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Abstract—A new in vitro model of Huntington’s disease (HD) was developed via a direct reprogramming of
dermal fibroblasts from HD patients into striatal neurons. A reprogramming into induced pluripotent stem
(iPS) cells is obviated in the case of direct reprogramming, which thus yields neurons that preserve the epi-
genetic information inherent in cells of a particular donor and, consequently, the age-associated disease phe-
notype. A main histopathological feature of HD was reproduced in the new model; i.e., aggregates of mutant
huntingtin accumulated in striatal neurons derived from a patient’s fibroblasts. Experiments with cultured
neurons obtained via direct reprogramming make it possible to individually assess the progression of neuro-
pathology and to implement a personalized approach to choosing the treatment strategy and drugs for ther-
apy. The in vitro model of HD can be used in preclinical drug studies.
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Huntington’s disease (HD) is an incurable human
genetic disease with dominant inheritance and is
caused when the CAG codon expands beyond the
threshold of 36 in the IT15 gene, which is also known
asthe HTT gene and codes for the protein hungtingtin
[1]. The mean age at onset is 35—45 years, depending
on the number of CAG repeats in the polymorphic
gene locus. Repeat expansion leads to an elongated
polyglutamine tract in the protein, and the mutant
protein consequently aggregates in brain tissues [2].
Great achievements have been made with induced
pluripotent stem (iPS) cells [3] and their derivative
neurons [4—6]. However, several drawbacks are char-
acteristic of iPS cells and substantially limit their
application in modeling neurodegenerative disorders
[7]. Passing through a pluripotent state, neuronal cells
lose the majority of the epigenetic marks that their
somatic progenitors have acquired during their growth
and maturation [8]. Moreover, the extent of maturity
in neurons produced through iPS cells strongly
depends on the reprogramming protocol, which is
often poorly reproducible [9].

Certain pathological alterations associated with
neurodegenerative disorders, including HD, manifest
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themselves with age, when neurons undergo senes-
cence and become more vulnerable to cell stress [10].
This aspect is important in the context of HD model-
ing, and we consequently focused on direct repro-
gramming as a new approach to modeling neuronal
pathologies. A key feature is that the approach obvi-
ates dedifferentiation to an embryonic state, which is
responsible for losses of epigenetic information inher-
ent in a donor’s cells. The approach better preserves
the age-associated disease phenotype [7, 11] and bet-
ter reflects the characteristic neuronal phenotype
(e.g., neuronal death) as compared with models where
age-related epigenetic markers are absent. An age-
specific gene transcription profile and a lower level of
nuclear transport receptors are observed in neurons
derived via direct reprogramming, but not in neurons
derived via iPS cells [12]. Aging-related alterations
characteristic of a donor are also better preserved in
neurons derived via direct reprogramming, including
DNA lesions, loss of heterochromatin and nuclear
organization, and higher 3-galactosidase activity [7].

Only four works have utilized direct reprogramming
to study the HD pathogenesis to date [11, 13—15],
mostly because a low efficiency is characteristic of the
reprogramming procedure and a high heterogeneity is
observed for neurons thus derived [ 16]. We have previ-
ously optimized the direct reprogramming protocol
and thus increased both the survival of induced striatal
neurons (up to 80%) and the homogeneity of the
resulting cell population [17].



16 KRASKOVSKAYA et al.

(a) /

. (b)

Fig. 1. In vitro cultures of human dermal fibroblasts of the lines (a) DF1, which originates from a healthy donor, and (b) HDDF,
which originates from a HD patient. Phase contrast microscopy, X 10. Bar, 100 um.

Fig. 2. Diffuse distribution of huntingtin through the cytoplasm in dermal fibroblasts of the lines (a) DF1 from a healthy donor
and (b) HDDF from a HD patient. Immunofluorescence staining with a mEM48 antibody to huntingtin (a secondary antibody
conjugated with Alexa 555) (red). Cell nuclei were visualized using DAPI (blue). Confocal microscopy, X60. Bar, 50 um.

In this work, direct reprogramming was used to
derive striatal neurons from the HDDF derval fibro-
blast line originating from a HD patient and the con-
trol DF1 line originating from a healthy donor [18].
Figure 1 shows the general appearance of in vitro cul-
tures of dermal fibroblasts obtained from the HD
patient and the donor, who had no neuronal pathol-
ogy. Huntingtin showed a diffuse distribution through
the cytoplasm without forming visible aggregates in
both of the fibroblast populations (Fig. 2). However, a
substantial difference was observed in striatal neurons
derived from these fibroblasts. Huntingtin was still dif-
fusely distributed through the cytoplasm and formed
no visible aggregates in neurons derived from DFI
fibroblasts (Fig. 3). In contrast, huntingtin aggregates
in the neuronal soma and some of the processes were
observed in neurons derived from HDDF fibroblasts.

We thus confirmed that mutant protein aggregates,
which are a key histopathological sign of HD, are
observed in neurons derived from fibroblasts of HD
patients. Our cell model reflects the main pathological
alterations occurring in cells upon HD development
and has a potential as a platform to evaluate the effica-
cies of potential drugs.

Current personalized approaches imply selection
of effective medications for each individual patient.
Although effective drugs to treat or prevent HD have
not been developed as of yet, it is possible to assume
that their efficacy depends on the patient’s genotype,
age, and disease stage. Given that HD is an autosomal
dominant disease, information on the specifics of HD
course in the older generation of a family will help to
develop therapies for HD carriers of younger genera-
tions with due regard to their age-related features. In
this case, direct reprogramming provides an essential
tool to choose the treatment that is most safe and
effective for a particular patient.

MATERIALS AND METHODS

Isolation of dermal fibroblasts. Fibroblasts of a
patient with a verified diagnosis of HD were isolated
from skin biopsy material according to a published
protocol [18]. The patient was a 36-year-old woman
with the established HD diagnosis. A genetic analysis
revealed 47 CAG repeats in her huntingtin gene. Prior
to collecting a tissue sample in a medical facility, the
patient had a medical examination and provided her
voluntary informed consent for tissue collection and
use of derivative cells for scientific research. Experi-
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Fig. 3. Huntingtin (green) visualization in striatal neurons derived from dermal fibroblasts via direct reprogramming. The fibro-
blast lines (a, b) DF1 from a healthy donor and (c—f) HDDF from a HD patient were used. Immunofluorescence staining with
antibodies to the neuronal marker MAP2 (a secondary antibody conjugated with Alexa 555) and huntingtin (mEMM48, a sec-
ondary antibody conjugated with Alexa 488). Colocalization of the two proteins is seen as a yellow color. Cell nuclei were visual-
ized using DAPI (blue). Confocal microscopy, X60. Bar, 30 um. (a, b) A diffuse huntingtin distribution is observed in striatal neu-
rons derived from dermal fibroblasts of a healthy donor, while (c—f) huntingtin aggregates (arrows) are detectable in striatal neu-

rons derived from dermal fibroblasts of a HD patient.

ments with cells were approved by the Ethics Commit-
tee of the Institute of Cytology, protocol no. 12/23
dated August 8, 2023.

Cells were mechanically isolated from a fragment
of skin biopsy material and cultured in 90%
DMEM/F12 (Biolot, Russia), 10% fetal bovine serum
(Gibco, United States). Cells were passaged using
0.25% trypsin—0.2% Versen at 90% confluence. The
split ratio was 1 : 3to 1 : 5. Cells proliferated intensely,
and their viability was 80% after cryopreservation.
Dermal fibroblasts of the DF1 line were used as a con-
trol. The DF1 line was derived from a healthy donor,
which was a 37-year-old woman (the line was obtained
from the Vertebrate Cell Culture Collection of the
Institute of Cytology).

Direct reprogramming of dermal fibroblasts into
striatal neurons. The reprogramming procedure utilized
the lentivirus vectors that coded for the microRNAs
miR-9/9* and miR-124 (which initiate chromatin
remodeling) and the transcription factors MYTIL,
DLX2 (which direct differentiation into GABAergic
neurons), and CTIP2 (which directs differentiation
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into striatal neurons). A doxycycline-inducible pro-
moter was used to control microRNA expression.
After antibiotic selection, postmitotic cells were
seeded on Matrigel-coated glasses. The conditioned
fibroblast medium was replaced on the next day with a
reprogramming medium, which was the Neurobasal-Ac
medium supplemented with 2% B-27, 0.125 mM Glu-
taMAX (all reagents were from Gibco, United States),
1 mM valproic acid, 1 uM retinoic acid, 200 uM dib-
utyryl-Camp (Sigma-Aldrich, United States), 20 ng/mL
brain-derived neurotrophic factor, 20 mg/mL neuro-
trophin-3 (Peprolech, United Kingdom), and
20 ng/mL glial cell-derived neurotrophic factor. Cells
were cultured for 40 days after infection with the lenti-
viruses. Huntingtin was visualized via immunofluo-
rescence staining with a mEM48 antibody (Merck
Millipore).
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