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Abstract— Lomov’s regularization method is generalized to nonlinear singularly perturbed
integro-differential equations with rapidly oscillating right-hand side. The influence of the kernel
of the integral operator, the nonlinearity, and the rapidly oscillating part on the asymptotics of
the solution of the initial value problem for these equations is established. Previously, singularly
perturbed linear systems of this type and nonlinear systems without oscillating inhomogeneity
were studied.
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INTRODUCTION

The study of various applied problems related to the properties of media with a periodic structure
leads to the study of differential equations with rapidly oscillating inhomogeneities. Equations of this
type are often encountered, for example, in electrical systems under the influence of high-frequency
external forces. The presence of these forces creates serious problems in the numerical integration of
the corresponding differential equations. Therefore, asymptotic methods are usually applied to such
equations, of which the most famous are the Feshchenko–Shkil’–Nikolenko splitting method [1–3]
and the Lomov regularization method [4–14]. However, both of these methods were developed
mainly for singularly perturbed differential equations that do not contain an integral operator. The
transition from differential equations to integro-differential ones requires significantly restructuring
the algorithm of the regularization method. The integral term generates new types of singularities in
solutions that differ from those already known, which complicates the development of the algorithm
of the regularization method. Previously, mainly linear problems of this type were studied.

In the present paper, we consider a nonlinear problem of the form

Lεy(t, ε) ≡ ε
dy

dt
−A(t)y −

t∫
0

K(t, s)y(s, ε) ds− εf(y, t)

= h1(t) + h2(t)e
iβ(t)/ε, y(0, ε) = y0, t ∈ [0, T ],

(1)

where y = y(t, ε) is the unknown function, A(t), K(t, s), hj(t), j = 1, 2, f(y, t), and β(t) are
given scalar functions (β′(t) is the frequency of the rapidly oscillating inhomogeneities), y0 is a con-
stant, ε > 0 is a small parameter, and T is a given number.

Problem (1) will be considered under the following conditions:
1. One has the inclusions A(t) ∈ C∞([0, T ],R), h1(t), h2(t), β(t) ∈ C∞([0, T ],R), and K(t, s) ∈
C∞({0 ≤ s ≤ t ≤ T},R); the function f(y, t) =

∑N

k=0 fk(t)y
k is a polynomial in the variable y

with coefficients fk(t) ∈ C∞([0, T ],R), k = 0, . . . , N , N ∈ N.
2. For all t ∈ [0, T ], one has the inequalities A(t) < 0 and β′(t) > 0.
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The aim of this paper is to generalize the algorithm of the Lomov regularization method to
problems of the form (1) and analyze the singularities in the solution y(t, ε) introduced by the
nonlinearity f(y, t) and the rapidly oscillating inhomogeneity h2(t)e

iβ(t)/ε. For simplicity, we study
the scalar version of this problem. It is assumed that its study in the multidimensional case will be
the subject of our subsequent papers.

1. SOLUTION SPACE AND REGULARIZATION OF PROBLEM (1)

For convenience, we write λ1(t) ≡ A(t), λ2(t) ≡ β′(t), and σ = σ(ε) = eiβ(0)/ε, introduce the
regularizing variables (see [4])

τj =
1

ε

t∫
0

λj(θ) dθ ≡
ψj(t)

ε
, j = 1, 2, (2)

and consider the extended problem

Lεỹ(t, τ, σ, ε) ≡ ε
∂ỹ

∂t
+

2∑
j=1

λj(t)
∂ỹ

∂τj
− λ1(t)ỹ −

t∫
0

K(t, s)ỹ(s, ψ(s)/ε, ε) ds− εf(y, t)

= h1(t) + h2(t)e
τ2σ,

ỹ(t, τ, σ, ε)

∣∣∣∣ t=0
τ=0
σ=eiβ(0)/ε

= y0

(3)

for the function ỹ = ỹ(t, τ, σ, ε), where, according to (2), τ = (τ1, τ2) and ψ = (ψ1, ψ2). Obviously,
if ỹ = ỹ(t, τ, σ, ε) is a solution of problem (3), then the function ỹ = ỹ(t, ψ(t)/ε, σ, ε) is an exact
solution of problem (1); therefore, problem (3) is extended with respect to problem (1). However, it
cannot be considered completely regularized, since regularization with respect to the integral term

Jỹ ≡ J

(
ỹ(t, τ, σ, ε)

∣∣∣∣t=s
τ=ψ(s)/ε

)
=

t∫
0

K(t, s)ỹ
(
s, ψ(s)/ε, σ, ε

)
ds

has not been performed in it. To regularize this problem, we introduce the class Mε asymptotically
invariant with respect to the action of the operator J (see [4, p. 62]).

Consider the space U of functions y(t, τ, σ) representable by the sums1

y(t, τ, σ) = y0(t, σ) +

2∑
j=1

yj(t, σ)e
τj +

Ny∑
|m|=2

y(m)(t)e(m,τ),

yj(t, σ), y
(m)(t) ∈ C∞([0, T ],C),

j = 0, . . . , 2, m = (m1,m2), 2 ≤ |m| ≡ m1 +m2 ≤ Ny.

(4)

Note that the elements of the space U in (4) depend on the constant σ = σ(ε) bounded in ε > 0,
which does not affect the development of the algorithm set forth below; therefore, in what follows
we omit the dependence on σ for brevity in the notation of the element (4) of this space. In
addition, we point out that the degree of the polynomial in the exponentials in (4) depends on the
element y(t, τ) ∈ U .

1 Here and in the following, the superscript m in parentheses in y(m) means y(m1,m2) and is the number of the
coefficient y(m). It should not be confused with the number of derivative.
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Let us show that the class Mε = U |τ=ψ(t)/ε is asymptotically invariant with respect to the action
of the operator J . The image of the operator J on the element (4) has the form

Jy(t, τ) =

t∫
0

K(t, s)y0(s) ds+

2∑
j=1

t∫
0

K(t, s)yj(s)e
ε−1

s∫
0

λj(θ) dθ

ds

+

Ny∑
|m|=2

t∫
0

K(t, s)y(m)(s)e
ε−1

s∫
0

(m,λ(θ)) dθ

ds,

(
m,λ(t)

)
≡ m1λ1(t) +m2λ2(t).

Integrating by parts, we have

t∫
0

K(t, s)yj(s)e
ε−1

s∫
0

λj(θ) dθ

ds

= ε

t∫
0

K(t, s)yj(s)

λj(s)
de

ε−1
s∫
0

λj(θ) dθ

= ε

[
K(t, t)yj(t)

λj(t)
e
ε−1

t∫
0

λj(θ) dθ

− K(t, 0)yj(0)

λj(0)

]
− ε

t∫
0

(
∂

∂s

K(t, s)yj(s)

λj(s)

)
e
ε−1

s∫
0

λj(θ) dθ

ds

=

∞∑
ν=0

(−1)ν+1

[(
Iνj
(
K(t, s)yj(s)

))∣∣∣
s=t
eτj −

(
Iνj
(
K(t, s)yj(s)

))∣∣∣
s=0

]∣∣∣∣
τ=ψj(t)/ε

,

(5)

where
I0j =

1

λj(s)
, Iνj =

1

λj(s)

∂

∂s
Iν−1
j , j = 1, 2, ν ≥ 1.

Likewise, taking into account the fact that (m,λ(t)) ̸= 0 for each t ∈ [0, T ], |m| ≥ 2, we obtain

t∫
0

K(t, s)y(m)(s)e
ε−1

s∫
0

(m,λ(θ)) dθ

ds

=

t∫
0

K(t, s)y(m)(s)(
m,λ(s)

) de
ε−1

s∫
0

(m,λ(θ)) dθ

= ε

[
K(t, t)y(m)(t)(

m,λ(t)
) e

ε−1
t∫
0

(m,λ(θ)) dθ

− K(t, 0)y(m)(0)(
m,λ(0)

) ]

− ε

t∫
0

(
∂

∂s

K(t, s)y(m)(s)(
m,λ(s)

) )
e
ε−1

s∫
0

(m,λ(θ)) dθ

ds

=

∞∑
ν=0

(−1)ν+1

[(
Iνm
(
K(t, s)y(m)(s)

))∣∣∣
s=t
e(m,τ) −

(
Iνm
(
K(t, s)y(m)(s)

))
s=0

]∣∣∣∣
τ=ψj(t)/ε

,

(6)

where we have introduced the operators

I0m =
1(

m,λ(s)
) , Iνm =

1(
m,λ(s)

) ∂
∂s
Iν−1
m , |m| ≥ 2, ν ≥ 1.
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One can readily show (see, e.g., [15, pp. 291–294]) that the series (5) and (6) asymptotically converge
uniformly with respect to t ∈ [0, T ] as ε → +0. It follows that the class Mε is asymptotically
invariant (as ε→ +0) with respect to the action of the operator J .

We introduce operators Rν : U → U acting on each element y(t, τ) ∈ U of the form (4) by the
rule

R0y(t, τ) =

t∫
0

K(t, s)y0(s) ds, (70)

R1y(t, τ) =

2∑
j=1

[
K(t, t)yj(t)

λj(t)
eτj −K(t, 0)yj(0)

λj(0)

]
+

Ny∑
|m|

[
K(t, t)y(m)(t)

(m,λ(t))
e(m,τ)−K(t, 0)y(m)(0)

(m,λ(0))

]
, (71)

Rνy(t, τ) = (−1)ν+1

[(
Iνj
(
K(t, s)yj(s)

))∣∣∣
s=t
eτj −

(
Iνj
(
K(t, s)yj(s)

))∣∣∣
s=0

]
+ (−1)ν+1

Ny∑
|m|=2

[(
Iνm
(
K(t, s)y(m)(s)

))∣∣∣
s=t
e(m,τ) −

(
Iνm
(
K(t, s)y(m)(s)

))∣∣∣
s=0

]
.

(7ν)

Let ỹ(t, τ, ε) be an arbitrary continuous function of (t, τ) ∈ [0, T ]×{τ : Re τj ≤ 0, j = 1, 2} with
the asymptotic expansion

ỹ(t, τ, ε) =

∞∑
k=0

εkyk(t, τ), yk(t, τ) ∈ U, (8)

converging as ε→ +0 uniformly with respect to (t, τ) ∈ [0, T ]× {τ : Re τj ≤ 0, j = 1, 2}. Then the
image Jỹ(t, τ, ε) of this function expands into the asymptotic series

Jỹ(t, τ, ε) =

∞∑
k=0

εkJyk(t, τ) =

∞∑
r=0

εr
r∑
s=0

Rr−sys(t, τ)|τ=ψ(t)/ε.

This equality is the basis for introducing the extension J̃ of the operator J to series of the
form (8); namely, we set

J̃ ỹ(t, τ, ε) ≡ J̃

(
∞∑
k=0

εkyk(t, τ)

)
def
=

∞∑
r=0

εr
r∑
s=0

Rr−sys(t, τ). (9)

Even though the operator J̃ has been introduced formally, its usefulness is obvious, because in
practice one usually constructs the Nth approximation to the asymptotic solution of problem (2),
which only involves the Nth partial sums of the series (8), having not a formal but a substantive
meaning.

Now we can write a problem completely regularized with respect to the original problem (2),

Lεỹ(t, τ, ε) ≡ ε
∂ỹ

∂t
+

2∑
j=1

λj(t)
∂ỹ

∂τj
−A(t)ỹ − J̃ ỹ = h1(t) + h2(t)e

τ2σ,

ỹ(t, τ, ε)

∣∣∣∣ t=0
τ=0
σ=eiβ(0)/ε

= y0, t ∈ [0, T ],

(10)

where the operator J̃ is given by relation (9).
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2. ITERATION PROBLEMS AND THEIR SOLVABILITY IN U

Substituting the series (8) into problem (10) and matching the coefficients of like powers of ε,
we obtain the following iteration problems:

Ly0(t, τ) ≡
2∑
j=1

λj(t)
∂y0
∂τj

− λ1(t)y0 −R0y0 = h1(t) + h2(t)e
τ2σ, y0(0, 0) = y0; (110)

Ly1(t, τ) = −∂y0
∂t

+ f(y0, t) +R1y0, y1(0, 0) = 0; (111)

Ly2(t, τ) = −∂y1
∂t

+
∂f(y0, t)

∂y
y1 +R1y1 +R2y0, y2(0, 0) = 0; (112)

· · ·

Lyk(t, τ) = −∂yk−1

∂t
+ Pk(y0, · · · , yk−1, t) +Rky0 + . . .+R1yk−1, yk(0, 0) = 0, k > 2, (11k)

where Pk(y0, . . . , yk−1, t) is some polynomial of y0, . . . , yk−1 linear in yk−1. We write each of the
iteration problems (11k) in the form

Ly(t, τ) ≡
2∑
j=1

λj(t)
∂y

∂τj
− λ1(t)y −R0y = H(t, τ), y(0, 0) = y∗, (12)

where H(t, τ) = H0(t) +
∑2

j=1Hj(t)e
τj +

∑NH

|m|=2H
(m)(t)e(m,τ) is a known function in the

space U , y∗ ∈ C is a constant, and the operator R0 is given by relation (70).
We introduce the inner (for each t ∈ [0, T ]) product in the space U ,

⟨z, w⟩ ≡

〈
z0(t) +

2∑
j=1

zj(t)e
τj +

Nz∑
|m|=2

(
z(m)(t)e(m,τ), w0(t)

)
+

2∑
j=1

wj(t)e
τj +

Nw∑
|m|=2

w(m)(t)e(m,τ)

〉

def
=
(
z0(t), w0(t)

)
+

2∑
j=1

(
zj(t), wj(t)

)
+

min(Nz,Nw)∑
|m|=2

(
z(m)(t), w(m)(t)

)
,

where by (·, ·) we have denoted the usual inner product on C; i.e., (u(t), v(t)) = u(t) · v̄(t). Let us
prove the following assertion.

Theorem 1. Let conditions 1 and 2 be satisfied, and let the right-hand side H(t, τ) of Eq. (12)
belong to the space U . Then for this equation to be solvable in the space U it is necessary and
sufficient that the following identity holds:〈

H(t, τ), eτ1
〉
≡ 0 for all t ∈ [0, T ]. (13)

Proof. We seek a solution of Eq. (10) in the form of the element (4) of the space U (we omit
the dependence of the element (4) on σ for the reason explained above),

y(t, τ) = y0(t) +

2∑
j=1

yj(t)e
τj +

NH∑
|m|=2

y(m)(t)e(m,τ). (14)

Substituting the representation (14) into Eq. (12), we obtain

2∑
j=1

[
λj(t)I − λ1(t)

]
yj(t)e

τj +

NH∑
|m|=2

[(
m,λ(t)

)
− λ1(t)

]
e(m,τ) − λ1(t)y0(t)−

t∫
0

K(t, s)y0(s) ds
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= H0(t) +

2∑
j=1

Hj(t)e
τj +

NH∑
|m|=2

H(m)(t)e(m,τ).

Separately matching the free terms and the coefficients of like exponentials in the last relation, we
obtain the following equations:

− λ1(t)y0(t)−
t∫

0

K(t, s)y0(s) ds = H0(t), (140)

[
λj(t)I − λ1(t)

]
yj(t) = Hj(t), j = 1, 2, (14j)[(

m,λ(t)
)
− λ1(t)

]
y(m)(t) = H(m)(t), 2 ≤ |m| ≤ NH . (14m)

By virtue of the fact that λ1(t) ̸=0 for all t∈ [0, T ] and the inclusion K(t, s)∈C∞({0≤s≤ t≤T},R),
Eq. (140) has a unique solution y0(t) ∈ C∞([0, T ],C). Equation (141) has the form 0 · y1(t) = H1(t).
It is solvable in the space C∞([0, T ],C) if and only if H1(t) ≡ 0, i.e., if ⟨H(t, τ), eτ 1⟩ ≡ 0
for all t ∈ [0, T ]. Equation (142) has a unique solution y2(t) = [λ2(t) − λ1(t)]

−1H2(t) in the
class C∞([0, T ],C).

Consider Eq. (14m) in greater detail,[
(m1 − 1)λ1(t) + im2β

′(t)
]
y(m)(t) = H(m)(t), 2 ≤ m1 +m2 ≤ NH .

Let us show that the coefficient (m1 − 1)λ1(t) + im2β
′(t) is nonzero for any t ∈ [0, T ] and

2 ≤ m1 + m2 ≤ NH . Indeed, assume the contrary: (m1 − 1)λ1(t) + im2β
′(t) = 0 for some t.

Separating the imaginary and real parts in this equality, we obtain

(m1 − 1)λ1(t) = 0, m2β
′(t) = 0.

The second equality in this system is possible only if m2 = 0. However, then m1 ≥ 2 and the first
equality is not satisfied, because λ1(t) < 0. Hence (m1 − 1)λ1(t) + im2β

′(t) ̸= 0 for all t ∈ [0, T ],
2 ≤ m1 +m2 ≤ NH . It follows that each equation (14m) has a unique solution, and this solution
can be written in the form

y(m)(t) =
[(
m,λ(t)

)
− λ1(t)

]−1

H(m)(t), 2 ≤ |m| ≤ NH .

Thus, for Eq. (12) to be solvable, it is necessary and sufficient that identity (13) holds. The proof
of the theorem is complete.

Remark. Under the assumptions of Theorem 1 and condition (13), Eq. (12) has the following
solution in the space U :

y(t, τ) = y0(t) + α1(t)e
τ1 +

[
λ2(t)− λ1(t)

]−1
H2(t)e

τ2

+

NH∑
|m|=2

[(
m,λ(t)

)
− λ1(t)

]−1

H(m)(t)e(m,τ),
(15)

where α1(t) ∈ C∞([0, T ],C) is an arbitrary function.

3. UNIQUE SOLVABILITY OF THE GENERAL ITERATION PROBLEM IN SPACE U .
REMAINDER THEOREM

As can be seen from (15), the solution of Eq. (12) is determined nonuniquely. However, if we
subject it to the additional conditions

y(0, 0) = y∗,

〈
− ∂y

∂t
+R1y +Q(t, τ), eτ1

〉
≡ 0 for all t ∈ [0, T ], (16)
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where Q(t, τ) = Q0(t) +
∑2

j=1Qi(t)e
τj +

∑NQ

|m|=2Q
(m)(t)e(m,τ) is a known function in the space

U and y∗ is a constant in C, then problem (12) will be uniquely solvable in the space U . Note
that conditions (16) are natural for the entire series of iteration problems (11k) and arise as the
solvability conditions (13) when switching from problem (11k) to problem (11k+1). The following
assertion holds true.

Theorem 2. Let conditions 1 and 2 be satisfied, and let the right-hand side H(t, τ) of Eq. (12)
belong to the space U and satisfy the orthogonality condition (13). Then Eq. (12) is uniquely solvable
in U under the additional conditions (16).

Proof. Under condition (13), Eq. (12) has a solution (15) in the space U , where α1(t) ∈
C∞([0, T ],C) is yet an arbitrary function. Let us subject solution (15) to the first condition in (16),
i.e., require that y(0, 0) = y∗. We conclude that α1(0) = y∗, where we have denoted

y∗ = y∗ + λ−1
1 (0)H0(0)−

[
λ2(0)− λ1(0)

]−1
H2(0)−

NH∑
|m|=2

[(
m,λ(0)

)
− λ1(0)

]−1

H(m)(0). (17)

Now we subject solution (15) to the second condition in (16). Let us first calculate2 the expression

− ∂y0
∂t

+R1y0 +Q(t, τ)

= −ẏ0(t)− α̇1(t)e
τ1 −

(
H2(t)

λ2(t)− λ1(t)

)•
eτ2 −

NH∑
|m|=2

(
H(m)(t)(

m,λ(t)
)
− λ1(t)

)•
e(m,τ)

+
K(t, t)α1(t)

λ1(t)
eτ1 − K(t, 0)α1(0)

λ1(0)
+

K(t, t)H2(t)

λ1(t)
[
λ2(t)− λ1(t)

]eτ2
− K(t, 0)H2(0)

λ1(0)
[
λ2(0)− λ1(0)

] +Q0(t) +

2∑
j=1

Qi(t)e
τj +

NQ∑
|m|=2

Q(m)(t)e(m,τ).

Therefore, the second condition in (16) leads to the ordinary differential equation

− α̇1(t) +
K(t, t)α1(t)

λ1(t)
= Q1(t).

Supplementing this equation with the initial condition (17), we uniquely determine the function

α1(t) = exp

 t∫
0

K(s, s)

λ1(s)
ds

y∗ + t∫
0

exp

−
x∫

0

K(θ, θ)

λ1(θ)
dθ

Q1(x)dx


and hence construct the solution (15) of problem (12) in the space U in a unique way. The proof of
the theorem is complete.

Applying Theorems 1 and 2 to the iteration problems (11k), we uniquely find their solutions in the
space U and construct the series (8). Let us compose the partial sum Sn(t, τ, ε) =

∑n

k=0 ε
kyk(t, τ)

of this series and denote its restriction to τ = ψ(t)/ε by yεn(t). The following assertion holds.

Lemma. Let conditions 1 and 2 be satisfied. Then the function yεn(t) satisfies problem (1)
modulo terms containing εn+1 ; i.e.,

ε
dyεn(t)

dt
−A(t)yεn(t)−

t∫
0

K(t, s)yεn(s, ε) ds− εf(yεn, t)

2 Here and in what follows, a bold dot as a superscript on a parenthesis means differentiation with respect to t of the
expression in the parentheses.
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= h1(t) + h2(t)e
iβ(t)/ε + εn+1F (t, ε), yεn(0, ε) = y0, t ∈ [0, T ],

where ∥F (t, ε)∥C[0,T ] ≤ F , F > 0 is a constant independent of ε ∈ (0, ε0], and ε0 > 0 is sufficiently
small.

Proof. By L0 we denote the operator

L0 ≡
2∑
j=1

λj(t)
∂

∂τj
−A(t).

Substituting y0(t, τ), . . . , yn(t, τ) into the first n equations in system (11k), we obtain identities.
Let us multiply them by 1, ε, . . . , and εn, respectively, and add them up. As a result, we obtain

L0(y0 + εy1 + · · ·+ εnyn)−R0(y0 + εy1 + · · ·+ εnyn)

≡ h1(t) + h2(t)e
τ2σ − ε

(
∂y0
∂t

+ ε
∂y1
∂t

+ · · ·+ εn−1∂yn−1

∂t

)
+ εR1y0 + ε2(R1y1 +R2y0)

+ εn(R1yn−1 + · · ·+Rny0) +

[
εf(y0, t) + ε2

(
∂f(y0, t)

∂y
y1

)
+ · · ·+ εNPn(y0, . . . , yn−1, t)

]
.

Let us restrict this to τ = ψ(t)/ε taking into account the identities

eτ2σ|τ=ψ(t)/ε ≡ eiβ(t)/ε,
∑

0≤|m|≤k

z(m)(t)e(m,τ)|τ=ψ(t)/ε ≡
∑

0≤|m|≤k

z(m)(t)e(m,ψ(t)/ε),

L0v(t, τ, ε)|τ=ψ(t)/ε ≡ ε
dv
(
t, ψ(t)/ε, ε

)
dt

−A(t)v
(
t, ψ(t)/ε, ε

)
− ε

∂v
(
t, ψ(t)/ε, ε

)
∂t

.

We have

ε
dyεn
dt

−A(t)yεn(t) = εn+1∂yn(t, ψ)

∂t
+ h1(t) + h2(t)e

iβ(t)/ε +

N∑
r=0

εr
r∑
s=0

Rr−sys(t, ψ)

+ ε

[
f(y0, t) + ε

∂f(y0, t)

∂y
y1 + · · ·+ εn−1Pn(y0, . . . , yn−1, t)

]
,

or

ε
dyεn
dt

= A(t)yεn(t) +

t∫
0

K(t, s)yεn(s) ds+ h1(t) + h2(t)e
iβ(t)/ε + εn+1∂yn(t, ψ)

∂t

+ εf
(
yεn(t), t

)
−

 t∫
0

K(t, s)yεn(s) ds−
n∑
r=0

εr
r∑
s=0

Rr−sys(t, ψ)


− ε

[
f
(
yεn(t), t

)
− f(y0, t)−

∂f(y0, t)

∂y
y1 − · · · − εn−1Pn(y0, . . . , yn−1, t)

]
.

According to the definition of the operators Rk, the first bracketed expression in the last identity can
be represented in the form εn+1M1(t, ε), and by the construction of problems (110), . . . , (11n), the
second bracketed expression can be represented in the form εn+1M2(t, ε), where ∥Mi∥C[0,T ] ≤ const
(for all ε ∈ (0, ε0]), i = 1, 2. Denoting F (t, ε) ≡ −M1(t, ε)−M2(t, ε) + ∂yN(t, ψ)/∂t, we obtain the
assertion of the Lemma.

When justifying the asymptotic convergence of the formal solution yεn(t) to the exact solu-
tion y(t, ε), we use the following assertion about the solvability of the operator equation Pε(u) = 0
(see, e.g., [16, pp. 187–188]).
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Theorem (Srubshchik–Yudovich). Let an operator Pε act from a Banach space B1 into
a Banach space B2 , and assume that the first two derivatives of Pε are continuous in some
ball {∥u− u0∥ ≤ r} ⊂ B1. Assume also that there exists an operator Γε ≡ [P ′

ε(u0)]
−1 and the con-

ditions

(1a) ∥Γε∥ ≤ c1ε
−k;

(2a) ∥Pε(u0)∥ ≤ c2ε
m (m > 2k);

(3a) ∥P ′′
ε (u)∥ ≤ c3

are satisfied. Then for sufficiently small ε > 0 (ε ∈ (0, ε0]) the equation Pε(u) = 0 has a solu-
tion u∗ ∈ B1 satisfying the inequality ∥u∗ −u0∥B1

≤ cεm−k. Here c, c1 , c2 , and c3 are some positive
constants independent of ε ∈ (0, ε0].

Applying this theorem to the equation

Pε(u) ≡ ε
du

dt
−A(t)u−

t∫
0

K(t, s)u(s, ε) ds

− εf(u+ y0, ε)−A(t)y0 −
t∫

0

K(t, s)y0 ds− h1(t)− h2(t)e
iβ(t)/ε = 0,

we arrive at the following result (see [16, pp. 190–192]).

Theorem 3. Let conditions 1 and 2 be satisfied for Eq. (1). Then for ε ∈ (0, ε0] (ε0 > 0
is sufficiently small ) problem (1) has a unique solution y(t, ε) ∈ C1([0, T ],C), which satisfies the
estimate ∥∥y(t, ε)− yεn(t)

∥∥
C[0,T ]

≤ cnε
n+1, n = 0, 1, 2, . . . ,

where yεn(t) is the restriction ( for τ = ψ(t)/ε) of the nth partial sum of the series (8) (with coef-
ficients yk(t, τ) ∈ U satisfying the iteration problems (11k)) and the constant cn > 0 is independent
of ε for ε ∈ (0, ε0].

4. CONSTRUCTING A SOLUTION OF THE FIRST ITERATION PROBLEM

Using Theorem 1, we find a solution of the first iteration problem (110). Since the right-hand
side h1(t) + h2(t)e

τ2σ of Eq. (140) satisfies condition (13), it follows (according to (15)) that this
equation has a solution in the space U of the form

y0(t, τ) = y
(0)
0 (t) + α

(0)
1 (t)eτ1 + y2(t)e

τ2 , (18)

where α(0)
1 (t) ∈ C∞([0, T ],C) is for now an arbitrary function and y(0)0 (t) is a solution of the integral

equation −λ1(t)y
(0)
0 (t) −

∫ t
0
K(t, s)y

(0)
0 (s) ds = h1(t), y2(t) = [λ2(t) − λ1(t)]

−1h2(t)σ. Subjecting
family (18) to the initial condition y0(0, 0) = y0, we obtain y(0)0 (0) + α1(0) + y

(0)
2 (0) = y0; i.e.,

α1(0) = y0 + λ−1
1 (0)h1(0)−

[
λ2(0)− λ1(0)

]−1
h2(0)σ. (19)

To calculate the function α
(0)
1 (t) completely, we proceed to the next iteration problem (111). Sub-

stituting the solution (18) of Eq. (140) into this problem, we obtain the equation

Ly1(t, τ) = − d

dt
y
(0)
0 (t)− α̇

(0)
1 (t)eτ1 − ẏ2(t)e

τ2

+ f(y
(0)
0 (t) + α

(0)
1 (t)eτ1 + y2(t)e

τ2 , t) +R1(y
(0)
0 (t) + α

(0)
1 (t)eτ1 + y2(t)e

τ2).
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Isolating terms with the exponential eτ1 on the right-hand side in this equation and subjecting them
to the orthogonality condition (13), we arrive at the equation

− α̇
(0)
1 (t) +

(
∂f
(
y
(0)
0 (t), t

)
∂y

+
K(t, t)

λ1(t)

)
α

(0)
1 (t) = 0;

supplementing this equation with the initial condition (19), we find α(0)
1 (t),

α
(0)
1 (t) =

(
y0 + λ−1

1 (0)h1(0)−
[
λ2(0)− λ1(0)

]−1
h2(0)σ

)
exp

 t∫
0

∂f
(
y
(0)
0 (θ), θ

)
∂y

+
K(θ, θ)

λ1(θ)

 dθ,

and hence the solution (18) of problem (110) in the space U is uniquely determined. In this case,
the leading term of the asymptotics has the form

yε0(t) = y
(0)
0 (t) +

(
y0 + λ−1

1 (0)h1(0)−
[
λ2(0)− λ1(0)

]−1
h2(0) exp

(
i

ε
β(0)

))

× exp

 t∫
0

∂f(y
(0)
0 (θ), θ)

∂y
+
K(θ, θ)

λ1(θ)

 dθ exp

1

ε

t∫
0

λ1(θ) dθ


+
[
λ2(t)− λ1(t)

]−1
h2(t) exp

(
i

ε
β(t)

)
.

(20)

Let us analyze it.
It can be seen from the expression (20) for yε0(t) that the construction of the leading term

of the asymptotics of the solution of problem (1) is essentially affected by the rapidly oscillating
inhomogeneity h2(t)e

i/εβ(t), the kernel K(t, s) of the integral operator, and the nonlinearity f(y, t).
Leaving the point y = y0 at the time t = 0, the exact solution y(t, ε) to problem (1) performs fast
oscillations around the solution y(0)0 (t) of the following integral equation for t > 0:

− λ1(t)y
(0)
0 (t)−

t∫
0

K(t, s)y
(0)
0 (s) ds = h1(t),

without tending to any limit as ε→ +0. One can readily see that this equation has been obtained
from the degenerate equation (ε = 0) for (1) after discarding the rapidly oscillating inhomogeneity
in (1). If h2(t) ≡ 0, i.e., there is no rapidly oscillating inhomogeneity, then, leaving the point y = y0

at time t = 0, the solution y(t, ε) of problem (1) rapidly (at an exponential rate) tends as ε → +0

to the solution of the degenerate equation −A(t)¯̄y −
∫ t
0
K(t, s)¯̄y(s) ds = h1(t).

5. SUPPLEMENT: A BRIEF OUTLINE OF THE DEVELOPMENT OF THE LOMOV
REGULARIZATION METHOD FOR SINGULARLY PERTURBED

INTEGRO-DIFFERENTIAL EQUATIONS

In the late 1950s–early 1960s, S.A. Lomov, studying the Lighthill model equation, came to the
idea of regularizing singular perturbations by passing to a higher-dimensional space. This idea was
deeply developed by him in subsequent works and leads to the creation of a method of regularization
of singular perturbations, most fully described in his monograph [4]. The regularization method
allows constructing asymptotic solutions of singularly perturbed problems in the form of series in
powers of a small parameter, the sum of which is pseudoanalytic under some additional restrictions
on the initial data of the problem. The latter means that the regularized series converge not only
asymptotically, but also in the usual sense in some annular neighborhood 0 < |ε| < ε0 of the point
ε = 0. A new direction has been formed in the theory of differential equations—the analytical theory
of singular perturbations. The results on pseudoanalyticity by Lomov were generalized to nonlinear
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ordinary differential equations, partial differential equations, and equations in Banach space by his
students V.F. Safonov, V.I. Prokhorenko, A.A. Bobodzhanov, and V.I. Kachalov. At present, the
analytical theory of singular perturbations, thanks to the research by V.I. Kachalov, is in a very
satisfactory state.

However, the problem of regularizing singularly perturbed integro-differential equations remained
practically unexplored. The first application of the regularization method to such equations was
given by S.A. Lomov (1970) and described in detail in the monograph [4, Ch. 4]. In this paper, we
consider a singularly perturbed Volterra-type system

ε
dy

dt
= A(t)y +

t∫
0

K(t, s)y(s, ε) ds+ h(t), y(0, ε) = y0, t ∈ [0, T ], (S.1)

under the conditions of stability of the spectrum {λj(t)} of the operator A(t),

λi(t) ̸= 0, λj(t) ̸= λi(t), i ̸= j, i, j = 1, . . . , n, for all t ∈ [0, T ]. (S.2)

(Unlike the papers by the Vasil’eva–Butuzov–Imanaliev school, it is assumed here that the inequal-
ities Reλj(t) ≤ 0 hold, i.e., in particular, pure imaginary spectral points are allowed.) The main
difficulty to be overcome in equations of the type (S.1) is the regularization of the integral operator

Jy =

t∫
0

K(t, s)y(s, ε) ds.

While the differential part of problem (S.1) admits a fairly self-apparent extension

ε
∂ỹ

∂t
+

n∑
j=1

λj(t)
∂ỹ

∂τj
−A(t)ỹ

after introducing the regularizing variables

τj =
1

ε

t∫
0

λj(θ) dθ ≡
ψ(t)

ε
, j = 1, . . . , n, (S.3)

in the indicated variables the integral operator takes the form

Jỹ =

t∫
0

K(t, s)ỹ

(
s,
ψ(s)

ε
, ε

)
ds,

and its extension with respect to the independent variables τj becomes problematic.
The solution of this problem was given by S.A. Lomov himself. For the simplest case of integro-

differential equations of the type (S.1), he proposed introducing a space that is invariant under the
action of the integral operator J obtained in a natural way from the space of resonant solutions by
integrating by parts its elements (see [4]). This idea of fundamental importance made it possible to
move the process of generalization of the regularization method to integro-differential systems from
the “dead point.” Nevertheless, for ten years (1979–1989) not a single work devoted to this topic
was published. Only in the 1990s, interest in integro-differential equations was renewed owing to
the study of the relationship between the Lomov regularization method and the Larionov equivalent
differential correspondence method [17]. Larionov’s method considers integro-differential equations

ε
dy

dt
= Ay +

t∫
0

K

(
t

ε
− s

ε

)
y(s, ε) ds+ h(t), y(0, ε) = y0, t ∈ [0, T ],
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with a constant matrix A and with rapidly varying kernels of the type K(t/ε− s/ε) ≡ e−ν(t/ε−s/ε)

(ν = const). Such equations often occur in applications (see, e.g., [17]), but a regularization method
for them has not been developed.

When generalizing Lomov’s idea to integro-differential equations with rapidly varying kernels,
Safonov proposed to consider systems of singularly perturbed integro-differential equations of the
form

ε
dy

dt
= A(t)y +

t∫
0

e
ε−1

t∫
s

µ(θ) dθ

K(t, s)y(s, ε) ds+ h(t),

y(0, ε) = y0, t ∈ [0, T ], ε > 0,

(S.4)

with a variable matrix A(t) and with a scalar function µ(t) called the spectral value of the kernel
of the integral operator. The paper [18] considered the case of instability of the spectral value
(µ(t) = trl(t), l(t) < 0) under conditions (S.2) on the spectrum of the matrix A(t), and it was
shown that the regularization of problem (S.4) involves not only the regularizing functions (S.3) but
also the special functions

σk = e
ε−1

t∫
0

µ(θ) dθ
t∫

0

e
ε−1

s∫
0

µ(θ) dθ sk

k!
ds (k = 0, . . . , r − 1) (S.5)

induced by the point t = 0 of instability of the spectral value µ(t) of the kernel of the integral
operator as well as the function µ(t) itself. It follows that if µ(t) < 0 (for all t ∈ [0, T ]), then, to
regularize problem (S.4), in addition to the regularizing functions (S.3), one should introduce the
regularizing variables (S.5) and one more additional variable τn+1 = ε−1

∫ t
0
µ(θ) dθ.

The prospect of further research is related to the consideration of integro-differential partial
differential equations, nonlinear integro-differential equations of the Volterra and Fredholm type,
as well as nonlinear integro-differential equations with rapidly oscillating coefficients and inhomo-
geneities. The last type of equations includes the equation in problem (1) considered in the present
paper, as well as the equations of problems in the papers [10–12, 14].
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