets of water and air and the vertical growth of the disturbance
amplitude within the scatter of the data of [14] (Figs. 3b and 4). Small-scale irregularities observed at the
nonlinear stage are, apparently, unavoidable for flows with high Reynolds numbers or inviscid flows (as
mentioned in [15]). However, in contrast to calculations [15], these irregularities do not lead to insoluble
problems of numerical realization for time instants corresponding to the experimental data [14].

It is worth noting that the distortion of the interface at large times (Fig. 3) is not only a numerical artefact.
The estimate of the disturbance wave length for the most unstable RTI mode, which grows maximally at the
linear stage, gives (without surface tension) λm = 4πν2/3/(gA)1/3 ≈ 0.00022 m (for example, see [17]), i.e.
the value of the order of the grid cell size (Δx = 0.00024 m) for the parameters considered. When the surface
is taken into account, in accordance with the differentiation of the RTI growth rate (for example, see [10,
15]), the most unstable mode corresponds to Φ = 1/3, from which we have Δx≪ λm(≈ 0.00669 m < L).
It means that small disturbances, always appearing in the calculations due to the discretization and rounding
errors (or random disturbances in real conditions), will gradually result in the distortion of the interface both
for Φ = 0 and for Φ > 0, particularly at those points where the surface curvature is maximal, as is clear in
Fig. 3.

The vortex sheet method [15], in which the viscosity is ignored, underestimates the RTI growth rate and
is applicable only for a very short time interval (Fig. 4), since the growing irregularities of the interface do
not allow to reproduce numerically the further development of the RTI disturbances. In the calculation with
Φ = 0 in [15], these irregularities appeared as a small break of the interface in the vicinity of the top point
of the air bubble, formed as a result of the primary instability, and then resulted in the development of a
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Fig. 4. Evolution of the amplitude of the “water–air” interface: theory [13] (1); upper and lower limits of data scatter [14]
(2, 3); calculations [15] (4); calculation for Φ = 0 (corresponding to variants 2, 7, and 28 from [14]) (5–7); calculations for
Φ = 0.04 (corresponding to the same variants) (8–10).

secondary small-scale RTI in the bubble region and the onset of a singularity of the interface curvature. In
our study, we also observed a similar distortion of the upper part of the bubble (Fig. 3a) but, in contrast
to the inviscid calculations [15], it occurred much later due to the smoothing effect of viscosity at finite
Reynolds numbers. On the other hand, when the surface tension was taken into account with Φ = 4 in [14],
the secondary instability at the upper part of the bubble was no longer observed, and the calculations could
be performed for ya(t)< 2L, i.e. until the amplitude of the “water–air” interface did not exceed the doubled
wave length of the initial disturbance. To that time, due to the surface tension effect preventing the onset of a
too large curvature, on the tip of the heavy-fluid jet a convex thicker part appeared, with a fast development
of small-scale irregularities, which made impossible further calculations in [15].

In our calculations, the surface tension effect prevents the onset of the secondary instability near the
top of the air column until much greater times (Fig. 3b) than in the inviscid calculations [15], due to the
viscosity effect mentioned above. A similar thicker part on the tip of the water jet appears for t∗ ≥ 1.4,
and for t∗ > 2 (i.e. for ya(t)> 3L) small-scale irregularities appear, which, in contrast to [15], do not result
in the immediate interruption of the calculations. A similar thickening of the heavy-fluid jet occurs in real
conditions on the interface with a large density difference, as follows, for example, from the experimental
data of [22] for ρ1/ρ2 ∼ 103.

The distortion of the interface generates weak oscillations of the RTI growth rate for t∗ > 2, and the
neglect of the surface tension, in addition to the enhancement and acceleration of the distortion, results in
earlier oscillations of the function ya(t) (Fig. 4). A slight acceleration of the growth of ya(t) for t∗ > 2.00 at
Φ = 0 and for t∗ > 2.14 at Φ = 0.4 (curves 5, 8, 10) is associated with the formation of individual bubbles
(over the rising air column) after the distortion and fragmentation of the interface. These bubbles rise faster
than the air column, from which they appeared (Fig. 3). Nevertheless, curve 8 of the function ya(t) for Φ = 0
(which lies over curve 5 for Φ = 0.4 falling directly at the middle of the experimental data scatter) is still
within the range of the measurement results (Fig. 4). We also plotted the calculation results corresponding
to variants 7 (g = 503 m/s2, λ = 0.0388 m, ys0/λ = 0.0295, Re = 1.62× 105) and 28 (g = 410 m/s2,
λ = 0.0102 m, ys0/λ = 0.0625, Re = 2.03×104) from [14] with Φ = 0 and Φ = 0.04 (Fig. 4), which form
a “fan” of calculated curves 5–10 falling in the range of scatter of the experimental data.

The variations of the Reynolds number and the instability parameter over the ranges corresponding to the
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Fig. 5. Isolines of the volume fraction of water ( f = 0.5, t∗= 1.9) on the interface between water and the less dense medium
with the density ratios ρ1/ρ2 = 1.01, 1.1, 2, 5, 10, 20, 50, 100, 1000, and 10000 (from left to right): (a) Φ = 0 (excluding
the case ρ1/ρ2 = 10000, where Φ = 0.000422); (b) Φ = 0.0422.

data of [14] result in a vertical scatter of the calculation results, due to the different intensity of the damping
viscosity and surface tension effects, retarding the RTI growth. As is clear from Fig. 4, an additional scatter
appears in the calculations for different ratios ys0/λ : larger values of the initial disturbance amplitude give
an earlier deviation from the behavior, typical of the linear stage, i.e. towards the smaller values of ya(t)/ys0.
However, at the initial instants all curves must be very close to each other and lie below the straight line
corresponding to linear theory [13]. The existing scatter of the experimental data indicates a noticeable
deviation from this line even for small times (Fig. 4), which is attributable to the dependence of the vertical
location of the measured data on ys0 [14]. This parameter, varied over a wide range 0.13 mm≤ ys0≤ 8.5 mm,
was minimal of the measured quantities. The inevitable errors of these measurements resulted in a noticeable
variation of the initial slope of the curves obtained in different experimental conditions [14].

In the third series of calculations, we studied the RTI evolution depending on the density ratio (ρ1/ρ2)
(Figs. 5 and 6) for fixed parameters ρ1 = 998 kg/m3, g = 305 m/s2, λ = 0.03 m, ys0 = 0.015λ , taken as in
variant 45 of [14]. The density ρ2 was varied, and the kinematic viscosity was taken equal to that of water
(ν = ν1 = ν2 = 1.004×106 m2/s). In the linear stage (t∗ < 1), the growth of RTI occurs identically for all
density ratios. For small density ratios ρ1/ρ2, the instability development pattern remains symmetric up to
the large times (see Fig. 1). An asymmetry appears only in small details: for example, finer KHI structures
are observed for the denser medium and thicker structures for the less dense medium.

As ρ1/ρ2 increases, for t∗ > 1 an asymmetry in the development of RTI becomes clear from the compar-
ison of the interface amplitude on the left and right boundaries of the calculation domain (Fig. 5). The depth
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Fig. 6. The interface amplitude as a function of time and the density ratio of the media: (1) theory [13]; (2) measurements
[14] for the “water–benzene” interface; (3, 4) upper and lower limits of the scatter of experimental data [14] for the
“water–air” interface; (5–12) present calculations for ρ1/ρ2 = 1.1, 2, 5, 10, 20, 50, 100, 1000 and Φ = 0.0422.

of the penetration of the heavy-fluid jet is larger than the corresponding height of rise of the light fluid, and
this difference increases with increase in the density ratio. The ratio of the thicknesses of the heavy-fluid
jet and the light-fluid column decreases with increase in ρ1/ρ2. Starting from ρ1/ρ2 ∼ 5, an intense vortex,
resulting from the KHI effects, no more appears, and the secondary instability is manifested only as a thin
heavy-fluid jet directed upward, i.e. opposite to the original jet directed downward. With increase in ρ1/ρ2,
this small jet gradually decreases and disappears for ρ1/ρ2 ∼ 50, when only a thicker part remains on the
tip of the main heavy-fluid jet falling down. The latter in turn disappears for ρ1/ρ2 > 103 (apparently, up to
the case of flow into vacuum). We note that when the surface tension is neglected (Fig. 5a), for ρ1/ρ2 > 2
and t∗ > 1.9 a distortion of the interface becomes noticeable. This distortion increases with increase in the
density ratio. For ρ1/ρ2 = 104, Φ = 0, and t∗ > 1.7, this results in the intense fragmentation of the interface,
i.e. in the atomization of the water and air jets into droplets and bubbles (these results are not presented
here). The introduction of a fairly small surface tension (see Fig. 5a for ρ1/ρ2 = 104 and Φ = 4.22×10−4)
retards the distortion and fragmentation. Taking the surface tension (σ = 0.035 kg/s2, as in variant 45 from
[14], which corresponds to Φ = 0.0422) into account eliminates the distortion of the interface at least up to
t∗ ∼ 2 (Fig. 5b).

With increase in the density ratio or the Atwood number, the amplitude of the interface as a function of the
normalized time (Fig. 6) shows the trend of growth. The main differences in the amplitudes are observed
on the range 2 < ρ1/ρ2 < 100, whereas for 1.1 < ρ1/ρ2 < 2.0 and 102 < ρ1/ρ2 < 103 the differences
reduce, and the curves for ρ1/ρ2 = 1.01 and 1.1 almost coincide, as for the cases with ρ1/ρ2 = 103 and 104.
We note that the flow pattern shown in Fig. 1 for ρ1/ρ2 = 1/14 remains almost unchanged for ρ1/ρ2 = 1.01
and 1.1 (only the flow symmetry becomes more pronounced, as the density ratio decreases to unity). In
fact, the behavior of the “water–benzene” interface may serve as an analog of the RTI development in a
single-phase stratified medium at large Reynolds (and/or Prandtle/Schimdt) numbers, when the effects of
molecular diffusion are insignificant, as compared with the convective transport.

It is also interesting to compare our results with the previous studies. In [17, 19], the RTI was calculated
for three values of the density ratio: 3, 20, and 40. The authors observed the enhancement of asymmetry
of the RTI structures and a deeper penetration of the heavy-fluid jet with increase in ρ1/ρ2, as in our study.
In [17–19], it was noted that the KHI vortices exist on the interface of the counter-directed jets only when

FLUID DYNAMICS Vol. 49 No. 6 2014



758 YAKOVENKO

Fig. 7. Isolines of the volume fraction of water ( f = 0.5) for ρ1/ρ2 = 10000: (a) Φ/Φ0 = 0.01, 0.1, 0.5, 1, 2, 5, 10, 15, 20,
and 25 (from left to right), t∗ = 1.9; (b) Φ/Φ0 = 5, t∗ = 2.3, 2.7, 3.1; (c) Φ/Φ0 = 10, t∗ = 2.1, 2.3, 2.5, and 2.6.
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ρ1/ρ2 ≤ 4 (this agrees with our conclusion of the elimination of this effect starting from ρ1/ρ2 ∼ 5). In [18],
the RTI was modeled using vortex methods with neglect of viscosity and surface tension effects for the ratios
ρ1/ρ2 from unity (Atwood number A = 0) to infinity (RTI on the interface between a fluid and vacuum with
A = 1). It was shown that for ρ1/ρ2 = 3, after the appearance of one KHI vortex, later the second vortex
may be formed, which agrees with our results in Fig. 1 for t∗ > 2.2. However, in the calculations of [18]
for A = 1, on the tip of a long heavy-fluid jet a noticeable thick part appears, which retains with a decrease
in the grid cell size. In our studies, a similar structure is observed for ρ1/ρ2 = 103 but disappears with the
further increase in ρ1/ρ2 to 104 (see Fig. 5). With account of the fact that, in the “exact” solution the tip of
the jet flowing into vacuum is sharp [20, it should be noted that, as the density ratio tends to infinity and the
Atwood number tends to unity, our calculations seem to be more adequate than [18].

In the fourth series of the calculations, we studied the surface tension effect for 0.01 ≤Φ0 ≤ Φ≤ 25Φ0

(here, Φ0 = 0.0422). The other parameters were as in the third series, but with a fixed density ratio ρ1/ρ2 =
104 (Fig. 7). This case is interesting because for Φ = 0 the distortion and fragmentation of the interface
occur most early and in the most intense manner, and for Φ ≥ 0.01Φ0 not only this distortion is retarded
but also the shape of the tip of the heavy-fluid jet changes (see Fig. 5). Indeed, when Φ increases to
0.1Φ0 no distortion of the interface is observed for t∗ ∼ 2 (Fig. 7a), and the transition from the sharp tip
to its thickening begins for Φ ∼ 0.5Φ0 and finishes when Φ ∼ 5Φ0. In addition, the retardation of the RTI
growth occurs with increase in the surface tension, and for Φ = 25Φ0 = 1.055 the disturbances can be even
damped, which agrees with the results of modeling for ρ1/ρ2 = 2 [11, 12]. It is worth to mention the effects
of thickening of the jet tip with time (see Fig. 7b for Φ = 5Φ0) and returning to the formation of a spiral
swirl of the KHI vortex for 5Φ0 < Φ < 20Φ0 (see Fig. 7c for Φ = 10Φ0), similar to that occurring for
small density ratios (Figs. 1 and 5). When the surface tension is large, which results in a strong retardation
and slower development of the RTI, as compared to small Φ, the heavy-fluid jet becomes thicker and turns
around, which illustrates the development of the KHI. We note that, with increase in the viscosity effects,
as mentioned in [23] for the case A = 1, i.e. when the RTI develops on the interface between a fluid and
vacuum, the thickening of the heavy-fluid jet and a decrease in its velocity are also observed. However, in
[23] no KHI vortices were detected with increase in the viscosity effect.

Summary. The evolution of an interface between two immiscible media is studied by solving numerically
the Navier–Stokes equations and the equation for the volume fraction function, using a continuum model
for surface tension. The study of the Rayleigh–Taylor instability shows the initial exponential growth of
the disturbance amplitude, which corresponds to the linear instability stage with a constant growth rate. For
real media (water-benzene, water–air), a good agreement with theoretical [13] and experimental data [14] is
obtained for both linear and non-linear stages. For the “water–benzene” system, the interface behavior may
be regarded as an analog of the development of Rayleigh–Taylor instability in a stratified medium.

At the initial stage, the instability development is independent of the density ratio on the interface
(ρ1/ρ2). If this ratio is not too large (ρ1/ρ2 < 5), at the non-linear stage, due to the enhancement of
velocity shear between counter-directed flows of the media, the effects of the Kelvin–Helmholz instability
are observed, which result in the formation of characteristic mushroom convective structures with a spiral
swirl of the flow. For large density ratios (for example in the “water–air” case), thin jets of the denser fluid
penetrate into the less dense medium forming high and thick columns rising upward. For ρ1/ρ2 < 2, the in-
stability pattern remains symmetric up to large times, when (same as with increase in ρ1/ρ2) an asymmetry
increases. The surface tension results in the decrease in the growth rate, i.e. damping the instability, prevents
the distortion and fragmentation of the interface and prompts the thickening of the tip of the heavy-fluid jet
and returning to mushroom structures at ρ1/ρ2 ∼ 104.

Our results in simulating the evolution of Rayleigh–Taylor instability and studying the effects of the den-
sity ratio and the instability parameter confirm and refine the results of previous investigations.

The work received financial support from RFBR (Nos. 12-01-00050-a and 13-05-00006-a).
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