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INTRODUCTION

In the present paper, we study the Dirac system

By′ + V y = λy, (1)

where y = col (y1(x), y2(x)), λ ∈ C is the spectral parameter,

B =

(
0 1

−1 0

)
, V (x) =

(
p(x) q(x)

q(x) −p(x)

)
,

and the functions p, q ∈ L1(0, π) are complex-valued, with the two-point boundary conditions

U(y) ≡ Cy(0) +Dy(π) = 0, (2)

where

C =

(
a11 a12

a21 a22

)
, D =

(
a13 a14

a23 a24

)
,

the coefficients aij can be any complex numbers, and the rows of the matrix

A = (CD) =

(
a11 a12 a13 a14

a21 a22 a23 a24

)
are linearly independent.

We denote by ‖f‖ = (|f1|2 + |f2|2)1/2 the norm of an arbitrary vector f = col (f1, f2) ∈ C2 and
set 〈f, g〉 = f1g1 +f2g2. We denote the norm of an arbitrary 2×2 matrixW by ‖W‖ = sup

‖f‖=1

‖Wf‖.

Let L2,2(a, b) be the space of two-dimensional vector functions f(t) = col (f1(t), f2(t)) with the
norm ‖f‖L2,2(a,b) = (

∫ b
a
‖f(t)‖ dt)1/2, and let L2,2

2,2(a, b) be the space of 2× 2 matrix functions W (t)

with the norm ‖W‖L2,2
2,2(a,b)

= (
∫ b
a
‖W (t)‖ dt)1/2. We treat the operator Ly = By′ + V y as a linear

operator in the space L2,2(0, π) with domain D(L) = {y ∈ W 1
1 [0, π] : Ly ∈ L2,2(0, π), Uj(y) = 0

(j = 1, 2)}.
Let

E(x, λ) =

(
c1(x, λ) −s2(x, λ)

s1(x, λ) c2(x, λ)

)
993
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be the fundamental matrix of Eq. (1) with the boundary condition E(0, λ) = I, where I is the
identity matrix, and let E0(x, λ) be the fundamental matrix of the unperturbed equation By′ = λy
with the boundary condition E0(0, λ) = I. It is obvious that

E0(x, λ) =

(
cos(λx) − sin(λx)

sin(λx) cos(λx)

)
.

It is well known that the entries of the matrix E(x, λ) are related by

c1(x, λ)c2(x, λ) + s1(x, λ)s2(x, λ) = 1 (3)

for any x and λ. Let Jij be the determinant formed by the ith and jth columns of A. Set
J0 = J12 + J34, J1 = J14 − J23, and J2 = J13 + J24.

It was shown in [1] by the transformation operator method that the characteristic determi-
nant ∆(λ) of problem (1), (2), which is equal to

∆(λ) = J12 + J34 + J14c2(π, λ)− J23c1(π, λ)− J13s2(π, λ)− J24s1(π, λ), (4)

can be reduced to the form

∆(λ) = ∆0(λ) +

π∫
0

r1(t)e
−iλt dt+

π∫
0

r2(t)e
iλt dt = ∆0(λ) +R(λ), (5)

where the function

∆0(λ) = J0 + J1 cos(πλ)− J2 sin(πλ)

= J12 + J34 +
1

2

(
eiπλ(J1 + iJ2) + e−iπλ(J1 − iJ2)

)
= J0 + C1e

iπλ + C2e
−iπλ,

(6)

C1 = (J1 + iJ2)/2, C2 = (J1− iJ2)/2, is the characteristic determinant of the unperturbed problem

By′ = λy, U(y) = 0 (7)

and the functions rj belong to the space L1(0, π), j = 1, 2. If p, q ∈ L2(0, π) (for short, we
write V ∈ L2(0, π)), then rj ∈ L2(0, π). It follows that the function ∆(λ) is an entire function
of exponential type; therefore, we only have the following possibilities for the operator L of prob-
lem (1), (2):

1. The spectrum is empty.
2. The spectrum is a finite nonempty set.
3. The spectrum is a countable set without finite limit points.
4. The spectrum fills the entire complex plane.
Relations (5) and (6) imply that case 1 is realized for problem (7), for example, with the boundary

conditions defined by the matrix

A =

(
1 i −1 i

1 −i 1 i

)
,

and case 4, with the boundary conditions defined by the matrix

A =

(
1 −i 0 0

0 0 i 1

)
.

Let us prove that case 2 is impossible. Let the equation

∆(λ) = 0
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ON THE SPECTRUM OF TWO-POINT BOUNDARY VALUE PROBLEMS 995

have finitely many roots λk, k = 1, . . . , n. If C1C2 6= 0, then conditions (2) are regular and
problem (1), (2) has a countable set of eigenvalues; therefore, C1C2 = 0. Set P (λ) =

∏n

k=1(λ− λk).
By [2],

∆(λ) = P (λ)eaλ+b,

where a and b are some constants. Assume, for example, that C2 = 0. Setting λ = −iy in
relation (5), where y > 0, we obtain

J0 + C1e
πy +R(−iy) = P (−iy)e−iay+b,

which implies that

J0e
−πy + C1 + e−πyR(−iy) = P (−iy)eb−iRe aye(Im a−π)y. (8)

According to [3, p. 36], the expression on the left-hand side in relation (8) tends to C1 as y → ∞.
If Im a−π ≥ 0, then the expression on the right-hand side in relation (8) tends to infinity in absolute
value, and if Im a− π < 0, then it tends to zero. It follows that C1 = 0. If C1 = C2 = 0, then

R(λ) = P (λ)eaλ+b. (9)

Obviously, the left-hand side of relation (9) is bounded on the real axis, while the right-hand side
is not; that is, we arrive at a contradiction.

Definition. We say that problem (1), (2) has the classical spectral asymptotics if its spectrum
is a countable set and the multiplicities of the eigenvalues are uniformly bounded.

The present paper is aimed at constructing problems (1), (2) for which case 3 is realized and
the multiplicities of the eigenvalues grow unboundedly, i.e., problems with nonclassical spectral
asymptotics.

MAIN RESULTS

Set cj(λ) = cj(π, λ) and sj(λ) = sj(π, λ), j = 1, 2. In addition, let PWσ be the class of entire
functions f(z) of the exponential type ≤ σ such that ‖f‖L2(R) < ∞. It is well known [4] that the
functions cj(λ) and sj(λ) admit the representation

cj(λ) = cos(πλ) + gj(λ), sj(λ) = sin(πλ) + hj(λ),

where gj, hj ∈ PWπ, j = 1, 2.

Lemma 1 [5]. The functions u(λ) and v(λ) admit the representations

u(λ) = sin(πλ) + h(λ), v(λ) = cos(πλ) + g(λ),

where h, g ∈ PWπ , if and only if

u(λ) = −π(λ0 − λ)

∞∏
n=−∞
n 6=0

λn − λ
n

,

where λn = n+ εn and {εn} ∈ l2 , and

v(λ) =

∞∏
n=−∞

λn − λ
n− 1/2

,

where λn = n− 1/2 + κn and {κn} ∈ l2.
Consider the Dirac system with the boundary conditions defined by the matrix

A =

(
1 0 0 1

0 1 1 0

)
. (10)
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We will assume that V ∈ L2(0, π). It follows from the representation (4) that the characteristic
determinant ∆(λ) of problem (1), (2) with matrix A defined in (10) can be reduced to the form

∆(λ) = s1(λ)− s2(λ) =

π∫
−π

r(t)eiλt dt = f(λ),

where r ∈ L2(0, π), and f ∈ PWπ. The converse statement holds true as well.

Theorem. For each function f ∈ PWπ , there exists a potential V ∈ L2(0, π) such that the
characteristic determinant ∆(λ) of problem (1), (2) with the matrix A defined by relation (10) and
the potential V (x) is identically equal to f(λ).

Proof. Let f(λ) be an arbitrary function in the class PWπ. It follows from the Paley–Wiener
theorem and [3, p. 36] that

lim
|λ|→∞

e−π|Imλ|f(λ) = 0; (11)

consequently, there exists a positive integer N0 so large that |f(λ)| < 1/100 if Imλ = 0
and |Reλ| ≥ N0.

Let {λn}, n ∈ Z, be a strictly monotone increasing sequence of real numbers such that
N0 < λn < N0 + 1/100 if 1 ≤ n ≤ N0, λn = n− 1/2 if n > N0, and λn = −λ−n+1 for any n. Set

c(λ) =

∞∏
n=−∞

λn − λ
n− 1/2

.

Lemma 1 implies the relation
c(λ) = cos(πλ) + g(λ), (12)

where g ∈ PWπ. It follows from the Paley–Wiener theorem and [3, p. 36] that

lim
|λ|→∞

e−π|Imλ|g(λ) = 0;

therefore, ∣∣c(λ)
∣∣ ≥ c0eπ|Imλ| (13)

(c0 = const > 0) for |Imλ| ≥M , where M is a sufficiently large number.
Differentiating relation (12), we obtain

ċ(λ) = −π sin(πλ) + ġ(λ). (14)

Since the function ġ belongs to the class PWπ, we have, according to [6],

ċ(λn) = −π sin(πλn) + τn,

where
∞∑

n=−∞

|τn|2 <∞.

Based on this, by the definition of the numbers λn, we obtain

ċ(λn) = π(−1)n + ρn, (15)

where
∞∑

n=−∞

|ρn|2 <∞.
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Consequently, for all even n sufficiently large in modulus one has the inequality ċ(λn) > 0. One can
readily see that the inequality ċ(λn)ċ(λn+1) < 0 holds for all n ∈ Z. It follows that

(−1)nċ(λn) > 0 (16)

for all n ∈ Z. Note that (15) implies the relation

1

ċ(λn)
=

(−1)n

π
+ σn, (17)

where
∞∑

n=−∞

|σn|2 <∞.

Consider the quadratic equation

w2 + f(λn)w − 1 = 0. (18)

It has the roots

s±n =
−f(λn)±

√
f2(λn) + 4

2
.

By Γ(z, r) we denote the disk of radius r centered at point z. One can readily see that all numbers s+n
lie inside the disk Γ(1, 1/10) and all numbers s−n lie inside the disk Γ(−1, 1/10). Let sn = s+n if n is
odd and sn = s−n if n is even. Since [6] {f(λn)} ∈ l2, it follows from the definition of the numbers sn
that

sn = (−1)n+1 + ϑn, (19)

where {ϑn} ∈ l2. It also follows from the definition of the numbers sn and inequality (16) that all
numbers zn = sn/ċ(λn) lie strictly to the left of the imaginary axis, while (17) and (19) imply the
relation

zn = − 1

π
+ ρn,

where {ρn} ∈ l2. Let βn = sn − sin(πλn); then {βn} ∈ l2 in view of (19). Set

h(λ) = c(λ)

∞∑
n=−∞

βn
ċ(λn)(λ− λn)

.

According to [7, p. 120], the function h belongs to the class PWπ, and h(λn) = βn. Set
s(λ) = sin(πλ) + h(λ); then s(λn) = sn 6= 0, and consequently, the functions s(λ) and c(λ) do
not have common roots.

Set

Y0(x, λ) =

(
cos(λx)

sin(λx)

)
.

In the subsequent exposition, we need the following elementary assertion.

Lemma 2. If function systems {ϕn} and {ψn} are complete in L2(a, b) (n ∈ N), then the system
of vectors

Ψn,n =

(
{ϕn}
{ψn}

)
∪

(
{ϕn}
{−ψn}

)
is complete in L2,2(a, b).

Proof. Assume that there exists a vector f(x) = col (f1(x), f2(x)) 6= 0 such that

b∫
a

(
ϕn(x)f1(x) + ψn(x)f2(x)

)
dx = 0,

b∫
a

(
ϕn(x)f1(x)− ψn(x)f2(x)

)
dx = 0
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for all n ∈ N. Then
b∫

a

ϕn(x)f1(x) dx = 0,

b∫
a

ψn(x)f2(x) dx = 0;

consequently, f1(x) ≡ f2(x) ≡ 0. The proof of the lemma is complete.
It follows from [8] that the function systems {cos(λnx)} and {sin(λnx)} (n ∈ N) are complete

in L2(0, π). Based on this, it follows from the definition of the numbers λn and Lemma 2 that the
system of vectors

Y0(x, λn) =

(
cos(λnx)

sin(λnx)

)
(n ∈ Z) is complete in L2,2(0, π). Set

F (x, t) = −
∞∑

n=−∞

(
sn

ċ(λn)
(Y0(x, λn)Y T

0 (t, λn)) +
1

π
Y0(x, n− 1/2)Y T

0 (t, n− 1/2)

)
. (20)

It follows from [4] that
‖F ( · , x)‖L2,2

2,2(0,π)
+ ‖F (x, · )‖L2,2

2,2(0,π)
< C,

where C is a constant independent of x. Let us prove that for each x ∈ [0, π] the homogeneous
equation

fT(t) +

x∫
0

fT(s)F (s, t) ds = 0, (21)

where f(t) = col (f1(t), f2(t)), f ∈ L2,2(0, x), f(t) = 0 for x < t ≤ π, has only the trivial solution.
Multiplying Eq. (21) by fT(t) and integrating the resulting equation over the segment [0, x], we
obtain

‖f‖2L2,2(0,x)
+

x∫
0

〈 x∫
0

fT(s)F (s, t) ds, fT(t)

〉
dt = 0.

Taking into account definition (20), by simple calculations we find that

fT(s)F (s, t)

= −

{
∞∑

n=−∞

{
zn
[
f1(s) cos(λns) cos(λnt) + f2(s) sin(λns) cos(λnt),

f1(s) cos(λns) sin(λnt) + f2(s) sin(λns) sin(λnt)
]

+
1

π

[
f1(s) cos

(
(n− 1/2)s

)
cos
(
(n− 1/2)t

)
+ f2(s) sin

(
(n− 1/2)s

)
cos
(
(n− 1/2)t

)
,

f1(s) cos
(
(n− 1/2)s

)
sin
(
(n− 1/2)t

)
+ f2(s) sin

(
(n− 1/2)s

)
sin
(
(n− 1/2)t

)]}}

= −

{
∞∑

n=−∞

{
zn
[
f1(s) cos(λns) cos(λnt) + f2(s) sin(λns) cos(λnt)

]
+

1

π

[
f1(s) cos

(
(n− 1/2)s

)
cos
(
(n− 1/2)t

)
+ f2(s) sin

(
(n− 1/2)s

)
cos
(
(n− 1/2)t

)]
,

zn
[
f1(s) cos(λns) sin(λnt) + f2(s) sin(λns) sin(λnt)

]
+

1

π

[
f1(s) cos

(
((n− 1/2)s)

)
sin
(
(n− 1/2)t

)
f2(s) sin

(
(n− 1/2)s

)
sin
(
(n− 1/2)t

)]}}
,

DIFFERENTIAL EQUATIONS Vol. 57 No. 8 2021
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which implies that
x∫

0

〈 x∫
0

fT(s)F (s, t) ds, fT(t)

〉
dt

= −


∞∑

n=−∞

x∫
0

 x∫
0

{
zn
[
f1(s) cos(λns) cos(λnt) + f2(s) sin(λns) cos(λnt)

]

+
1

π

[
f1(s) cos

(
(n− 1/2)s

)
cos
(
(n− 1/2)t

)
+ f2(s) sin

(
(n− 1/2)s

)
cos
(
(n− 1/2)t

)]}
ds

 f1(t) dt

+

∞∑
n=−∞

x∫
0

 x∫
0

{
zn
[
f1(s) cos(λns) sin(λnt) + f2(s) sin(λns) sin(λnt)

]

+
1

π

[
f1(s) cos

(
(n− 1/2)s

)
sin
(
(n− 1/2)t

)
+ f2(s) sin

(
(n− 1/2)s

)
sin
(
(n− 1/2)t

)]}
ds

 f2(t) dt


= −


∞∑

n=−∞

 x∫
0

zn
[
f1(s) cos(λns) + f2(s) sin(λns)

]
ds

x∫
0

cos(λnt)f1(t) dt

+
1

π

x∫
0

[
f1(s) cos

(
(n−1/2)s

)
+ f2(s) sin

(
(n−1/2)s

)]
ds

x∫
0

cos
(
(n−1/2)t

)
f1(t) dt


+

∞∑
n=−∞

 x∫
0

zn
[
f1(s) cos(λns) + f2(s) sin(λns)

]
ds

x∫
0

sin(λnt)f2(t) dt

+
1

π

x∫
0

[
f1(s) cos

(
(n−1/2)s

)
+f2(s) sin

(
(n−1/2)s

)]
ds

x∫
0

sin
(
(n−1/2)t

)
f2(t) dt


= −


∞∑

n=−∞

 x∫
0

zn
[
f1(s) cos(λns) + f2(s) sin(λns)

]
ds

x∫
0

cos(λnt)f1(t) dt

+

x∫
0

[
f1(s) cos(λns) + f2(s) sin(λns)

]
ds

x∫
0

sin(λnt)f2(t) dt


+

1

π

∞∑
n=−∞

 x∫
0

[
f1(s) cos

(
(n−1/2)s

)
+f2(s) sin

(
(n−1/2)s

)]
ds

 x∫
0

cos
(
(n−1/2)t

)
f1(t) dt

+

x∫
0

[
f1(s) cos

(
(n− 1/2)s

)
+ f2(s) sin

(
(n− 1/2)s

)]
ds

x∫
0

sin
(
(n− 1/2)t

)
f2(t) dt


DIFFERENTIAL EQUATIONS Vol. 57 No. 8 2021
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= −


∞∑

n=−∞

 x∫
0

zn
[
f1(t) cos(λnt) + f2(t) sin(λnt)

]
dt

x∫
0

cos(λnt)f1(t) dt

+

x∫
0

[
f1(t) cos(λnt) + f2(t) sin(λnt)

]
dt

x∫
0

sin(λnt)f2(t) dt


+

1

π

∞∑
n=−∞

 x∫
0

[
f1(t) cos

(
(n−1/2)t

)
+ f2(t) sin

(
(n−1/2)t

)]
dt

x∫
0

cos
(
(n−1/2)t

)
f1(t) dt

+

x∫
0

[
f1(t) cos(nt) + f2(t) sin

(
(n− 1/2)t

)]
dt

x∫
0

sin
(
(n− 1/2)t

)
f2(t) dt


= −


∞∑

n=−∞

zn

x∫
0

[
f1(t) cos(λnt) + f2(t) sin(λnt)

]
dt

x∫
0

[
f1(t) cos(λnt) + f2(t) sin(λnt)

]
dt

+

∞∑
n=−∞

1

π

x∫
0

[
f1(t) cos

(
(n− 1/2)t

)
+ f2(t) sin

(
(n− 1/2)t

)]
dt

×
x∫

0

[
f1(t) cos

(
(n− 1/2)t

)
+ f2(t) sin

(
(n− 1/2)t

)]
dt


= −

∞∑
n=−∞

zn

∣∣∣∣∣∣
x∫

0

〈
f(t), Y0(t, λn)

〉
dt

∣∣∣∣∣∣
2

−
∞∑

n=−∞

1

π

∣∣∣∣∣∣
x∫

0

〈
f(t), Y0(t, (n− 1/2))

〉
dt

∣∣∣∣∣∣
2

.

In view of Parseval’s identity, we obtain

‖f‖2L2,2(0,x)
=

∞∑
n=−∞

1

π

∣∣∣∣∣∣
x∫

0

〈
f(t), Y0(t, (n− 1/2))

〉
dt

∣∣∣∣∣∣
2

;

therefore,
∞∑

n=−∞

zn

∣∣∣∣∣∣
x∫

0

〈
f(t), Y0(t, λn)

〉
dt

∣∣∣∣∣∣
2

= 0. (22)

Since Re zn < 0 for each n, Eq. (22) implies that
∫ x
0
〈f(t), Y0(t, λn)〉 dt = 0. The latter and the

completeness of the system of vectors {Y0(t, λn)} in L2,2(0, π) imply the identity f(t) ≡ 0. The
unique solvability of Eq. (21) implies [4] that the functions c(λ) and −s(λ) are the entries of the
first row of the monodromy matrix

Ũ(π, λ) =

(
c̃1(π, λ) −s̃2(π, λ)

s̃1(π, λ) c̃2(π, λ)

)

of problem (1), (2) with the matrix A defined in (10) and some potential Ṽ ∈ L2(0, π); i.e.,

c(λ) = c̃1(π, λ), s(λ) = s̃2(π, λ). (23)

By virtue of (4), the characteristic determinant ∆̃(λ) of this problem has the form

∆̃(λ) = s̃1(π, λ)− s̃2(π, λ) = f̃(λ),

DIFFERENTIAL EQUATIONS Vol. 57 No. 8 2021
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where f̃ ∈ PWπ. Relations (3), (18), and (23) imply the equality

∆̃(λn) = s̃1(π, λn)− s̃2(π, λn) =
1

s̃2(π, λn)
− s̃2(π, λn) =

1

s(λn)
− s(λn) = f(λn).

It follows from the last equality that the function

Φ(λ) =
f(λ)− ∆̃(λ)

c(λ)
=
f(λ)− f̃(λ)

c(λ)

is entire. Since ∣∣f(λ)− f̃(λ)
∣∣ < c1e

π|Imλ|, c1 = const, (24)

we conclude in view of inequality (13) that |Φ(λ)| ≤ c2 = const if |Imλ| ≥M .
Let H stand for the union of vertical segments {z : |Re z| = n, |Im z| ≤ M}, where

|n| = N0 + 1, N0 + 2, . . . Since the function c(λ) is a sine-type function [9], we have |c(λ)| > δ > 0
for λ ∈ H. The last inequality, the estimate (24), and the maximum principle imply the inequal-
ity |Φ(λ)| < c3 = const in the strip |Imλ| ≤ M . Consequently, the function Φ(λ) is bounded in
the entire complex plane and is constant by Liouville’s theorem. Let |Imλ| = M . Then, in view
of relation (11), we have lim

|λ|→∞
(f(λ) − f̃(λ)) = 0; therefore, Φ(λ) ≡ 0, and hence f(λ) ≡ ∆̃(λ).

The proof of the theorem is complete.
Examples of functions in the class PWπ with roots of arbitrarily high multiplicity are known

in the literature (see, e.g., [10, 11]). Note that the existence of one-dimensional boundary value
problems with an unboundedly increasing multiplicity of eigenvalues was previously established for
the Sturm–Liouville operator and an ordinary differential operator of any even order [10–12].
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