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Abstract—We consider formally self-adjoint elliptic systems of partial differential equations
generating formally positive operators and having the polynomial property. Sufficient conditions
that ensure the existence of Rayleigh surface waves in the Neumann problem on a half-space with
periodic boundary are found. We give examples of specific problems of mathematical physics in
which our sufficient conditions are simplified or turn into a criterion and study problems in the
theory of plates and piezoelectrics that are not covered by general results. The latter problem
requires a major modification of the approach.
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1. STATEMENT OF THE PROBLEM

Let Ω be a domain in the half-space Rd
+ = {x = (y, z) : y ∈ Rd−1, z ∈ R+ = (0,+∞)}, d ≥ 2,

invariant with respect to integer shifts along the axes yj = xj, j = 1, . . . , d− 1, and infinite in the
direction of the axis z = xd; i.e.,

Ω =
{
x ∈ Rd : (y + α, z) ∈ Ω

}
for any multiindices α = (α1, . . . , αd−1) ∈ Zd−1, (1)

where Z = {0,±1,±2, . . .} and {x ∈ Rd : z > R} ⊂ Ω, R > 0.
The boundary Γ is assumed to be (d− 1)-dimensional and Lipschitz. Let us introduce the semi-

infinite prism Π = {x ∈ Ω : |yj| < 1/2, j = 1, . . . , d− 1} with section ω = (−1/2, 1/2)d−1 (a unit
cube in Rd−1) and curvilinear, not necessarily connected base ϖ = {x ∈ Γ : y ∈ ω}. Consider the
boundary value problem

L(∇)u(x) = λu(x), x ∈ Π, (2)

B(x,∇)u(x) = 0, x ∈ ϖ, (3)

with the quasiperiodicity conditions

∂m
j uk(x)|xj=1/2 = eiθj∂m

j uk(x)|xj=−1/2, x|xj=±1/2 ∈ ∂Π,

j = 1, . . . , d− 1, k = 1, . . . ,K, m = 0, . . . , 2tk − 1.
(4)

Let us explain our notation. First of all, ∇ = (∂1, . . . , ∂d−1)
T, ∂j = ∂/∂xj, and the matrix differential

operator
L(∇) = M(−∇)

T
AM(∇) (5)

is formally self-adjoint. Here T stands for transposition, the bar means complex conjugation,
and M(∇) is a matrix of homogeneous differential operators with constant (complex) coefficients
whose entries have the orders ordMnk = tk ∈ N = {1, 2, 3, . . .}, where k = 1, . . . ,K, n = 1, . . . , N ,
K,N ∈ N, and N ≥ K. The matrix M(∇) itself is algebraically complete [1, Ch. 3]; i.e., there
exists a number ρM ∈ N0 = N ∪ {0} such that for any row p = (p1, . . . ,pK) whose components pk

are homogeneous polynomials of degrees ordpk = tk + ρ, ρ ≥ ρM, there exists a polynomial
row q = (q1, . . . ,qN) such that

p(ξ) = q(ξ)M(ξ) for all ξ ∈ Rd. (6)
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632 NAZAROV

This condition ensures the Korn inequality [1, Sec. 3.7.4]∥∥u;Ht(Ξ)
∥∥2 ≤ CΞ,M

(∥∥M(∇)u;L2(Ξ)
∥∥2 + ∥∥u;L2(Ξ)

∥∥2)
for u = (u1, . . . , uk)

T ∈ Ht(Ξ) = Ht1(Ξ)× · · · ×HtK (Ξ),
(7)

where the Lebesgue space L2(Ξ) with the natural inner product ( · , · )Ξ and the Sobolev space H l(Ξ)
of order l ∈ N equipped with the standard norm occur and Ξ ∈ Rd is an arbitrary domain
with (d − 1)-dimensional Lipschitz boundary ∂Ξ and compact closure Ξ = Ξ ∪ ∂Ξ. Of course,
the Korn constant CΞ,M in (7) is independent of the vector function u ∈ Ht(Ξ). One has the
Green’s formula

(Lu, v)Ξ = a(u, v; Ξ) + (Nu,Dv)∂Ξ, (8)

where v = (v1, . . . , vK)
T ∈ Ht(Ξ), u ∈ Ht•+t(Ξ), and t• = max{t1, . . . , tK}. Moreover, D(x,∇) is

a Dirichlet system on ∂Ξ, ordDpk ≤ tk − 1 (see [2, Ch. 2, Sec. 2]), and the T ×K matrix N (x,∇)
is the operator of Neumann boundary conditions (3) with T = t1 + . . .+ tK . Assume that A and B
are Hermitian positive definite numerical matrices of size N ×N and K ×K, respectively; then the
sesquilinear form

a(u, v; Ξ) =
(
AM(∇)u,M(∇)v

)
Ξ

(9)

is Hermitian and positive, and the variational statement of problem (2)–(4) with the spectral pa-
rameter λ and the Floquet parameter θ = (θ1, . . . , θd−1) ∈ [−π, π)d−1,

a(u, v; Π) = λ(Bu, v)Π for all v ∈ Ht
θ(Π), (10)

is realized on the space Ht
θ(Π) of vector functions u ∈ Ht(Π) satisfying the stable (p = 0, . . . , tk − 1)

quasiperiodicity conditions (4) (we use the terminology in the monograph [2, Ch. 2]),

Ht
θ(Π) =

{
u ∈ Ht(Π) : ∂m

j uk(x)|xj=1/2 = eiθj∂m
j uk(x)|xj=−1/2 for x|xj=±1/2 ∈ ∂Π,

j = 1, . . . , d− 1, k = 1, . . . ,K, m = 0, . . . , tk − 1
}
.

(11)

The Neumann boundary conditions (3) and the intrinsic (p = tk, . . . , 2tk − 1) quasiperiodicity con-
ditions (3) for a smooth solution in Ht•+t

θ (Π) can be reconstructed from the integral identity (10)
using the Green’s formula (8) (see, e.g., [2, Ch. 2; 3, Ch. 2]).

2. RAYLEIGH WAVES

Assume that problem (9) has a nontrivial solution u ∈ Ht(Π) for some λ ∈ R+ and θ ∈ [−π, π)d−1.
In the usual manner (see, e.g., the monographs [4, 5]), we define the vector function

Ω ∋ x 7→ u(x) = ei(θ1[y1]+...+θd−1[yd−1])u
(
y1 − [y1], . . . , yd−1 − [yd−1], z

)
, (12)

where [b] is the integer part of a number b ∈ R. One can readily verify that, owing to the quasiperi-
odicity conditions incorporated in definition (11), the vector function (12) lies in the space Ht

loc(Π).
Moreover, it will be verified in Sec. 4 that u is a function infinitely differentiable in the domain Ω
and exponentially decaying as z → +∞. Thus, under the additional assumption of smoothness of
the surface Γ, this vector function satisfies the differential problem

L(∇)u(x) = λu(x), x ∈ Ω,

B(x,∇)u(x) = 0, x ∈ Γ,
(13)

and is localized near the boundary; i.e., it possesses all properties of classical Rayleigh waves.
Such peculiar “surface waves” in deformable media were first discovered by Lord Rayleigh [6]

and then, in other versions, by Lamb [7] and Stoneley [8]. The associated physical phenomena have
found various applications in seismology and seismic exploration, in methods of nondestructive
testing of surface damage and joint strength, and in many other applied disciplines. Therefore, the
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number of published studies in this direction, carried out at various levels of rigor, is huge—let us
mention several monographs [9–11] and papers [12–20] as well as the survey article [21].

Most of the results, especially for vector problems, for example, in the theory of elasticity, are
obtained using analytical methods in the case of straight boundaries and computational methods
in the case of oscillating ones. Further, as in [16–18, 20], variational methods of spectral analysis
suitable for arbitrary periodic boundaries and a wide class of systems of differential equations are
applied. At the same time, when proving the existence of a wave (12) exponentially decaying
as z → +∞, the methods used do not provide any accurate information about its structure; i.e., the
study of the spectral characteristics of the Rayleigh waves found is outside the scope of the present
paper.

In the next two sections, we study problem (2)–(4) for λ = 0. For this problem, we establish
Theorems 1 and 2, allowing one to draw conclusions about the continuous spectrum of problem (10).
In Sec. 5 (Theorem 5), sufficient conditions are proved for the discrete spectrum to be nonempty in
the case of θ ̸= 0 (for θ = 0 it is certainly empty). In Sec. 6, the result obtained is applied to scalar
and vector problems on acoustic and elastic media, and in Sec. 7, two mechanical problems are
considered that are not covered by Theorem 5 and require modification of the approach; moreover,
for the piezoelectric problem considered (Sec. 7, 5◦) the result and the method of its derivation
essentially differ, for example, from the problem of elasticity theory (Sec. 6, 2◦).

3. POLYNOMIAL PROPERTY AND THE SPECTRUM

On the Sobolev space Ht
θ(Π), we introduce the equivalent norm

|||u|||θ =
(
a(u, u; Π) + (Bu, u)Π

)1/2
. (14)

The desired estimate ∥∥u;Ht
θ(Π)

∥∥ ≤ cθ|||u|||θ (15)

is ensured by an application of the Korn inequality (7) in the truncated prism Π(R)={x∈Π : z<R}
and the cubes QR+m = (R+m,R+m+1)× (−1/2, 1/2), m ∈ N0. Summing these inequalities, we
arrive at the relation∥∥u;Ht

θ(Π)
∥∥2 ≤ max{CΠ(R),M, CQ0,M}

(∥∥M(∇)u;L2(Π)
∥∥2 + ∥∥u;L2(Π)

∥∥2)
and finally take into account the positive definiteness of the matrices A and B in formulas (9)
and (14). The inequality opposite to (15) is obvious.

We denote the Hilbert space (11) equipped with the inner product

⟨u, v⟩θ = a(u, v; Π) + (Bu, v)Π (16)

by Hθ, and in this space, we introduce a positive, symmetric, continuous, and hence self-adjoint
operator Tθ using the formula

⟨Tθu, v⟩θ = (Bu, v)Π for all u, v ∈ Hθ. (17)

Its norm does not exceed one. Owing to definitions (14) and (16), (17), the variational problem (10)
turns out to be equivalent to the abstract equation

Tθu = τu in the space Hθ

with the new spectral parameter
τ = (1 + λ)−1. (18)

Based on the spectrum Σθ ⊂ [0, 1] of the operator Tθ, we determine the spectrum of problem (10)
(or (2)–(4) in the case of a smooth boundary Γ),

σθ =
{
λ : (1 + λ)−1 ∈ Σθ

}
⊂ R+ = [0,+∞). (19)

Moreover, the relationship (18) between the spectral parameters conveys all the qualities (discrete-
ness, continuity, etc.) of components of the spectrum Tθ to the components of the spectrum σθ.
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Let us study the spectrum (19) using information about problem (10) obtained on the basis
of the theory of elliptic boundary value problems in domains with cylindrical outlets to infin-
ity [22, Ch. 5; 23, Sec. 3] and the polynomial property [23–25] of the sesquilinear form (19),

a(u, u; Ξ) = 0, u ∈ Ht(Ξ) ⇔ u ∈ P|Ξ. (20)

Here P is a finite-dimensional subspace of vector polynomials. It follows from the algebraic com-
pleteness of the matrix M(∇) that we have the equality [23, Proposition 1.6]

P =
{
p = (p1, . . . , pK)

T : M(∇)p(x) = 0, x ∈ Rd
}
. (21)

We point out that the linear space (21) can also contain polynomials p = (p1, . . . , pK)
T for

which ord pk ≥ tk (see Sec. 6, 2◦).
The statement (21) provides much useful information about problem (10), including the following

assertion [23, Theorems 1.9, 3.4, and 5.1], whose verification is explained in the next section.

Theorem 1. For θ ∈ [−π, π)d−1 \ {0}, the problem

a(u, v; Π) = f(v) for all v ∈ Ht
θ(Π) (22)

with a continuous (anti)linear functional f ∈ Ht
θ(Π)

∗ has a unique solution u ∈ Ht
θ(Π), and one

has the estimate ∥∥u;Ht
θ(Π)

∥∥ ≤ cθ
∥∥f ;Ht

θ(Π)
∗
∥∥,

where the factor cθ is independent of f but increases unboundedly as θ → 0 ∈ Rd−1.
Now let us derive some original information about the spectrum (19), which we represent as the

disjoint union of the essential spectrum σe
θ and the discrete spectrum σd

θ .

Corollary 1.
1. For θ ∈ [−π, π)d−1 \ {0}, the continuous spectrum σc

θ coincides with the essential spectrum σe
θ

and acquires a positive cutoff point λ†
θ , so that the discrete spectrum σd

θ can only appear on
the interval (0, λ†

θ).
2. For θ = 0, the spectrum σ0 = σe

0 = σc
0 occupies the entire closed positive half-line R+ , and

therefore, σd
0 = ∅.

Proof. Since the second term on the left-hand side in the integral identity

a(u, v; Π)− λ(Bu, v)Π = f(v) for all v ∈ Ht
θ(Π) (23)

generates a continuous perturbation vanishing as λ→ 0 of the operator of problem (22), the unique
solvability property in Theorem 1 is conveyed to problem (23) for λ ∈ [0, λ#

θ ) and some λ#
θ > 0.

According to the general results [26, 27] (see also [22, Ch. 1, Sec. 2 and Remark 3.1.5]), problem (10)
does not have eigenvalues of infinite multiplicity; i.e., σc

θ = σe
θ, and moreover, σc

θ is the ray [λ†
θ,+∞),

i.e., a simply connected set, where, of course, λ†
θ ≥ λ#

θ > 0.
Regarding the second statement, which means that λ†

0 = 0, see Theorem 3.

4. EXPONENTIAL AND POLYNOMIAL SOLUTIONS;
SOLVABILITY OF THE PROBLEM FOR θ = 0

Let the support of the functional f on the right-hand side in the integral identity (23) be com-
pact, and let supp f ⊂ Π(R). Then the solution u ∈ Ht

θ(Π) is infinitely differentiable on the
set Π \Π(R+ δ) for each δ > 0. Indeed, smoothness inside the prism {x ∈ Π : z > R} is ensured
by the local estimates (see the monograph [2, Sec. 3] and the papers [28, 29]) for solutions of elliptic
systems.1 Choose an index j ∈ {1, . . . , d−1}, to be definite, j = 1, and consider the vector function

û(x) =

u(x) for x1 ∈ (−1/2, 1/2)

e±iθ1u(x1 ∓ 1, x′) for x1 ∓ 1 ∈ (−1/2, 1/2),

1 The ellipticity of the operator L(∇) follows from the polynomial property (20); see [23, Ch. 5, Sec. 1].
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where x′ = (x2, . . . , xd−1) ∈ (−1/2, 1/2)d−2 and xd > R. By virtue of the quasiperiodicity con-
ditions incorporated in the definition of the space (11), the vector function û lies in the
space Ht

loc(Π1(R)); i.e., the above-mentioned local estimates show that it is smooth inside the
extended prism Π⊟(R) = (−3/2, 3/2)× (−1/2, 1/2)d−2 × (R,+∞), and hence in Π(R), up to the
faces {±1/2}×(−1/2, 1/2)d−2×(R,+∞). Exhausting the rest of the indices j one by one, we arrive
at the desired assertion about smoothness.

Let us give some information from the theory of elliptic boundary value problems in cylindrical
domains [22, Ch. 5; 23, Sec. 3; 27]. With problem (2)–(4) in the infinite cylinder ω×R we associate
the operator pencil

R ∋ µ 7→ Aλ
θ (µ) = L(∇y, µ)− λB : H l+t

θ (ω) → H l−t
θ (ω), (24)

where l ≥ t• and H l
θ(ω) is the Sobolev space of functions satisfying the quasiperiodicity conditions

on the opposite faces of the unit cube ω,

∂m
j Uk(y)|yj=1/2 = eiθj∂m

j Uk(y)|yj=−1/2,

y|yj=±1/2 ∈ ∂ω, j = 1, . . . , d− 1, k = 1, . . . ,K, m = 0, . . . , l − 1.
(25)

By virtue of the ellipticity of the operator L(∇), the spectrum of the pencil (24) consists of normal
eigenvalues (without finite accumulation points) located in the union of the strip {µ∈C : |Reµ|≤β0

λ}
and the double sector {µ ∈ C : |Reµ| ≤ β1

λ| Imµ|}, where β0
λ and β1

λ are positive numbers
(see [26; 30, Ch. 1; 22, Ch. 1]). To each eigenvalue µ there corresponds a canonical system of
Jordan chains {

Up,q : p = 1, . . . ,κg, q = 0, . . . ,κa
p − 1

}
, (26)

which consists of the eigenvectors (q = 0) and associated vectors (q > 0) satisfying the equations

Aλ
θ (µ)U

p,q = −
q∑

j=1

1

j!

djAλ
θ

dµj
(µ)Up,q−j, p = 1, . . . ,κg, q = 0, . . . ,κa

p − 1. (27)

Here κg is the geometric multiplicity and κa
1 , . . . ,κa

κg are the particular algebraic multiplicities of
the eigenvalue µ; κa

1 + . . . + κa
κg is the total multiplicity, and Eqs. (27) with q = κa

p have no
solutions (the chains are nonextendable). Based on (26), we construct exponential solutions of
problem (2)–(4) in the cylinder ω × R,

Up,q(y, z) = eµz
q∑

j=0

zj

j!
Up,q−j(y), p = 1, . . . ,κg, q = 0, . . . ,κa

p − 1. (28)

Let us study exponential solutions for various values of the Floquet parameter θ ∈ [−π, π)d−1.
We start from the case of θ = 0 and note that among the polynomials in the linear space (20), only
the ones independent of the variables y1, . . . , yd−1 satisfy the “pure” periodicity conditions on the
opposite faces of the prism Π into which conditions (25) turn for θ = 0.

Lemma 1. In the linear space

P0 = {p ∈ P : the polynomial p depends only on the variable z}, (29)

one can introduce the basis

pk,q(z) = ek

zq

q!
, k = 1, . . . ,K, q = 0, . . . , tk − 1, (30)

where ek = (δ1,k, . . . , δK,k)
T is the unit coordinate vector in the space RK and δj,k is the Kronecker

delta.
Proof. Note the following important property: ∂zp ∈ P for any vector polynomial p ∈ P in

view of the invariance of the form (9) under shifts along the z-axis. Owing to the structure of the
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matrix differential operator M(∇) (see Sec. 1), the linear span of the polynomials (30) is contained
in P0. Assume that in the linear space (29) there exists a polynomial

P (z) =

(
a1
zt1

t1!
, . . . , aK

ztK

tK !

)T

, a = (a1, . . . , aK)
T ∈ CK , |a| = 1. (31)

Obviously, M(ed∂z) = M(ed)Z(∂z) for Z(ζ) = diag {ζt1 , . . . , ζtK}; i.e.,

0 = M(∇)P (z) = M(ed)a.

Condition (6) applied to the polynomial (31) gives a vector polynomial q such that

ξρM
d (a1ξ

t1
d , . . . , aKξ

tK
d ) = q(ξ)M(ξ) for all ξ ∈ Rd. (32)

Set ξ1 = . . . = ξd−1 = 0 in relation (32) and multiply the result by Z(ξd)
−1a on the right. As

a result, we arrive at a contradiction, which proves the lemma,

ξρM
d |a|2 = q(edξd)M(edξd)Z(ξd)

−1a = q(edξd)M(ed)a = 0.

The following assertion is a more specific form of Proposition 1 in [25] (see also the sur-
vey [23, Proposition 3.2]).

Theorem 2. There exists a γ0 > 0 such that the pencil (24) with parameters θ = 0 ∈ Rd−1

and λ = 0 has only one eigenvalue µ = 0 with total algebraic multiplicity 2T = 2(t1 + . . . + tK) in
the strip {µ ∈ C : |Reµ| < γ0}. Associated with this eigenvalue is a canonical system of Jordan
chains

{ek, 0, . . . , 0, U
k,tk , . . . , Uk,2tk−1}, k = 1, . . . ,K, (33)

where the first tk elements are specified explicitly and the remaining ones are the solutions of
Eqs. (27) for θ = 0, λ = 0, and q = tk, . . . , 2tk − 1.

The first tk elements of the Jordan chain (33) provide, according to formula (28), the elements of
the basis (30) in the linear space (29). Since the Neumann boundary condition operator (3) taken
from Green’s formula (8) can be represented as N (x,∇) = N#(x,∇)M(∇) with an appropriate
matrix differential operator N#(x,∇), according to relation (21) one has the equality

N (x,∇)pk,q(x) = 0, x ∈ ϖ, k = 1, . . . ,K, q = 0, . . . , tk − 1.

Thus, the polynomials (30) satisfy the entire problem (2)–(4) for θ = 0, and this explains the next
assertion, proved in [23, item 3, Sec. 5] and [25, Sec. 5].

Theorem 3. If for some γ ∈ (0, γ0) the functional

Ht
0(Π) ∋ v 7→ fγ(v) = f(eγzv) (34)

turnes out to be continuous, then problem (22) with θ = 0 has a solution u ∈ Ht
0(Π) if and only if

the T orthogonality conditions
f(p) = 0 for each p ∈ P0

are satisfied. Moreover, this solution is unique and satisfies the inclusion eγzu ∈ Ht
0(Π) and the

estimate ∥∥eγzu;Ht
0(Π)

∥∥ ≤ cγ
∥∥fγ ;Ht

0(Π)
∗
∥∥.

Here the number γ0 > 0 is taken from Theorem 2, and the factor cγ is independent of the func-
tional (34) but grows indefinitely as γ → +0.

Let us restate the result for the inhomogeneous Neumann problem

L(∇)u(x) = f(x), x ∈ Π,

N (x,∇)u(x) = g(x), x ∈ ϖ,
(35)
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RAYLEIGH WAVES FOR ELLIPTIC SYSTEMS 637

in the case of periodic (θ = 0) smooth right-hand sides f , g and endϖ. For an exponentially decaying
vector function f , problem (35) with the periodicity conditions (4) and θ = 0 has a periodic smooth
solution u ∈ Ht

0(Π) if and only if the orthogonality conditions

(f, p)Π + (g,Dp)ϖ = 0 for each p ∈ P0,

following from the Green’s formula with trial vector functions v ∈ P0, hold. At the same time,
as the last explanation in the statement of Theorem 3 shows, the passage to the limit γ → +0
is impossible, and indeed the operator of problem (35), (4), θ = 0, in the space Ht

0(Π) loses its
Fredholm property, because the linear space P0 contains at least all constant vectors from which it
is easy to construct a singular Weyl sequence [31, Ch. 9, Sec. 1] for the operator T0 at the point τ = 1,
and hence Σe

0 = [0, 1] and σc
0 = [0,+∞) according to relation (18) between the spectral parameters

τ and λ.
Theorem 1 equips the operator Tθ with other properties if θ ̸= 0—it becomes an isomorphism;

this agrees with the following assertion following from Proposition 3.2 (1) in [23], since problem (22)
with the quasiperiodicity conditions remains self-adjoint, but none of the polynomials in the linear
space (21) satisfies the above conditions for θ ̸= 0.

Theorem 4. For θ ∈ [−π, π)d−1 \ {0}, there exists a positive number γ(θ) such that the
strip {µ ∈ C : |Reµ| < γ(θ)} is free from the spectrum of the pencil µ 7→ A0

θ(µ). Here γ(θ) → +0
as θ → 0 ∈ Rd−1.

Corollary 2. For θ ∈ [−π, π)d−1 \ {0} and |γ| < γ(θ), where the number γ(θ) > 0 is taken from
Theorem 4, the solution u ∈ Ht

θ(Π) of problem (22) with right-hand side f obeying condition (34)
satisfies the inclusion eγzu ∈ Ht

θ(Π) and the estimate∥∥eγzu;Ht
θ(Π)

∥∥ ≤ cγ
∥∥fγ ;Ht

θ(Π)
∗
∥∥.

The proof can be derived from Theorem 4 using the general results in the paper [27] (see
also [22, Chs. 3 and 5] and [23, Sec. 3]); however, for small γ it can be obtained by ele-
mentary means. For the trial vector function in the integral identity (22) we take the product
vγ = eγzv ∈ C∞

c (Π)K ∩Ht
θ(Π). Since its support is compact, we can make the change of the un-

known u 7→ uγ = eγzu. As a result, the integral identity acquires the form(
AM(∇− γed)u

γ ,M(∇+ γed)v
γ
)
Π
= f(vγ). (36)

By closure, formula (36) holds for vγ ∈ Ht
θ(Π), and its left-hand side generates a small (of

norm O(|γ|)) perturbation of the operator of problem (22); hence for sufficiently small |γ| the
modified problem remains uniquely solvable, as desired. It remains to note that the simplified
approach does not allow bringing the weight index γ closer to the critical value γ(θ).

Since the operator of the embedding Hθ ⊂ L2(Π)K is noncompact, the same property holds for
the operator Tθ given by formula (18). Therefore, by Theorem 9.2.1 in [31], the essential spectrum Σe

θ

cannot consist of the single point τ = 0. Thus, there exist points τ ∈ (0, 1) and λ = τ−1 − 1 > 0
for which the operator Tθ − τ and the operator Oθ : Ht

θ(Π) → Ht
θ(Π)

∗ of problem (23) lose their
Fredholm property. Let λ = λ†

θ be the smallest of such points; it is positive for θ ̸= 0 by Theorem 1.
According to the theory of boundary value problems in cylindrical domains [22, Chs. 3 and 5; 27],
the pencil (24) with the threshold parameter λ = λ†

θ has an eigenvalue µ = iζ on the imaginary
axis; to the eigenvalue there corresponds an exponential solution

w(y, z) = eiζzW (y) (37)

of problem (2)–(4) in the cylinder ω × R, where W is the corresponding eigenvector satisfying the
quasiperiodicity conditions (25). There can be several such eigenvalues—they arise because the
eigenvalues of the pencil Aλ

θ move from the half-planes {µ ∈ C : ± Imµ > 0} to the imaginary
axis as λ → λ†

θ − 0. At least one of them remains on the imaginary axis for λ > λ†
θ, since

otherwise the continuous spectrum would lose connectedness (see [22, Ch. 1, Sec. 2] and the proof
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of Corollary 1 in [26]). According to [32], the latter is possible only if the eigenvector W has
an associated vector W 1 found from Eq. (27) for q = 1, which takes the form(

AM(∇y, iζ)W
1,M(∇y, iζ)V

)
ω
− λ†

θ(BW 1, V )ω

= −
(
AM′(∇y, iζ)W,M(∇y, iζ)V

)
ω
−
(
AM(∇y, iζ)W,M′(∇y, iζ)V

)
ω

(38)

for each vector V ∈ Ht
θ(ω). Here M′(∇y, µ) is the derivative of the matrix M(∇y, µ) with respect

to the last argument. One of the solvability conditions for Eq. (38) is obtained by substitut-
ing V =W into its right-hand side,

Re
(
AM′(∇y, iζ)W,M(∇y, iζ)W

)
ω
= 0. (39)

In what follows, we deal with the wave (37) for which relation (39) holds.

5. NONEMPTINESS OF THE DISCRETE SPECTRUM

By the maximin principle [31, Theorem 10.2.2], the lower bound −Σθ of the spectrum of the
operator −Tθ (with the minus sign but lower semibounded) is calculated by the formula

−Σθ = inf
u∈Ht

θ(Π)\{0}

−⟨Tθu, u⟩θ
⟨u, u⟩θ

. (40)

Taking into account definitions (14), (16), (17) and relation (18) between the spectral parameters,
we conclude that

− 1

1 + σθ

= inf
u∈Ht

θ(Π)\{0}

−(Bu, u)Π
a(u, u; Π) + (Bu, u)Π

⇔ σθ = inf
u∈Ht

θ(Π)\{0}

a(u, u; Π)

(Bu, u)Π
. (41)

Here σθ is the lower bound of the spectrum of problem (10), which (bound) falls into the in-
terval (0, λ†

θ) and hence into the discrete spectrum σd
θ if and only if there exists a trial vector

function φ ∈ Ht
θ(Π) satisfying the inequality

a(φ,φ; Π)− λ†
θ(Bφ,φ)Π < 0. (42)

Let us use the trick in the paper [33]. For θ ̸= 0, we set

φε(y, z) = e(iζ−ε)zW (y) +
√
εψ(x), (43)

where ε > 0 is a small parameter, {iζ,W} is an eigenpair of the pencil (24) for λ = λ†
θ that has given

rise to the wave (37) and satisfies condition (39), and ψ is a vector function in the space C∞
c (ω × R)K

with small support around some point x0 ∈ ϖ. We have

(Bφε, φε)Π =
(
B(e(iζ−ε)zW +

√
εψ), e(iζ−ε)zW +

√
εψ
)
Π(R)

+

∞∫
R

(BW,W )ωe
−2εz dz

=
1

2ε
e−2εR(BW,W )ω + (Bw,w)Π(R) + 2

√
εRe (Bw,ψ)Π(R) +O(ε).

(44)

We proceed in a similar way with the first term in (42),

a(φε, φε; Π) = (AM(∇)
(
e(iζ−ε)zW +

√
εψ),M(∇)(e(iζ−ε)zW +

√
εψ)
)
Π(R)

+

∞∫
R

(AM
(
∇y, iζ − ε)W,M(∇y, iζ − ε)W

)
ω
e−2εz dz

=
1

2ε
e−2εR

(
AM(∇y, iζ)W,M(∇y, iζ)W

)
ω

+ e−2εR Re
(
AM′(∇y, iζ)W,M(∇y, iζ)W

)
ω

+
(
AM(∇)w,M(∇)w

)
Π(R)

+ 2
√
εRe

(
AM(∇)w,M(∇)ψ

)
Π(R)

+O(ε).

(45)
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Let us substitute the expressions (45) and (44) into the left-hand side of relation (42) with the trial
vector function (43) and note that the terms of the order of ε−1 cancel out owing to the equality(

AM(∇y, iζ)W,M(∇y, iζ)W
)
ω
= λ†

θ(BW,W )ω, (46)

which can be derived by integration by parts from the equation A
λ†
θ

θ (iζ)W = 0 multiplied in the
sense of the inner product on L2(ω)K by the eigenvector W . Yet another simplification comes from
Eq. (39). As a result, we write relation (42) in the form

I0R(w) + 2
√
εRe I1R(w,ψ) < −Cε (47)

with some factor C > 0 and the ingredients

I0R(w) = a(w,w; Π(R))− λ†
θ(Bw,w)Π(R),

I1R(w,ψ) = a(w,ψ; Π(R))− λ†
θ(Bw,ψ)Π(R).

(48)

The size R has been chosen so that {x ∈ Π : z > R} = ω× (R,+∞), and the number (48) does not
change as R grows by virtue of formula (46). Moreover, in view of the smallness of the support of
the vector function ψ and the Green’s formula (8), one has the equality

I1R(w,ψ) = (Nw,Dψ)ϖ. (49)

Let us summarize the calculations made in what is the main assertion of this paper.

Theorem 5. Let the wave (37) constructed based on an eigenpair {iζ,W} of the pencil (24) with
parameters λ = λ†

θ and θ ∈ [−π, π)d−1 \ {0} satisfy relation (39). Then the discrete spectrum σd
θ of

problem (10) (or (2)–(4) in differential setting) is necessarily nonempty in the following two cases:
1. The number (49) is negative.
2. The equality I0R(w) = 0 holds, and the vector function x 7→ N (x,∇)w(x) does not degenerate

at least at one point of the end ϖ of the half-strip Π.
Proof. Assertion 1 is beyond doubt—it suffices to take ε small, thus satisfying inequality (47).

In assertion 2, owing to the general properties of the Dirichlet system (see [2, Ch. 2, Sec. 2]), we
select a point x0 ∈ ϖ for which b := N (x0,∇)w(x0) ∈ CT \ {0} and a trial vector function ψ such
that bTD(x0,∇)ψ(x0) < 0. As a result, the real part of I1R(w,ψ) becomes negative for small ε > 0,
which means that inequality (47) holds; i.e., as in the first case, according to the minimum prin-
ciple (40) and (41), we conclude that σθ < λ†

θ and σθ ∈ σd
θ . This is exactly what needed to be

verified.
Theorem 5 provides sufficient conditions for the nonemptiness of the discrete spectrum of prob-

lem (2)–(4) in the prism Π for θ ̸= 0 and the existence of the Rayleigh waves (12) in the half-space Ω
with periodic boundary Γ (see formulas (1)). In what follows, we present specific problems in which
these sufficient conditions prove useful.

6. EXAMPLES

1◦. Second-order scalar operator. Let us reproduce the result in [33] in a slightly more general
setting. Let K = 1, N = d ≥ 2, M(∇) = ∇, and B = 1. Using an affine transformation, we
reduce the operator (11) to the form −∇TA0∇, where A0 is a diagonal matrix diag {a01, . . . , a0d}
with a0j > 0. The simple inequality

1/2∫
−1/2

∣∣∣∣dVdt (t)
∣∣∣∣2 dt ≥ θ2

1/2∫
−1/2

∣∣V (t)
∣∣2 dt (50)
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for all V ∈ H1(−1/2, 1/2), V (1/2) = eiθV (−1/2), and |θ| ≤ π and the formula

w(y, z) = eiθ1y1 × · · · × eiθd−1yd−1

for the wave (37) show that, first, λ = a01θ
2
1 + . . . + a0d−1θ

2
d−1 and second, the number (48) is zero,

because ∇wTA0∇w − λ†
θ|w|2 = 0. Finally, N (x,∇) = n(x)TA0∇, where n is the unit outward

normal vector on the end ϖ. Further, N (x,∇)w(x) = 0 almost everywhere on ϖ if ϖ is a finite
union2 of the straight end ω × {h0} and (two-sided) segments of hyperplanes ωq × {hq}, where
0 ≤ h0 ≤ h1 ≤ . . . ≤ hQ and ωq ⫋ ω. In addition, inequality (50) convinces us that σd

θ = ∅ for all
θ ∈ [−π, π)d−1 for the end geometry.

2◦. Spatial problem of elasticity theory. Let K = d = 3, N = 6, B = I3, and

M(∇)T =

∂1 0 2−1/2∂2 2−1/2∂3 0 0

0 ∂2 2−1/2∂1 0 2−1/2∂3 0

0 0 0 2−1/2∂1 2−1/2∂2 ∂3

. (51)

Problem (13) describes the propagation of waves in a homogeneous anisotropic elastic space with
periodic boundary and with a (real) symmetric and positive definite stiffness matrix A. The corre-
sponding quadratic form (13) is twice the elastic energy of the deformable body Ξ and degenerates
on the space of rigid displacements,

P =
{
d(x)b : b ∈ R6

}
(52)

with the linear matrix function

d(x) =

1 0 −2−1/2x2 2−1/2x3 0 0

0 1 2−1/2x1 0 −2−1/2x3 0

0 0 0 −2−1/2x1 2−1/2x2 1

. (53)

The factors 2−1/2 are convenient in the matrix notation of the constitutive relations in the theory
of elasticity [34, Ch. 4; 35, Ch 3; 36, Ch. 2]; in particular, one has the equalities M(∇)M(x)T = I6
and d(∇)Td(x)|x=0 = I6, where Im is the m × m identity matrix. The fact that the section ω
is a unit square and not a rectangle is not restrictive, since in the theory of elasticity the ma-
trix implementation of the operators of the system of differential equations (5) and the boundary
conditions

N (x,∇)w(x) := M(n(x))TAM(∇)w(x) (54)

can be preserved under an affine transformation of coordinates by introducing nonphysical columns
of displacements and stresses (see, e.g., the paper [37]).

As was already mentioned in Sec. 1, similar 3D and 2D (see Example 3◦) problems are in demand
in practical engineering and therefore have been studied to a large extent (see [9–21] and many other
publications). We present only a few corollaries of Theorem 5 that may be of interest.

Let us introduce the scalar function3

Φθ(w; y) = M(∇y, iζ)W (y)
T
AM(∇y, iζ)W (y)− λ†

θ

∣∣W (y)
∣∣2, (55)

constructed based on wave (37) satisfying condition (39). If this function vanishes on the square
ω = (−1/2, 1/2) ∋ y = (y1, y2), then the number (48) is zero and by Theorem 5 the surface
Rayleigh waves (12) exist in the case where the normal stress vector (54) is distinct from zero at
some point x0 ∈ ϖ. Of course, the shape of the end ϖ can always be chosen so that condition (54)
2 In this case, the boundary ∂Π is not Lipschitz; however, the prism Π itself is representable as a union of Lipschitz

domains, and this property is sufficient for all reasoning below.
3 Our constructions are also suitable for the general elliptic systems considered. Complex conjugation is not needed

in problems of elasticity theory.
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for normal stresses is satisfied, because the six-dimensional stress vector AM(∇)w(x) cannot com-
pletely degenerate everywhere in Π.

Now let ±Φθ(w; y
±) > 0 for some points y± ∈ ω; since the function (55) has zero mean over the

square ω, it follows that both sets

ω±
θ =

{
y ∈ ω : ±Φθ(w; y) > 0

}
are nonempty. Now it is easy to construct a prism Π for which the condition I0R(ω) < 0 in Theorem 5
is satisfied. This occurs, for example, if

Π =
(
Π0 ∪Υ−

θ

)
\Υ+

θ , Π0 = ω × R+,

Υ±
θ = ω±

θ ∩ {x : y ∈ ω,±z ≥ 0},
(56)

because the difference of integrals

I0R(w) =

∫
Υ−

θ

Φθ(w; y) dx−
∫
Υ+

θ

Φθ(w; y) dx

is negative if at least one of the sets (56) is nonempty. If, however, Υ±
θ = ∅ and Π = Π0 is a half-

cylinder with straight end, then Ω = Rd−1 ×R+ is a half-space and the corresponding displacement
field (12) is a classical Rayleigh wave (see [38]).

3◦. Isotropic half-strip. Let K = d = 2, N = 3, B = I2, and

M(∇) =

 ∂1 0

0 ∂2

2−1/2∂2 2−1/2∂1

, A =

λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

,
where λ ≥ 0 and µ > 0 are the Lamé constants of a homogeneous isotropic elastic body
Π ⊂ (−1/2, 1/2)× R. (Scaling reduces the half-strip width to unity.) In this case, θ ∈ [−π, π)
is a scalar, and straightforward calculations (see, e.g., [39]) show that λ†

θ = θ2µ, ζ = 0,
and W (y) = (0, eiθy)T in the wave (37). Consequently,

Φθ(w; y) = 0 and AM(∇)w(y) = (0, 0,µ)Tiθeiθy,

M
(
n(x)

)TAM(∇)w(y) = n(x)µiθeiθy.

Thus, conditions 2 in Theorem 5 are completely satisfied; i.e., there exists a Rayleigh wave for any
Floquet parameter θ ∈ [−π, π) \ {0} and any profile of the periodic boundary Γ of the isotropic
deformable half-plane Ω.

7. PROBLEMS WITH SINGULAR MATRIX B OR ALTERNATING MATRIX A

4◦. Kirchhoff plate. Let d = 2, K = 3, N = 6, and

M(∇)T =

(
MM(∇)T O2×3

O1×3 2−1/2∂2
1 ∂1∂2 2−1/2∂2

2

)
, (57)

where MM(∇) is the 3× 2 matrix of differential operators in the list (37) and Op×q is the zero p× q
matrix. The two-dimensional problem (13) serves as an asymptotic model of vibrations of a thin 3D
plate (see [36, Ch. 7], [39–43], and many other papers). Moreover, u′(x) = (u1(x), u1(x))

T and u3(x)
are the thickness-averaged longitudinal displacement vector and plate deflection, respectively. At
the considered low frequencies, the kinetic energy of longitudinal vibrations in the adopted model
is negligibly small, and hence B is the singular diagonal matrix diag {0, 0, 1}. Note that in the

DIFFERENTIAL EQUATIONS Vol. 58 No. 5 2022



642 NAZAROV

mid-frequency range, on the contrary, transverse vibrations are damped, and the plane problem of
the theory of elasticity in Example 3◦ (and Example 2◦) in Sec. 6 acts as a two-dimensional model
of longitudinal plate vibrations. The form (9) with the operator matrix (57) degenerates on the
space of rigid displacements (52) with the following linear matrix function:

d(x) =

1 0 −2−1/2x2 0 0 0

0 1 2−1/2x1 0 0 0

0 0 0 −x1 x2 1

. (58)

The differences between the matrices (58) and (53) are due to the fact that in the Kirchhoff theory
the total displacement vector in a thin 3D plate is reconstructed using the formula(

u1(x1, x2)− x3∂1u3(x1, x2), u2(x1, x2)− x3∂2u3(x1, x2), u3(x1, x2)
)T
.

Substituting the columns of the matrix (58) into the last expression, we obtain the columns of the
matrix (53).

It is well known (see, e.g., [36, Ch. 4, Sec. 2]) that in the case of homogeneous and even layered
plates, their midplanes can be fixed in such a way that the matrix A becomes block diagonal,

A =

(
A⇆ O3×3

O3×3 A↕

)
,

and problem (13) splits into a static (λ = 0) plane problem of the theory of elasticity and a spectral
equation of the fourth order, in particular, the Sophie Germain biharmonic equation [44, Sec. 30]
for an isotropic plate; then, of course, Theorem 5 applies. At the same time, for a plate made of
a composite material, the matrix A can be completely dense; i.e. all equations in system (2) are
intertwined.

For a singular matrix B, formulas (14) and (16) do not define a norm on the space Ht
0(Π),

but for a nonzero Floquet parameter, the Hilbert space (11) can still be equipped with the inner
product (14).

Lemma 2. If θ ∈ [−π, 0) ∪ (0, π), then for the norm on Ht
θ(Π) one can take the expression

a(u, u; Π)1/2 or (a(u, u; Π)+∥u3;L
2(Π)∥2)1/2 , where a is the quadratic form (9) with the matrix (57)

of differential operators of the first and second orders.
Proof. Only the trivial rigid displacement in the linear space (52) with matrix (58) satisfies the

quasiperiodicity conditions in formula (11) on the sides of the half-strip Π, and hence the Lebesgue
norms ∥u;L2(Π(R))∥ and ∥u;L2(QR+m)∥, respectively, can be removed from the right-hand sides
of Korn’s inequalities on the sets Π(R) and QR+m, m ∈ N0 (see the remark on relation (15)). Thus,
we have the estimate ∥∥u;Ht

θ(Π)
∥∥ ≤ cΠ,A,Ma(u, u; Π)1/2.

The proof of the lemma is complete.
5◦. Piezoelectric problem. Let d = 3, K = 4, N = 9, B = diag {1, 1, 1, 0}, and

M(∇)T =

(
MM(∇)T O3×3

O1×6 ∇T

)
, A =

(
AMM AME

AEM −AEE

)
. (59)

Here MM(∇)T is the matrix (51), AMM and AEE are (real) symmetric and positive definite matrices,
and AME = (AEM)T is a (6 × 3) matrix without any special properties but necessarily nonzero. In
addition, uM = (u1, u2, u3)

T is the displacement vector, and u4 is the electric potential. Problem (13)
describes time-harmonic oscillations of a piezoelectric medium in which free transformation of elastic
energy into electromagnetic energy and vice versa is possible, which explains the minus sign of the
lower right 3×3 block in the matrix A. In the mid- and low-frequency ranges of the spectrum, where
the mechanical vibrations are realized, electromagnetic oscillations should be neglected. Therefore,
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the spectral parameter λ disappears from the bottom line of the system of differential equations (2);
i.e., B44 = 0. A detailed explanation of the physical statement of the piezoelectric problem can be
found in [45, 46] and other monographs. In particular, the form (2) is associated not with the total
energy of the medium but with its electric enthalpy [47].

The matrix A in (59) is not positive, and since the case of AME = O6×3 is uninteresting owing
to the disappearance of the discussed piezoelectric effect, it is impossible to achieve the property
of formal positivity of the operator (5) by any substitutions. Therefore, the techniques used in this
paper are not suitable for the formally self-adjoint problem (2)–(4) with the matrices (59). However,
following [48], we make the change of the unknown u4 7→ uE = iu4 and thus give the matrix in the
differential operator (5) the form(

AMM O6×3

O3×6 AEE

)
− i

(
O6×6 AME

AEM O3×3

)
(60)

with two symmetric 9× 9 matrices. According to the definitions and conclusions in the paper [25],
the form (9) with the numerical matrix (60) and the differential operator M(∇) from the list (59)
retains the polynomial property (20) in which the linear space of polynomials has the form

P =
{(
d(x)bM, b4

)T
: bM ∈ C6, b4 ∈ C

}
,

where the matrix (53) of rigid mechanical displacements occurs together with a constant electric
potential. Thus, the matrix (5) of second-order differential operators is elliptic, and hence Theorem 1
and Corollary 1, which come from the analysis of the corresponding formally self-adjoint Neumann
boundary value problem (2)–(4) in a semi-infinite prism, remain valid. At the same time, we are still
unable to define the self-adjoint operator Tθ by formula (17) and have to complicate its construction
by means of a trick [48]. In what follows, we deal with the slightly simpler case of θ ∈ [−π, π)2 \{0},
in which the auxiliary problems in Π become uniquely solvable. Namely, let J uM := u4 ∈ H1

θ (Π)
be a solution of the problem

(AEE∇u4,∇v4)Π =
(
AEMMM(∇)uM,∇v4

)
Π

for all potentials v4 ∈ H1
θ (Π),

(61)

found based on the displacement vector uM ∈ H1
θ (Π)

3. Here H1
θ (Π) is a scalar Sobolev space

with one quasi-periodicity condition on opposite faces of the prism Π. As has been verified in the
papers [48, 49] and is easy to check by straightforward calculations, the variational statement of the
piezoelectric problem (2)–(4) with the original matrices (59) is equivalent to integral identity(

AMMMM(∇)uM,MM(∇)vM
)
Π
+
(
AMEJ∇uM,MM(∇)vM

)
Π
= λ(uM, vM)Π

for all vM ∈ H1
θ (Π)

3,
(62)

and the sesquilinear Hermitian form

⟨uM, vM⟩ =
(
AMMMM(∇)uM,MM(∇)vM

)
Π
+
(
AMEJ∇uM,MM(∇)vM)Π + (uM, vM

)
Π
,

incorporating the left-hand side of identity (62), turns out to be positive definite and can be taken
for the inner product on the Hilbert space HM

θ = H1
θ (Π)

3. Furthermore, now it is possible to
introduce an operator T M

θ with the desired properties,

⟨T M
θ u

M, vM⟩ = (uM, vM)Π for all displacement vectors uM, vM ∈ H1
θ (Π)

3,

and the new spectral parameter (18).
Everything is ready to apply the minimum principle, as in Sec. 5, to derive sufficient conditions

for the discrete spectrum of the operator T M
θ to be nonempty and hence also for the existence of

isolated eigenvalues of the original piezoelectric problem; however, the integro-differential operator
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of problem (62) has ceased to be local, which significantly affects the result of the subsequent
calculations.

Since the pencil (24) and its spectrum retain the properties indicated in Sec. 4, there exists
a wave (37) with nonzero mechanical component wM = (w1, w2, w3)

T and some electrical compo-
nent w4. The latter satisfies system (2) and the quasiperiodicity conditions (4), but leaves a dis-
crepancy in the Neumann boundary condition (3) at the end ϖ,

g(x) = −M
(
n(x)

)TAM(∇)w(x)

with the fourth (lower, electrical) component

g4(x) = −n(x)TAMEMM(∇)wM(x) + n(x)TAEE∇w4(x), (63)

which we counterbalance by using the solution w4 ∈ H1
θ (Π) of the following static (without a spectral

parameter) problem similar to (61):

(AEE∇w4,∇v4)Π = (g4, v4)ϖ for all v4 ∈ H1
θ (Π). (64)

The existence of a solution exponentially decaying at infinity is ensured by Theorem 1 for a nonzero
Floquet parameter. (If θ = 0, then one has to use Theorem 3; this complicates the subsequent
analysis; cf. the papers [48, 49].)

We apply the minimum principle (40) to the operator T M
θ and, after transformations similar

to (41), conclude that

−ΣM
θ = inf

uM∈H1
θ (Π)3\{0}

−⟨T M
θ u

M, uM⟩θ
⟨uM, uM⟩θ

⇔ σM
θ = inf

uM∈H1
θ (Π)3\{0}

a
(
(uM,J uM), (uM,J uM); Π

)∥∥uM;L2(Π)
∥∥2 .

Here, just as in Sec. 5, it is required to find a trial vector function φM ∈ H1
θ (Π)

3 for which one has
the following inequality similar to (42):

a
(
(φM,JφM), (φM,JφM); Π

)
− λ†

θ

∥∥φM;L2(Π)
∥∥2 < 0. (65)

Since the electrical component J uM ∈ H1
θ (Π) is determined from the mechanical compo-

nent uM ∈ H1
θ (Π)

3 as a solution of problem (61), the construction of (43) needs to be modified.
Let us show how to derive a sufficient condition comparable with the first assertion in Theorem 5.
Set

φMε(y, z) = Eε
R(z)w

M(y, z), (66)

where

Eε
R(z) = 1 for z < R, Eε

R(z) = e−ε(z−R) for z ≥ R, ∂zEε
R(z) = −εe−ε(z−R)XR(z), (67)

and XR is the Heaviside function with a jump at the point z = R. We point out that the use
of a continuous piecewise smooth decaying factor Eε

R is possible because the derivative ∂zEε
R is

a bounded piecewise smooth function and t1 = t2 = t3 = 1; i.e., the inclusion φMε ∈ H1
θ (Π)

3 holds.
We represent the electrical component φε

4 = JφMε as

φε
4(y, z) = Eε

R(z)w4(y, z)−w4(y, z) + εEε
R(z)w

′
4(y, z), (68)

where w = (wM, w4) is the threshold wave (37) and w4 ∈ H1
θ (Π) and w′

4 are solutions of prob-
lems (64) and

(AEE∇w′
4,∇v4)Π − ε(AEEXe3XRw

′
4,∇v4)Π + ε(AEE∇w′

4, e3XRv4)Π

= (AEEe3XRw4,∇v4)Π − (AEE∇w4, e3XRv4)Π −
(
AEMM(e3)XRw

M,∇v4
)
Π

+
(
AEMM(∇)wM, e3XRv4

)
Π

for all v4 ∈ H1
θ (Π) ∩ C∞

c (Π)K .

(69)
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Lemma 3. Problem (69) has a solution

w′
4(y, z) = eiζzW ′

4(y) + w̃ ′
4(y, z), (70)

where W ′
4 ∈ H l

θ(ω) and eγzw̃ ′
4 ∈ H1

θ (Π) for any l ∈ N and γ ∈ (0, γ(θ)).
Proof. Since the functions occurring first in the inner products on the right-hand side in

the integral identity (69) are essentially the products eiζzF (y), one must take into account the
asymptotic constructions in [27] (see also [22, Ch. 3, Sec. 3]) and solve the scalar equation

−(∇y, iζ − ε)TAEE(∇y, iζ − ε)W ′
4 =

1

ε

(
(∇y, iζ − ε)TAEE(∇y, iζ − ε)W4(y)

− (∇y, iζ − ε)TAEMMM(∇y, iζ − ε)WM(y)
)
, y ∈ ω,

with the quasiperiodicity conditions (25), m = 0, 1. We point out that the amplitude part
W = ((WM)T,W4)

T of the wave (37) satisfies the equality (the transformed bottom line of sys-
tem (2))

(∇y, iζ)
TAEE(∇y, iζ)W4(y) = (∇y, iζ)

TAEMMM(∇y, iζ)W
M(y), y ∈ ω,

and therefore, the right-hand side of Eq. (70) is uniformly bounded as ε → +0. By Theorem 4,
problem (70), (25) is uniquely solvable. In addition, the functional left unaccounted for on the
right-hand side of a problem of the form (69) for the remainder w̃ ′

4 has acquired a compact support,
which means that Corollary 2 completes the verification of the lemma, and the ingredients of the
representation (69) remain bounded as ε→ +0.

The verification of the fact that the expression (68) indeed solves problem (61) with right-hand
side constructed based on the product (66) is carried out on the basis of the integral identities (64)
and (69) with suitable trial functions.

Let us repeat calculations (44) and (45) to arrive at the relations

∥∥φMε;L2(Π)
∥∥2 = ∞∫

R

∫
ω

e−2ε(z−R)
∣∣WM(y)

∣∣2 dy dz + ∥∥wM;L2(Π(R))
∥∥2

=
1

2ε

∥∥WM;L2(ω)
∥∥2 + ∥∥wM;L2(Π(R))

∥∥2 (71)

and

a
(
(φMε, φε

4), (φ
Mε, φε

4); Π
)

=

∞∫
R

e−2ε(z−R)
((

AM(∇y, iζ)W,M(∇y, iζ)W
)
ω
+ ε 2Re

(
AM(e3)W,M(∇y, iζ)W

)
ω

)
dz

+
(
AM

(
∇)w,M(∇)w

)
Π(R)

− (AEE∇w4,∇w4

)
Π

+ 2Re
(
(AEE∇w4,∇w4)Π −

(
AEMMM(∇)wM,∇w4

)
Π

)
+O(ε)

=
1

2ε

(
AM(∇y, iζ)W,M(∇y, iζ)W

)
ω
+
(
AM(∇)w,M(∇)w

)
Π(R)

− (AEE∇w4,∇w4)Π + 2Re (g4,w4)ϖ +O(ε).

(72)

While the transformation (71) is quite simple (it has led to an equality owing to the choice (67) of
the exponential weight function Eε

R(z)), the transformation (72) is rather confusing owing to addi-
tional terms in the definition of the transformation (68), so let us give an explanation. The factors ε
and Eε

R(z) in the last term in (68), as well as the representation (70), which essentially means that the
solution w′

4 of problem (69) is bounded, show that the contribution of the expression εEε
Rw

′
4 is O(ε)

and can be neglected. The integral containing the matrix −M(e3) = ∂εM(∇y, iζ − ε) has disap-
peared owing to the customary convention (39). According to Corollary 2, the solution w4 of prob-
lem (64) with a compactly supported functional on the right-hand side decays at infinity at a fixed
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(independent of ε) rate O(e−γz), γ > 0, and hence in the inner products (AEMM(∇)Eε
Rw

M,∇w4)Π
and alike, the substitution Eε

R(z) 7→ 1 also generates an admissible error O(ε). In addition, the last
transition in the calculation (72) uses definition (63), and with v4 = w4 equality (64) shows that the
expression under Re equals (AEE∇w4,∇w4)Π. Finally, the substitution of the expressions (72) and
(71) into inequality (65) with the trial vector function (66), (68) taking into account equalities (46)
and (64) leads to the relation

I0R(w) < Cε,

where C > 0 is some constant and

I0R(w) =
(
AM(∇)w,M(∇)w

)
Π(R)

− λ†
θ

∥∥∥wM;L2
(
Π(R)

)∥∥∥2 + (AEE∇w4,∇w4)Π. (73)

Now the arguments accompanying the verification of Theorem 5 lead to the following assertion.

Theorem 6. If, for θ = (θ1, θ2) and |θj| ∈ (0, π], the expression (73) calculated for the piezoelec-
tric wave (37), which satisfies problem (2)–(4) with the threshold parameter λ = λ†

θ > 0, is negative
and satisfies relation (39), then the discrete spectrum σd

θ of problem (2)–(4) with the matrices (59)
is nonempty.

Compared to the number (48) found for the problem of elasticity theory (Sec. 6, 2◦), the num-
ber (73) contains the additional positive term

(AEE∇w4,∇w4)Π (74)

that has appeared as a result of compensation for the inhomogeneity (63) in the boundary condition
(3) when forming the operator JwM. This observation is consistent with the physical nature of
the piezoelectric problem: apart from the elastic energy (AMMMM(∇)wM,MM(∇)wM)Π(R), the
body Π(R) stores the electromagnetic energy (AEE∇w,∇w4)Π(R). At first glance, it seems that
the inequality I0R(w) < 0 is a more difficult goal to achieve than the inequality I0R(w) < 0 in a
“purely elastic” situation; in particular, manipulations with sets (56) are useless precisely because
of the term (74). At the same time, it is impossible to compare I0R(w) and I0R(w), if only because
the cutoff points of the continuous spectrum in the piezoelectric and elastic problems are in no way
related. Finally, again owing to the nonlocal operator J , it was impossible to apply the trick in [33]
and obtain an analog of item 2 in Theorem 5 for problem (2)–(4) with the matrices (59).
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3. Ladyzhenskaya, O.A., Kraevye zadachi matematicheskoi fiziki (Boundary Value Problems of Mathemat-

ical Physics), Moscow: Nauka, 1973.
4. Mittra, R. and Lee, S.W., Analytical Techniques in the Theory of Guided Waves, New York: Macmil-

lan, 1971.
5. Wilcox, C.H., Scattering theory for diffraction gratings, in Appl. Math. Sci. Ser., Singapore: Springer

Sci. Bus. Media, vol. 46, 1997.
6. Rayleigh, J.W.S., On waves propagated along the plane surface of an elastic solid, Proc. London Math.

Soc., 1885, vol. 17, no. 253, pp. 4–11.
7. Lamb, H., On waves in an elastic plate, Proc. R. Soc., 1917, vol. A93, pp. 114–128.
8. Stoneley, R., Elastic waves at the surface of separation of two solids, Proc. R. Soc. London A, 1924,

vol. 106, pp. 416–428.
9. Viktorov, I.A., Zvukovye poverkhnostnye volny v tverdykh telakh (Sonic Surface Waves in Solids), Moscow:

Nauka, 1981.
10. Kaplunov, J.D., Kossovich, L.Y., and Nolde, E.V., Dynamics of Thin Walled Elastic Bodies, San Diego,

CA: Academic Press, 1997.
11. Mikhasev, G.I. and Tovstik, P.E., Lokalizovannye kolebaniya i volny v tonkikh obolochkakh. Asimp-

toticheskie metody (Localized Vibrations and Waves in Thin Shells. Asymptotic Methods), Moscow:
Nauka, 2009.

DIFFERENTIAL EQUATIONS Vol. 58 No. 5 2022



RAYLEIGH WAVES FOR ELLIPTIC SYSTEMS 647

12. Konenkov, Yu.K., On the “Rayleigh”-type flexural wave, Akust. Zh., 1960, vol. 6, pp. 124–126.
13. Grinchenko, V.T. and Meleshko, V.V., Specific features of energy distribution in a thin rectangular plate

under edge resonance, Dokl. Akad. Nauk USSR. Ser. A, 1976, no. 7, pp. 612–616.
14. Kim, J.-Y. and Rokhlin, S.I., Surface acoustic wave measurements of small fatigue cracks initiated from

a surface cavity, Int. J. Solids Struct., 2002, vol. 39, pp. 1487–1504.
15. Zakharov, D.D. and Becker, W., Rayleigh type bending waves in anisotropic media, J. Sound Vib., 2003,

vol. 261, pp. 805–818.
16. Kamotskii, I.V., Surface wave running along the edge of an elastic wedge, St. Petersburg Math. J., 2009,

vol. 20, no. 1, pp. 59–63.
17. Kamotskii, I.V. and Kiselev, A.P., An energy approach to the proof of the existence of Rayleigh waves

in an anisotropic elastic half-space, Prikl. Mat. Mekh., 2009, vol. 73, no. 4, pp. 645–654.
18. Zavorokhin, G.L. and Nazarov, A.I., On elastic waves in a wedge, J. Math. Sci., 2011, vol. 175, no. 6,

pp. 646–650.
19. Krushynska, A.A., Flexural edge waves in semi-infinite elastic plates, J. Sound Vib., 2011, vol. 330,

pp. 1964–1976.
20. Nazarov, A., Nazarov, S., and Zavorokhin, G., On symmetric wedge mode of an elastic solid, Eur. J.

Appl. Math., 2021, vol. 33, no. 2, pp. 201–223.
21. Lawrie, J. and Kaplunov, J., Edge waves and resonance on elastic structures: an overview, Math. Mech.

Solids, 2012, vol. 17, no. 1, pp. 4–16.
22. Nazarov, S.A. and Plamenevsky, B.A., Elliptic Problems in Domains with Piecewise Smooth Boundaries,

Berlin–New York: De Gruyter, 1994.
23. Nazarov, S.A., The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic

description of their attributes, Russ. Math. Surv., 1999, vol. 54, no. 5, pp. 947–1014.
24. Nazarov, S.A., Self-adjoint elliptic boundary-value problems. The polynomial property and formally

positive operators, J. Math. Sci., 1998, vol. 92, no. 6, pp. 4338-4353.
25. Nazarov, S.A., Non-self-adjoint elliptic problems with a polynomial property in domains possessing

cylindrical outlets to infinity, J. Math. Sci., 2000, vol. 101, no. 5, pp. 3512–3522.
26. Agranovich, M.S. and Vishik, M.I., Elliptic problems with a parameter and parabolic problems of general

type, Russ. Math. Surv., 1964, vol. 19, no. 3, pp. 53–157.
27. Kondrat’ev, V.A., Boundary problems for elliptic equations in domains with conical or angular points,

Trans. Moscow Math. Soc., 1967, vol. 16, pp. 227–313.
28. Agmon, S., Douglis, A., and Nirenberg, L., Estimates near the boundary for solutions of elliptic differ-

ential equations satisfying general boundary conditions. 2, Commun. Pure Appl. Math., 1964, vol. 17,
pp. 35–92.

29. Solonnikov, V.A., General boundary value problems for Douglis–Nirenberg elliptic systems. II, Proc.
Steklov Inst. Mat., 1968, vol. 92, pp. 269–339.

30. Gohberg, I.C. and Krein, M.G., Introduction to the Theory of Linear Nonselfadjoint Operators, Transl.
Math. Monogr., Providence, R.I.: Am. Math. Soc., 1969, vol. 18.

31. Birman, M.Sh. and Solomyak, M.Z., Spectral Theory of Self-Adjoint Operators in Hilbert Space, Math.
Appl. (Sov. Ser.), Dordrecht: Reidel, 1987, vol. 5.

32. Nazarov, S.A., Threshold resonances and virtual levels in the spectrum of cylindrical and periodic
waveguides, Izv. Math., 2020, vol. 84, no. 6, pp. 1105–1160.

33. Kamotskii, I.V. and Nazarov, S.A., Exponentially decreasing solutions of diffraction problems on a rigid
periodic boundary, Math. Notes, 2003, vol. 73, no. 1, pp. 129–131.

34. Lekhnitskii, S.G., Teoriya uprugosti anizotropnogo tela (Theory of Elasticity of an Anisotropic Body),
Moscow: Nauka, 1977.

35. Bertram, A., Elasticity and Plasticity of Large Deformations, Berlin–Heidelberg: Springer, 2005.
36. Nazarov, S.A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integ-

ral’nye otsenki (Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Esti-
mates), Novosibirsk: Nauchn. Kniga, 2002.

37. Langer, S., Nazarov, S.A., and Specovius-Neugebauer, M., Affine transformations of three-dimensional
anisotropic media and explicit formulas for fundamental matrices, J. Appl. Mech. Techn. Phys., 2006,
vol. 47, no. 2, pp. 229–235.

38. Kamotskii, I.V. and Nazarov, S.A., Elastic waves localized near periodic families of defects, Dokl. Ross.
Akad. Nauk , 1999, vol. 368, no. 6, pp. 771–773.

39. Shoikhet, B.A., On asymptotically exact equations for thin plates of complex structure, Prikl. Mat.
Mekh., 1973, vol. 37, no. 5, pp. 914–924.

DIFFERENTIAL EQUATIONS Vol. 58 No. 5 2022



648 NAZAROV

40. Ciarlet, P.G., Mathematical Elasticity, II: Theory of Plates, Studies in Mathematics and Its Applications,
Amsterdam, vol. 27, 1997.
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