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Abstract—For abstract nonlinear difference schemes with operators acting in finite-dimensional
Banach spaces, a stability criterion is stated and proved; namely, for a consistent finite-difference
approximation to a well-posed differential problem, the solution of the difference scheme con-
verges if and only if the scheme is unconditionally stable. In a sense, this criterion generalizes
Lax’s equivalence theorem to nonlinear differential problems. The results obtained are used to
study the stability of difference schemes that approximate quasilinear parabolic equations with
nonlinearities of unbounded growth.
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INTRODUCTION

The basic concepts of the theory of difference schemes are consistency, stability, and convergence.
The connection between these concepts is given by the Filippov–Ryaben’kii theorem [1, p. 16;
2, p. 764], which is known abroad as the Lax equivalence theorem [3, p. 54]; namely, for a consistent
finite-difference method for a well-posed linear initial–boundary value problem for partial differential
equations, the difference method converges if and only if it is stable. By consistency we mean the
requirement to approximate a well-posed differential problem. In the nonlinear case, convergence,
generally speaking, does not imply stability [4].

Many authors have attempted to transfer the above-formulated statement to nonlinear difference
problems [5–7]. A survey of some results in this direction is presented in [4] and is mainly related to
other definitions of stability such as weak stability or weak generalized stability. Noteworthy is the
series of papers [8–12] dealing with the study of the stability of difference schemes approximating
quasilinear parabolic and hyperbolic equations of a special form. All studies in these papers are
carried out only under assumptions related solely to the properties of the input data of the differential
problem. Stability in the general case can be proved only up to a certain finite time instant t ≤ t0,
whose value is accounted for by the application of a grid analog of the Bihari lemma. In [13, 14],
similar results were obtained for computational methods for the equations of a polytropic gas with
subsonic flows.

In the present paper, the Lax equivalence theorem is generalized to abstract nonlinear difference
problems with operators acting in finite-dimensional Banach spaces. In the nonlinear case, such
a criterion can be established only for unconditionally stable computational methods, when the
corresponding a priori estimates take place for a sufficiently small |h| ≤ h0. In this case, the value
of h0 depends both on the consistency of discrete and continuous norms in Banach spaces and on the
magnitude of the perturbation in the input data of the problem. The studies carried out here allow
us to conclude that there is a close and inextricable connection between the concepts of stability in
discrete and continuous cases.

1. STATEMENT OF THE PROBLEM

Let Hk be a Banach space with the norm ‖ · ‖k, k = 1, 2, let L : H1 → H2 be a nonlinear
unbounded differential operator, and assume that we are given an element f ∈ H2. Consider the
operator equation

Lu = f. (1)

In the sequel, we assume that problem (1) is Hadamard well posed; i.e., the following conditions
are satisfied:
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1. There exists a unique solution for all input data f ∈ H2.
2. The solution continuously depends on the input data; i.e., there exists a positive constant
c0 > 0 for which the following inequality is satisfied:

‖ũ− u‖1 ≤ c0‖f̃ − f‖2, (2)

where ũ ∈ H1 is the solution of problem (1) with the perturbed input data f̃ ∈ H2.
The property of the solution of the differential problem expressed by inequality (2) is called the

stability of the solution with respect to a small perturbation in the input data.
For an approximate solution of problem (1), we use the difference scheme (abstract notation)

Lhy = ϕh. (3)

Here Lh : H1h → H2h and ϕ ∈ H2h approximate L and f , respectively, and the Hkh, k = 1, 2,
are finite-dimensional Banach spaces depending on a positive parameter h that is a vector of some
normed space with norm |h|.

In the present paper, we stick to the main definitions of the theory of difference schemes given
in [7, 15].

By the approximation of the difference scheme (3) on the solution of the differential problem (1)
we mean the error

ψh = Lhuh − ϕh = Lhuh − (Lu)h + fh − ϕh, (4)

for which
‖ψh‖2h ≤Mhk3 , k3 = const > 0. (5)

We say that a difference scheme is consistent with the differential problem if∥∥Lhuh − (Lu)h
∥∥

2h
→ 0 and ‖fh − ϕh‖2h → 0 as |h| → 0. (6)

For all elements in Hm and Hmh, we assume that Πmhg = gh, where Πmh is the projection. In the
case of continuous functions, the operator Πmh is the unity (identity) one, i.e.,

gmh(x) = Πmhgm(x) = gm(x), m = 1, 2; x ∈ ωh.

We will also assume that the mesh norms ‖ · ‖kh introduced in Hkh are consistent with the
corresponding norms ‖ · ‖k in the spaces Hk, k = 1, 2; i.e.,

|‖gh‖mh − ‖g‖m| ≤ cm|h|km , m = 1, 2,

for all gh ∈ Hmh and g ∈ Hm, where km > 0.
Moreover, we assume that the difference scheme (3) is consistent with the well-posed problem (1)

in the sense of satisfying relations (5) and (6).
Recall also that the solution of the difference scheme converges to the solution of the differential

problem at the rate O(|h|k3) if the following inequality holds:

‖y − uh‖1h ≤ c3|h|k3 .

2. CONVERGENCE CRITERION

Let us state and prove the main result of the present paper.

Theorem. If the well-posed problem (1) and its finite-difference approximation satisfy the con-
sistency condition, then the unconditional stability is necessary and sufficient for the convergence of
the difference scheme.

Proof. The necessity was proved earlier (see, e.g., [7, p. 107]). For the completeness of the
presentation, we reproduce this proof here. Thus, let the difference scheme (3) be unconditionally

DIFFERENTIAL EQUATIONS Vol. 57 No. 6 2021



CRITERION FOR THE STABILITY OF DIFFERENCE SCHEMES 807

stable. It follows that there exists a constant c4 independent of h, y, ỹ such that for all sufficiently
small |h| ≤ h0 one has the a priori estimate

‖ỹ − y‖1h ≤ c4‖ϕ̃h − ϕh‖2h, (7)

where ỹ is the solution of problem (3) with the input data ϕ̃h ∈ H2h. Recall also that if inequality (7)
is satisfied for arbitrary |h|, then such a scheme is said to be absolutely stable [7, p. 286].

From relation (4), which determines the error ψh, we express

Lhuh = ψh + ϕh = ϕ̃h;

based on this, by virtue of the definition of stability and inequalities (5) and (7), we obtain

‖y − uh‖1h ≤ c4‖ϕ̃h − ϕh‖2h = c4‖ψh‖2h → 0 as |h| → 0.

The necessity is proved.
Sufficiency. Let us prove that the convergence implies the unconditional stability of the scheme;

i.e., there exists a positive constant c4 such that the estimate (7) holds for a sufficiently small

|h| ≤ h0, h0 = c5‖ϕ̃h − ϕh‖1/k42h , k4 = min{k1, k2, k3}. (8)

In view of the above assumptions, using the triangle inequality for norms, we obtain

‖ỹ − y‖1h = ‖ỹ − ũh − (y − uh) + (ũh − uh)‖1h ≤ ‖ỹ − ũh‖1h + ‖y − uh‖1h + ‖ũ− uh‖1h
≤ c5|h|k3 + c1|h|k1 + ‖ũ− u‖1 ≤ c5|h|k3 + c1|h|k1 + c0‖f̃ − f‖2

and hence
‖ỹ − y‖1h ≤ c5|h|k3 + c1|h|k1 + c0c2|h|k2 + c0‖f̃h − fh‖2h.

Now, since

‖f̃h − fh‖2h = ‖f̃h − ϕ̃h − (fh −ϕh) + ϕ̃h −ϕh‖2h ≤ ‖ψh‖2h + ‖ϕ̃h −ϕh‖2h ≤M |h|k1 + ‖ϕ̃h −ϕh‖2h,
we arrive at the estimate (7), which means the unconditional stability of the difference scheme (3)
under assumption (8).

The proof of the theorem is complete.

3. STABILITY OF DIFFERENCE SCHEMES APPROXIMATING A QUASILINEAR
PARABOLIC EQUATION

3.1. The Case of Existence of Classical Solution
The theory of difference schemes for nonlinear equations of mathematical physics with non-

linearities of unbounded growth is one of the most difficult and topical areas of computational
mathematics. The issues of convergence and well-posedness of difference schemes for this class of
problems have been studied by many authors [16–19].

Despite the obtained estimates of the accuracy of solutions of difference schemes that approximate
nonlinear equations of mathematical physics, the question of their stability remained open for a long
time. In our opinion, the main reason for the lack of scientific results in this direction is associated
with the need to obtain preliminary a priori estimates not only for the difference solution in the
problem for the perturbation δy = ỹ − y but also for its derivatives in the strong uniform metric.

The criterion for the convergence of nonlinear difference schemes proved in this paper allows one
to prove the unconditional stability of difference methods for which convergence has already been
proved.

In the rectangle QT = Ω × [0 ≤ t ≤ T ], where Ω = {x : 0 ≤ x ≤ l}, we consider the Dirichlet
boundary value problem for the quasilinear heat equation

∂u

∂t
=

∂

∂x

(
k(u)

∂u

∂x

)
, (9)

u(x, 0) = u0(x), x ∈ Ω; u(0, t) = µ1(t), u(l, t) = µ2(t), t ∈ [0, T ]. (10)
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We introduce the range of the exact solution

D =
{
u : m ≤ u ≤M, u0 > 0, (x, t) ∈ QT

}
, m = inf

(x,t)∈QT
u(x, t), M = sup

(x,t)∈QT

u(x, t),

and define its neighborhood

D1 =
{
ũ : |ũ− u| < r, u ∈ D, r > 0

}
.

In problems with an unbounded nonlinearity, it is assumed that there exists a constant r0 > 0
such that

k(u) ≥ r0 for all u ∈ D

and in addition, the function k(ũ) has all derivatives bounded in D1.
We assume that problem (9), (10) is well posed in the following sense:

(a) There exists its unique solution u(x, t) ∈ C2+λ,1+β(QT ), 0.5 < λ, β < 1, with the func-
tion ∂2u/∂x2 being Lipschitz continuous in the variable t. Here Cm1+λ,m2+β(QT ) is the class
of functions whose x-derivatives of order ≤ m1 and t-derivatives of order ≤ m2 are continuous
in QT and satisfy the Hölder condition with exponents λ and β, respectively.

(b) The solution is stable in the uniform norm for all u, ũ ∈ C2+λ,1+β(QT ) with respect to small
disturbances in the initial data,

‖ũ− u‖C(QT ) ≤ c0‖ũ0 − u0‖C(Ω),

where ‖ · ‖C(QT ) = max
(x,t)∈QT

| · |, ‖ · ‖C(Ω) = max
x∈Ω
| · |, and ũ is the solution of problem (9), (10)

with the perturbed initial condition ũ0.
On the uniform mesh ωhτ =ωh×ωτ , where ωh={xi= ih, i=0, . . . , N, hN= l} and ωτ ={tn=nτ ,

N = 0, . . . , N0, τN0 = T}, we approximate the original differential problem by the conservative
purely implicit difference scheme

yt =
(
k(ŷ(0.5))ŷx

)
x
, y(0.5) = (yi−1 + yi)/2, (11)

y0
i = u0i, i = 0, . . . , N ; yn+1

0 = µn+1
1 , yn+1

N = µn+1
N . (12)

Here we have used the standard notation of the theory of difference schemes [7, p. 12],

y = yni = y(xi, tn), yt = (ŷ − y)/τ, ŷ = yn+1
i , yx = (yi − yi−1)/h,

yx = (yi+1 − yi)/h, (ayx)x = (ai+1yx,i+1 − aiyx,i)/h.

The accuracy of the difference scheme (11), (12) was studied in detail in the paper [18]. In par-
ticular, the estimate ‖ψ‖C(ωhτ ) ≤M(hλ + τβ), M = const > 0, was obtained for the approximation
error ψ = −ut+(k(û(0.5))ûx)x on the solution of the differential problem and the following accuracy
estimate was proved:

‖y − u‖C(ωhτ ) ≤ c3(hλ−0.5 + τβ−0.5),

where, as usual, ‖ · ‖C(ωh) = max
x∈ωh
| · | and ‖ · ‖C(ωhτ ) = max

(x,t)∈ωhτ
| · |.

Obviously, a similar estimate holds for the perturbed difference scheme,

‖ỹ − ũ‖C(ωhτ ) ≤ c3(hλ−0.5 + τβ−0.5); 0.5 < λ, β < 1.

Based on the above, we conclude that

‖ỹ − y‖C(ωhτ ) ≤ ‖y − u‖C(ωhτ ) + ‖ỹ − ũ‖C(ωhτ ) + ‖ũ− u‖C(ωhτ )

≤ 2c3(hλ−0.5 + τβ−0.5) + ‖ũ0 − u0‖C(Ω).
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Obviously, for sufficiently small h ≤ h0 and τ ≤ τ0 satisfying the inequality

2c3(hλ−0.5 + τβ−0.5) ≤ ‖ũ0 − u0‖C(Ω),

the difference scheme (11), (12) is unconditionally stable in the C-norm with respect to the initial
data, and one has the inequality

‖ỹ − y‖C(ωhτ ) ≤ 2‖ũ0 − u0‖C(Ω).

3.2. Stability of Difference Schemes for Problems with Generalized Solutions

In the rectangle QT , consider problem (10) for the somewhat more general equation

∂u

∂t
=

∂

∂x

(
k(x, t, u)

∂u

∂x

)
, (x, t) ∈ QT , (13)

whose coefficient k(x, t, u) has the properties

k(x, t, u) ∈ C(QT ×D),
∂k(x, t, u)

∂u
∈ C(QT ×D),

k(x, t, u) ≥ k1 > 0 for all (x, t) ∈ QT , u ∈ D.

In accordance with [20], we call the function u(x, t) a generalized solution of problem (13), (10)
if for each infinitely differentiable function ϕ(x, t) with compact support one has the equality∫∫

QT

(
−u∂ϕ

∂t
+ k(x, t, u)

∂u

∂x

∂ϕ

∂x

)
dx dt = 0. (14)

If u(x, t) ∈ C(QT ) and ∂u/∂x is a piecewise continuous function, then condition (14) is equivalent
to the equality ∮

C

u dx+ k(x, t, u)
∂u

∂x
dt = 0 (15)

along any contour bounding the subdomain Q′ ∈ QT . This is a common statement of conservative
laws [20]. Using identity (14), we can define a generalized solution of problem (13), (10) in the
space L2(0, T ;H1

0 (Ω)). Such a solution—when the existence of the derivative ∂u/∂t is not required
in any sense—is often referred to as a weak generalized solution. However, relation (14) implicitly
contains information about the derivative [21]; namely,

∂u

∂t
∈ L2(0, T ;H−1(Ω)).

We cannot use the definition in the form (14), because first, in the case under consideration, the
function u(x, t) is not zero on the boundary, and second, we construct a theory that would be true
in the case of nonself-adjoint operators and for problems of arbitrary dimension.

According to (15), on the line of discontinuity ∂x/∂t = D(t) one has the equality[
uD − k(x, t, u)

∂u

∂x

]
= 0; (16)

here and below by [·] we denote the difference between the values of the function on the left and on
the right of the line of discontinuity.

Physical laws asserting the continuity of the solution and the flux are a special case of rela-
tion (16),

[u] = 0,

[
k(x, t, u)

∂u

∂x

]
= 0. (17)
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Since we assume that u(x, t) ∈ C(QT ) in what follows, we restrict ourselves to the case in
which ∂u/∂x has discontinuities of only the first kind on the lines of discontinuity xk = vk(t),
k = 1, . . . ,m.

Note that in the case of linear problems, the second condition in (17) has the form[
k(x, t)

∂u

∂x

]
= 0.

Therefore, if ∂u/∂x is a discontinuous function, then this implies a discontinuity in the coeffi-
cient k = k(x, t). This is not necessary in the nonlinear case. The continuity of the flux can be
ensured by the degeneracy of the coefficient k = k(x, t, u) on weak lines of discontinuity, as we
can observe in the case of running temperature waves along the zero background for the power-law
nonlinearities k = uσ, σ > 0 (see [7, p. 450]).

In the case of discontinuous coefficients along the straight lines x = ξ, Samarskii [7, p. 417]
proved that the best conservative scheme with the stencil functional of the form

ai =

(
1

h

xi∫
xi−1

dx

k(x, t)

)−1

converges in the L2-norm with the second order in the spatial variable. A more complicated case
where the line of discontinuity is not parallel to the coordinate axes was not considered. In the
general case, to obtain the corresponding estimates of the approximation error, along with a negative
space norm one also needs to use norms negative with respect to the time variable.

On the introduced uniform mesh ωhτ , we approximate the differential problem (13), (10) by the
linearized difference scheme

yt = (aŷx)x, (18)

y(x, 0) = u0(x), x ∈ ωh; yn+1
0 = µ1(tn+1), yn+1

N = µ2(tn+1), tn ∈ ωτ . (19)

The stencil functional

a = a(y) = 0.5
[
k(x(0.5), tn, y

n
i−1) + k(x(0.5), tn, y

n
i )
]
, x(0.5) =

1

2
(xi−1 + xi),

is chosen, as usual, based on the condition of second-order consistency for the elliptic opera-
tor [7, p. 409],

(aûx)x −
∂

∂x

(
k
∂u

∂x

)
= O(h2 + τ).

Let us indicate some properties of the solution of the difference scheme (18), (19). Let us define
the range of the generalized solution of problem (13), (10),

D =
{
m1 ≤ u(x, t) ≤ m2, (x, t) ∈ QT

}
,

m1 = min
(x,t)∈QT

{
µ1(t), µ2(t), u0(x)

}
, m2 = max

(x,t)∈QT

{
µ1(t), µ2(t), u0(x)

}
.

Further, for the difference solution we use the two-sided estimate

m1 ≤ yni ≤ m2, i = 0, . . . , N, n = 0, . . . , N0, (20)

proved in [22]; i.e., y(x, t) ∈ Du for all (x, t) ∈ ωhτ . The proof is based on the maximum principle
established in [22, 23] for difference schemes with alternating-sign input data.

The a priori estimate [22]

‖yn‖C(ωhτ ) ≤ max

{
max
t∈ωτ

{∣∣µ1(t)
∣∣, ∣∣µ2(t)

∣∣}, ‖u0‖C(ωh)

}
is a corollary of the two-sided estimate (20).
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Now let us produce a problem for the error z = y − u of the method. Owing to the nonlinearity
of the scheme being explored, this problem will certainly be nontrivial. In fact, subtracting the
equation ut = (aûx)x for the approximation error from the difference equation (18), we obtain two
equivalent forms for the equation for the error z of the method,

zt =
(
a(y)ẑx

)
x

+
((
a(y)− a(u)

)
ûx

)
x

+ ψ, (21)

zt =
(
a(y)ẑx

)
x

+
((
a(y)− a(u)

)
ŷx

)
x

+ ψ. (22)

This equations should be equipped with the appropriate initial and boundary conditions,

z(x, 0) = 0, x ∈ ωh, z(0, t̂) = z(l, t̂) = 0, t ∈ ωτ .

Although these problems are equivalent, in the statement (22) we need to have preliminary infor-
mation about local behavior of the difference derivative of the approximate solution yx. Producing
such an a priori estimate for the derivative yx is not an easy problem. Similar problems arise in the
direct study of stability. In this case, the problem for the disturbance δy = ỹ − y has the form

δyt =
(
a(y)δŷx

)
x

+
((
a(ỹ)− a(y)

)
ˆ̃yx

)
x
,

δy(x, 0) = ũ0 − u0, x ∈ ωh; δy(0, t̂) = ˆ̃µ1 − µ̂1, δy(l, t̂) = ˆ̃µ2 − µ̂2, t ∈ ωτ .

Since y, u ∈ Du and k(u) ∈ C1(Du), we have

max
(x,t)∈ωhτ

∣∣a(y)− a(u)
∣∣ ≤ Lz(0.5), L = const > 0.

Further, we will use the inner products and norms on the space of mesh functions L2(ωh),W 1
2 (ωh)

(v, g) =

N−1∑
i=1

hvigi, ‖v‖h =
√

(v, v), ‖vx]|2 =

N∑
i=1

hv2
x,i.

Taking the inner product of the difference equation (21) by 2τz in L2(ωh) and using the sum-
mation by parts formula

(u, vx) = −(ux, v] + uNvN − u0v1

as well as the identity
zn+1 = 0.5(zn + zn+1) + 0.5τzt,

we obtain the energy relation

τ 2‖zt‖2h + ‖zn+1‖2h + 2τ(a(y), ẑ2
x] = ‖zn‖2h + 2τ(a(y)− a(u), ûxẑx] + 2τ(ẑ, ψ).

Further, following the paper [19] with the use of the technique of negative norms, we arrive at
the following estimate of the accuracy of the method in the mesh L2-norm:

‖yn − un‖h ≤ c6(
√
h+
√
τ), n = 0, . . . , N0,

This estimate implies the unconditional convergence of the difference solution to the generalized
solution of the differential problem (13), (10).

Obviously, a similar estimate also holds for the solution ỹ of the difference scheme (18), (19)
with the perturbed initial condition

‖ỹn − ũn‖h ≤ c7(
√
h+
√
τ), n = 0, . . . , N0.
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To apply the theorem proved in this paper, we should assume that the generalized solution of
problem (13), (10) exists, is unique, and continuously depends on the initial condition,

max
0≤t≤T

‖ũ− u‖L2(0,l) ≤ c8‖ũ0 − u0‖L2(0,l).

Since we do not perturb the boundary condition (δu(0, t) = δu(l, t) = 0), we see that the error

R(u) = ‖u‖2h − ‖u‖L2(0,l)

is the approximation error of the generalized quadrature trapezoid rule. Owing to the lack of
existence of the second derivative ∂2u/∂x2, the norm consistency condition looks as follows:∣∣R(u)

∣∣ ≤ c8h.

Now, applying similar estimates, just as in the proof of sufficiency in the theorem, we obtain the
stability estimate

max
t∈ωτ

∥∥ỹ(t)− y(t)
∥∥
h
≤ c9‖ũ0 − u0‖L2(0,l),

which holds for all sufficiently small h ≤ h0 and τ ≤ τ0 satisfying the condition
√
h+
√
τ ≤ c10‖ũ0 − u0‖L2(0,l).
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