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Abstract—The influence of the accuracy of mass measurements on the number of possible structural compo-
sitions and the computation time of computer-aided interpretation of mass spectrometric data has been eval-
uated. Experimental measurements have been performed for two model objects in the range of small and
medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrome-
ters. The number of possible solutions have been examined and prospects of using machine learning in com-
bination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden
relationships in the chemical space have been demonstrated. It has been shown that there are two types of
relationships between the molecular formula and the mass determination error depending on the ion mass: a
nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.
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Today mass spectrometry is one of the most
important analytical methods for studying the compo-
sition and structure of chemical compounds [1–4].
Mass spectrometry is distinguished by high sensitivity
up to 10–18 M for routine measurements [5]. The com-
bination of the versatility of the method and its high
sensitivity has made it possible to identify complex
mixtures. The most important advantage of mass
spectrometric analysis is the possibility to accumulate
a large body of data on the object under study at a high
rate: from thousands to tens of thousands of individual
signals in the spectrum are recorded in a short period
of time [6, 7]. Thus, the three key factors—versatility,
high sensitivity, and high-throughput acquisition of
large amounts of data—make mass spectrometry one
of the most approachable experimental methods for
the development of machine learning and artificial
intelligence algorithms.

Machine learning and artificial intelligence tech-
nologies attract more and more attention of research-
ers worldwide due to the advent of affordable comput-
ing cost. It turned out that to solve a complex problem,
one can construct a set of initial data–correct solution
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and then try to select an algorithm that describes the
relationship between them as accurately as possible.
Sometimes, the number of parameters for these algo-
rithms reaches enormous values: tens of millions of
parameters for neural networks for image classifica-
tion, such as ResNet, Inception, and EfficientNet [8].
Since the rules for making a decision are not directly
specified, the algorithms find hidden dependencies in
the data that are necessary to solve the problem. Cur-
rently, these technologies are becoming more inte-
grated into our lives: face recognition [9], self-driving
cars [10], natural language processing (for example,
translation of texts) [11].

In recent years, machine learning has been increas-
ingly used by researchers to gain new information on
chemical processes and to plan experiments. The
development of structural solutions based on machine
algorithms for mass spectrometric studies is of
undoubted importance. Three important directions
can be distinguished: the use of mass spectrometric
data as vector representations without intermediate
identification of compounds, the determination of the
structure of compounds represented in the mass spec-
tra, and the use of mass spectrometry as a method for
detecting individual compounds. The first direction
involves a number of different algorithms and includes
the following examples: classification of mass spectra
of a biomaterial by the presence of a specific disease
[12, 13] or clustering of mass spectra [14]. Two other
directions cause difficulties at present, especially for
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Fig. 1. ESI-(–)MS spectra of PdCl2 in CH3CN after signal isotopic deconvolution. 
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multicomponent samples of complex composition
[15]. Solving the problem of identifying compounds in
such samples will significantly speed up chemical
research by reducing the time spent on interpreting
spectra, and will also open up opportunities for identi-
fying complex and implicit dependencies in large
datasets collected for chemical processes, which is a
target for machine learning and artificial intelligence
[16–18].

RESULTS AND DISCUSSION

For interpretation of the mass spectrum, three
tasks should be solved: it is necessary to (1) identify
groups of peaks related to one compound; (2) deter-
mine the bruto formula of a substance by its exact
mass, with taking into account the isotope distribu-
tion; and (3), if possible, based on the fragmentation
spectra by various activation methods, suggest possi-
ble structures or structural fragments.

The quality of the spectral data is of key impor-
tance for the unambiguous determination of the
molecular formula of a substance, especially in com-
plex spectra with overlapping signals. In particular, if a
sample contains a large amount of impurities, then the
overlapping of signals may distort the determined
masses, as well as the peak intensities, which makes
the comparison with the theoretical isotope distribu-
tion of a possible candidate much more difficult or
impossible in principle. Herein, we carried out a com-
parative study of model samples of small molecules
(palladium chloride (PdCl2), MW = 177.33, a catalyst
precursor in fine organic synthesis) and large mole-
cules (lysozyme, MW = 14.3 kDa, antibacterial agent,
hydrolase enzyme, which destroys bacterial cell walls
by hydrolysis of peptidoglycan) on high, ultrahigh,
and extreme high resolution mass spectrometers, and
the possibility of obtaining high-quality mass spectro-
DOKLA
metric data for the development of machine learning
and artificial intelligence algorithms was tested.

The first task is solved by combining peaks whose
masses differ by a given amount. Figure 1 shows a
high-resolution electrospray ionization mass spec-
trum (ESI-MS) obtained for a palladium chloride
solution with a concentration of 1 × 10–6 mol/L in
acetonitrile in the negative ion mode, in which most of
the peak groups were identified. Despite the simplicity
of the object under study (PdCl2, CH3CN), the spec-
trum contains more than 500 individual lines [19]. At
present, there are practically no published works in the
literature on the interpretation of the observed signals
for many simple salts of this type.

Figure 2 shows a fragment of the mass spectrum of
the protonated protein lysozyme with a concentration
of 1 × 10–6 mol/L in the mass range m/z 1000–2200.
In the course of the work, a comparative analysis of
the mass spectra recorded using various mass analyz-
ers was carried out: time-of-flight (resolving power up
to ~23000 for m/z 922 during calibration) and a Fou-
rier transform ion cyclotron resonance (FT-ICR) cell
(resolution >100000) [20]. The effect of resolution on
the appearance of the spectrum of the analyzed sam-
ple is clearly shown. At high resolution (Fig. 2c;
resolving power ~10000 for m/z 922 during calibra-
tion), isotopes are not resolved and a broad peak is
observed, while at ultra-high resolution (Fig. 2b;
resolving power up to ~26000 for m/z 922 during cali-
bration), the full width at half maximum (FWHM) is
0.0565, which is a necessary but not sufficient condi-
tion for unambiguous interpretation of the mass spec-
trum and protein identification. At the same time, the
FT-ICR spectrum (ultrahigh resolution) allows one to
reliably identify the isotopic structure and make a con-
clusion about the composition of the analyzed protein
(Fig. 2a).
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Fig. 2. ESI-(+)MS spectra of lysozyme (1 × 10–6 mol/L) in the positive ion mode: (a) extreme high resolution, (b) ultrahigh res-
olution, and (c) high resolution. Calculated m/z values are 1788.986469 (z = 8+), 1590.322115 (z = 9+), 1431.390631 (z = 10+),
1301.355780 (z = 11+), and 1192.993405 (z = 12+). The RMS values are given in ppm.
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The most abundant mass m/z = 1590.3221
Table 1 presents the comparison of the resolution,
FWHM, accuracy of determining the mass number
(mass-to-charge ratio), and isotope distribution in the
spectra recorded on different mass spectrometers
[21, 22].

To assess the possible number of options at a given
accuracy of mass determination, we carried out
exhaustive search for possible values. A clear demon-
stration of this approach was tested on the spectrum of
palladium chloride recorded in the negative ion mode
(Fig. 3).
DOKLADY PHYSICAL CHEMISTRY  Vol. 492  Part 1 
On the histogram, the number of formulas first
increases, and then, on the contrary, decreases (Fig. 3a).
This is due to the fact that the difference in mass is get-
ting closer and closer to the mass of one of the ele-
ments that was taken into account in the enumeration,
namely, of hydrogen. The manifestation of this depen-
dence is observed for the second curve: its right half
demonstrates a nonlinear growth, and with a further
increase in the error, the growth rate of the number of
formulas gradually decreases (Fig. 3b). It can be seen
from the performed modeling that, with increasing
 2020
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Table 1. Key characteristics of signals in mass spectra*

* m/zexp is the experimental m/z; m/zcalc is the theoretical m/z; FWHM, Δm50% is the full width at half maximum; R is resolving power;
RMS (ppm) is the root-mean-square deviation; δ (ppm) is the relative error. 
** The spectrometer name and resolution abbreviation are parenthesized.

Measurement type** m/zexp m/zcalc FWHM, 
Δm50%

R RMS, ppm Δ, ppm

High resolution
(HRMS, microTOF)

1590.3267 1590.3221 0.3131 5080 3.912 2.892

Ultrahigh resolution 
(UHRMS, maXis)

1590.3246 1590.3221 0.0565 28143 1.275 1.572

Extreme high resolution 
(eXtreme RMS, SolariX)

1590.32178 1590.3221 0.01428 111407 0.4524 0.2
accuracy (decreasing error ∆, ppm), the number of
predicted molecular solutions sharply decreases, tend-
ing in the limit to one solution.

In the case of lysozyme, the mass of the protein is
large enough; therefore, for a difference of 1 Da, there
are a huge number of options for constructing a for-
mula. With an average verification speed of 221 thousand
formulas per second (the script is written in the Python,
it was run in one thread on an Intel Xeon W-2145 with a
frequency of 3.7 GHz), an exhaustive search for lyso-
zyme would take about a thousand years. It is evident
that the search optimization can significantly improve
the situation, but the search will still take a long time.
To obtain data for comparison, the simulation was
carried out using the Monte Carlo method. It turned
out that the distribution of masses in the interval
±1 Da becomes uniform; i.e., in each sufficiently large
section of this interval there is approximately the same
DOKLA

Fig. 3. (a) Histogram of relative errors Δ in ppm for generated fo
(b) the dependence of the number of formulas on the maximum
which the error does not exceed a specified value).
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number of formulas. As a result, all the columns of the
histogram have approximately the same height (Fig. 4a),
and the plot for the number of formulas with an accu-
racy not less than the specified one is just a straight
line (Fig. 4b). It can be seen from the performed sim-
ulation that, with an increase in accuracy, convergence
to one solution is observed, but the plot in Fig. 4b loses
its nonlinearity, and the number of variants increases
by about six orders of magnitude.

Comparison of the obtained mass spectra of lyso-
zyme and palladium chloride for different resolutions
of the mass spectrometers and the assessment of the
use of these data for machine learning have shown that
high-resolution mass spectra can provide the correct
interpretation of the results on the basis of a precisely
determined mass-to-charge ratio by searching for
masses less than 1 kDa. Taking into account the iso-
tope distribution of the analyte makes it possible to
DY PHYSICAL CHEMISTRY  Vol. 492  Part 1  2020
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Fig. 4. (a) Histogram of relative errors Δ in ppm for generated formulas for lysozyme (charge is +9, mass number is 1589.431144)
and (b) the dependence of the number of formulas on the maximum relative error (for each error, the number of formulas is given
for which the error does not exceed a specified value). 
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further improve the quality of ranking of possible for-
mulas by solving the problem of systematic errors. The
minimum resolution required to completely separate
two neighboring isotope peaks is equivalent to the
mass of the detected ion. For example, to resolve the
signal of the lysozyme ion (charge is +9, the most
abundant mass is 1590.322115), the minimum resolv-
ing power of the spectrometer is >15900 [4]. Further
verification of this approach will be carried out using a
wide set of mass spectra for the studied class of com-
pounds.

The use of machine learning methods to predict
new data on the reaction mechanism and search for
hidden dependencies in the chemical space is an
important task for a modern scientist. It is proposed to
improve the accuracy of the interpretation result by
exhaustive search, and, in the case of large masses, to
reduce the number of variants by replacing atoms with
specific groups (for example, amino acids for pro-
teins). Machine learning algorithms should be used for
complex predictive problems that cannot be solved
using rules or simple, hand-built models. Experimen-
tal estimates and computer simulations carried out in
this work have shown that, depending on the ion mass,
a different relationship can be observed between the
accuracy of determining m/z and the number of possi-
ble formulas: a nonlinear S-curve for medium masses
and linear dependences for large masses. At the same
time, the number of possible formulas begins to grow
very quickly in both cases, making the accuracy of
measuring the mass-to-charge ratio a key parameter
that determines the further use of the spectrum.
DOKLADY PHYSICAL CHEMISTRY  Vol. 492  Part 1 
EXPERIMENTAL

The following reagents were used: lysozyme
enzyme (EC 3.2.1.17, 51 100 units/mg, 14 295.8 Da)
purchased from Sigma (Merck-Sigma), palladium(II)
chloride (99.9%, ca. 60% Pd) manufactured by ABCR
(ABCR GmbH & Co. KG), acetonitrile (LC-MS
Grade, J.T. Baker), methanol (LC/MS, LiChrosolv,
Merck, Praha), formic acid (LC-MS, Sigma-Aldrich,
Germany), and deionized water (milliQ, Merck).

Instrumentation. High-resolution mass spectra
were recorded on Bruker micrOTOF (time-of-flight
mass analyzer), Bruker maXis QTOF (tandem quarru-
pole/time-of-flight mass analyzer), and Bruker
solariX XR (ICR mass analyzer, a 15-T superconduct-
ing magnet) mass spectrometers equipped with an ESI
source. The m/z scanning range was 50–3000 for lyso-
zyme and 100–1400 for palladium(II) chloride. The
recording time of the mass spectrum on microTOF,
maXis, and solariX XR spectrometers was 45 s; in the
case of solariX XR, the number of scans was 32 with
4 M data points. External calibration of the mass scale
was carried out using a low-concentration calibration
solution “Tuning mix” (Agilent Technologies) for
microTOF and maXis and a sodium trif luoroacetate
solution (0.1 mg/mL in a 1 : 1 acetonitrile/water mix-
ture) for solariX XR. Samples were injected using a
500 μL Hamilton RN 1750 syringe (Switzerland). The
measurements were carried out in the positive ion
mode (+) for lysozyme (grounded spray needle, 4500-V
high-voltage capillary; HV End Plate Offset: –500 V
and in the negative ion mode (–) for palladium(II)
chloride (grounded spray needle, +4000-V high-volt-
age capillary; HV End Plate Offset: –500 V). The f low
 2020
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rate during injection was controlled with a syringe
pump (3 μL/min). Nitrogen was used as a nebulizer
gas (1.0 bar) and dry gas (4.0 L/min, 200°C). To detect
a low-concentration lysozyme sample (1 × 10–8 M) on
a SolariX XR mass spectrometer, the spectrum was
acquired in an ICR cell using 1024 scans and 8 M data
points. The data were processed using the Bruker Data
Analysis 5.0 software.

Lysozyme samples were prepared by dissolving a
weighed portion (1 mg) in an acetonitrile/water
(50/50) mixture with the addition of 1 μL of formic
acid. The concentration range was from 1 × 10–8 to 1 ×
10–4 M. Mass spectra of palladium(II) chloride sam-
ples for mass spectrometry were prepared by dissolving
a 1-mg portion in 1 mL of acetonitrile followed by
dilution to 1 × 10–6 M.

Automatic analysis of mass spectra. All software was
written in Python using the NumPy and Pandas data
analysis libraries. The plots were built using the Mat-
plotlib library. The spectra were converted to mzXML
format and then processed using the pyOpenMS
library.

Determination of the number of formulas for
masses less than 1000 Da was carried out using an
exhaustive search for possible structures. For large
masses, the number of possible formulas was esti-
mated using the Monte Carlo method due to the large
number of calculations and the impossibility of
exhaustive search in a reasonable time. In calculations
by the Monte Carlo method, 5 × 109 formulas were
randomly selected, for which a comparison with the
experimental mass and the corresponding scaling were
performed.

For a metal salt, the presence of the following ele-
ments (components of the salt itself, possible ligands,
and solvent molecules) was assumed: palladium, chlo-
rine, hydrogen, carbon, nitrogen, and oxygen. The
elemental composition of lysozyme included hydro-
gen, carbon, oxygen, nitrogen, and sulfur.
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