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Abstract—We study a class of nonlinear integral equations with a noncompact Hammerstein–
Nemytskii operator on the entire line. Some special cases of such equations have specific applica-
tions in various fields of natural science. The combination of a method for constructing invariant
cone segments for the corresponding nonlinear monotone operator with methods of the theory
of functions of a real variable allows one to prove a constructive theorem on the existence of
bounded positive solutions of equations of the class under consideration. The asymptotic behav-
ior of the solution at ±∞ is studied as well. In particular, we prove that the solution constructed
in the paper is an integrable function on the negative half-line and that the difference between
the limit at +∞ and the solution is integrable on the positive half-line. In one special case, we
show that our solution generates a one-parameter family of bounded positive solutions. At the
end of the paper, we give specific applied examples of nonlinearities to illustrate the results.
DOI: 10.1134/S0012266121060069

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Consider the following class of nonlinear integral equations with a Hammerstein–Nemytskii type
operator on the entire line:

f(x) = G0

(
x, f(x)

)
+

∫
R

K(x− t)G
(
f(t)

)
dt, x ∈ R := (−∞,+∞), (1)

for the unknown measurable bounded nonnegative function f(x) on R. The nonlinearities G0(x, u)
and G(u) in Eq. (1) are defined on the sets R × R+ and R+, respectively (where R+ := [0,+∞)),
take real values, and satisfy the conditions stated below.

The kernel K has the following main properties:

K(x) > 0, x ∈ R,
∫
R

K(x) dx = 1, (2)

K ∈M(R),

∫
R

x2K(x) dx < +∞, (3)

ν(K) :=

∫
R

xK(x) dx > 0, (4)

where M(R) is the space of essentially bounded functions on R.
The nonlinearity G satisfies the following conditions on the set R+:
1. G(0) = 0, and G(u) is concave and monotone increasing.
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Fig. 1.

2. There exists a number η0 > 0 such that G(η0) = η0, G(u) > u for u ∈ (0, η0), and G(u) < u
for u ∈ (η0,+∞).

3. There exists a limit lim
u→+∞

G(u) =: γ < +∞.

4. There exists a finite derivative G′(0) > 1 at zero with

G(u) ≤ G′(0)u for all u ≥ 0.

5. There exist numbers c > 0 and ε > 0 such that G(u) ≥ G′(0)u− cu1+ε, u ∈ [0, η0].
Figure 1 graphically illustrates conditions 1–5.

Equation (1) arises in the mathematical modeling of various processes in many fields of natural
science. In particular, such equations are encountered in the mathematical theory of space-time
propagation of an epidemic taking into account the emergence of the second wave, in the kinetic
gas theory, and in the theory of radiation transfer in spectral lines (see [1–6] and the bibliography
therein). In the special case where G0 ≡ 0, Eq. (1) was studied in detail in the papers [1–3]. In the
case of ν(K) ≤ 0, Eq. (1) was analyzed in the papers [7–9]. Note that these papers heavily rely on
methods of the linear theory of integral equations of the convolution type.

In the present paper, we impose other conditions on the nonlinearities G0 and G, use methods
of the theory of nonlinear monotone operators, and apply specially selected iterations to prove the
existence of positive bounded solutions of Eq. (1). The corresponding a priori estimates in particular
imply the integrability of the solution on the negative half-line. Further, in one important special
case we use the convexity of the nonlinearity G and some geometric inequalities to establish the
existence of a limit f(+∞) of the solution at infinity and the inclusion f(+∞) − f(x) ∈ L1(R+).
At the end of the paper, particular applied examples of the functions G0 and G are given. Before
imposing conditions on the function G0(x, u), we introduce some notation and present corollaries,
to be used in what follows, of the properties of the function G(u).

2. NOTATION, AUXILIARY FACTS, AND MAIN CONDITIONS ON THE FUNCTION G0

2.1. Notation and Auxiliary Facts
Set

α0 :=

0∫
−∞

K(t) dt > 0. (5)

Along with Eq. (1), consider the following auxiliary equation of the Hammerstein type on the entire
line:

ϕ(x) =

∫
R

K(x− t)G
(
ϕ(t)

)
dt, x ∈ R, (6)

for the unknown bounded continuous positive function ϕ(x) on R.
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It was proved in the paper [3] that a necessary condition for Eq. (6) to have such a solution is
given by the inequality

G′(0)α0 < 1. (7)

In what follows, we assume that condition (7) holds unless specified otherwise.
On the set R+, we define the function

χ(u) := (uG′(0)−G(u))α0 +G(u)− u, u ≥ 0. (8)

Since there exists a finite derivative G′(0) by condition 4 and α0 is finite by property (2), we
see that χ is well defined. It follows from the equality in condition 1 that χ(0) = 0 and from
the definition of the number η0 in condition 2 and the inequality G′(0) > 1 in condition 4 that
χ(η0) = η0(G

′(0)− 1)α0 > 0. By virtue of condition 3 and inequality (7), we have χ(+∞) = −∞.
Consequently, by the Bolzano–Cauchy theorem there exists a number η > η0 such that

χ(η) = 0. (9)

Let us verify that the number η > η0 is uniquely determined from the equation χ(u) = 0.
Assume the contrary: there exists an η̃ > η0, η̃ 6= η, such that χ(η̃) = 0. Then definition (8) of the
function χ(u) implies the relation

G(η̃)−G(η)

η̃ − η
=

1−G′(0)α0

1− α0

. (10)

On the other hand, since the function G(u) is concave on R+, it follows that

G(η̃)−G(η)

η̃ − η
<
G(η)

η
(11)

for any η̃, η ∈ R+. Indeed, consider the points O(0, 0), A(η,G(η)), and Ã(η̃, G(η̃)) of the graph
of G(u). If η̃−η > 0, then inequality (11) is obviously equivalent to the inequality G(η̃)/η̃ < G(η)/η.
However, the latter inequality holds, because, by virtue of the concavity of G, the point A lies above
the segment OÃ and hence the slope G(η̃)/η̃ of the segment OÃ to the abscissa axis is less than the
slope G(η)/η of the segment OA to the abscissa axis. In exactly the same way, if η − η̃ > 0, then
inequality (11) is obviously equivalent to the inequality G(η̃)/η̃ > G(η)/η, which holds, because in
this case, by virtue of the concavity of G, the point Ã lies above the segment OA.

By the definition of the function χ (or by setting η̃ = 0 in (10)), one has the relation

G(η)

η
=

1−G′(0)α0

1− α0

,

which contradicts relations (10) and (11). Therefore, the equation χ(u) = 0 has a unique solution
for u ∈ (η0,+∞).

2.2. Main Conditions on the Function G0

Now we are in a position to present the conditions that will be imposed on the function G0(x, u).
(a) The function G0(x, u) satisfies the Carathéodory condition with respect to the argument u

on the set R × [0, η]; i.e., the function G0(x, u) is measurable with respect to x on R for
any u ∈ [0, η] and continuous with respect to u on [0, η] for almost all x ∈ R.

(b) For each x, the function G0(x, u) is monotone increasing with respect to u on the set R+.
(c) There exists a number ξ ∈ (η0, η) such that

G0(x, u) ≥ u
x∫

−∞

K(y) dy, u ∈ [0, ξ], x ∈ R.
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(d) One has the upper bound

G0(x, η) ≤
(
ηG′(0)−G(η)

)
α0

x∫
−∞

K(y) dy, x ∈ R,

where the number η > η0 is the unique root of the equation χ(u) = 0 and the number α0 is
determined by relation (5).

3. CONSTRUCTION OF A POSITIVE BOUNDED SOLUTION OF EQUATION (1)

3.1. Diekmann Function

Consider the Diekmann function [2]

L(λ) := G′(0)

∫
R

K(t)e−λt dt, λ ≥ 0,

under the condition that this integral converges for λ ∈ [0, λ1], λ1 > 0. In view of the fact
that G′(0) > 1, properties (2)–(4) imply the inequalities

L(0) = G′(0) > 1, (12)

dL

dλ

∣∣∣∣
λ=0

= −G′(0)

∫
R

K(t)t dt < 0, (13)

d2L

dλ2
= G′(0)

∫
R

K(t)t2e−λt dt > 0 (14)

(where the last integral may be infinite).
It follows from (14) that the function L(λ) is convex on [0, λ1]. Since L(λ) is continuous, it

follows from inequality (13) by the Cauchy theorem that there exists a number λ0 ∈ (0, λ1] such
that the inequality

dL

dλ
< 0 (15)

holds for all λ ∈ [0, λ0]. Assume that
L(λ0) < 1. (16)

Then it follows from inequalities (12) and (16) by the Bolzano–Cauchy theorem that there exists
a unique σ ∈ (0, λ0) such that

L(σ) = 1. (17)

Now consider the auxiliary equation (6). It follows from the results in the paper [3] that un-
der conditions 1–5 Eq. (6) has a positive bounded continuous nondecreasing solution ϕ with the
properties

ϕ(−∞) = 0, ϕ(+∞) = η0, (18)

ϕ ∈ L1(−∞, 0), η0 − ϕ ∈ L1(0,+∞). (19)

Moreover, the following upper bound holds for the solution ϕ:

ϕ(x) ≤
{
η0e

σx for x ≤ 0

η0 for x > 0.
(20)

Properties (18)–(20) are important in the subsequent argument.
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3.2. Successive Approximations to the Solution of Equation (1)
Let ψ(x) be any measurable “test” function defined on the set R and satisfying the following

conditions:

0 ≤ ψ(x) ≤ ϕ(x)

x∫
−∞

K(y) dy, x ∈ R; (21)

there exists a number r > 0 such that

inf
x∈[r,+∞)

ψ(x) > 0. (22)

Recall that ϕ(x) is a solution of the nonlinear equation (6).
We introduce the following special iterations for Eq. (1):

fn+1(x) = G0(x, fn(x)) +

∫
R

K(x− t)G
(
fn(t)

)
dt,

f0(x) = εψ(x) + ϕ(x), n ∈ Z+ := {0, 1, 2, . . .}, x ∈ R,
(23)

where
ε := min

{
1, (η − η0)/η0, (ξ − η0)/ sup

x∈R
ψ(x)

}
. (24)

By induction on n we verify that the sequence of functions {fn(x)}n∈Z+
possesses the properties

{fn(x)}n∈Z+
is nondecreasing; i.e. fn(x) ≤ fn+1(x), n ∈ Z+, x ∈ R; (25)

fn(x) ≤ η, n ∈ Z+, x ∈ R. (26)

The inequality f0(x) ≤ η, x ∈ R, readily follows from (23), (24), (20), and (21),

f0(x) ≤ (ε+ 1)ϕ(x) ≤ η0(ε+ 1) ≤ η0
(
η − η0
η0

+ 1

)
= η.

Now let us prove that
f1(x) ≥ f0(x), x ∈ R.

We take into account conditions (b) and 1, property (2), condition (c), inequality (21), Eq. (24),
and the fact that the function ϕ(x) is a solution of the nonlinear equation (6), use definition (23),
and obtain

f1(x) ≥ G0

(
x, εψ(x) + ϕ(x)

)
+

∫
R

K(x− t)G
(
ϕ(t)

)
dt ≥

(
εψ(x) + ϕ(x)

) x∫
−∞

K(y) dy + ϕ(x)

≥ εψ(x)

x∫
−∞

K(y) dy + ψ(x) + ϕ(x) ≥ εψ(x) + ϕ(x) = f0(x).

Assume that the following inequalities hold for some positive integer n:

fn(x) ≥ fn−1(x), x ∈ R,
fn(x) ≤ η, x ∈ R.

Then, once again, in view of the monotonicity of the functions G0 and G as well as properties (2)
and condition (d), it follows from definition (23) by virtue of relations (8) and (9) that

fn+1(x) ≥ G0

(
x, fn−1(x)

)
+

∫
R

K(x− t)G
(
fn−1(t)

)
dt = fn(x),

fn+1(x) ≤ G0(x, η) +G(η) ≤
(
ηG′(0)−G(η)

)
α0 +G(η) = η.
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Using the Carathéodory condition for the function G0 and the continuity of the function G, by
induction on n one can readily verify that each element of the sequence {fn(x)}n∈Z+

is a measurable
function on R. It follows from the already proved properties (25) and (26) that the sequence of
measurable functions {fn(x)}n∈Z+

has a pointwise limit lim
n→∞

fn(x) = f(x) as n → ∞. In view of
conditions 1 and (a), by virtue of Krasnosel’skii’s (see [10, p. 340]) and Lévy’s (see [11, p. 303]) limit
theorems, the function f(x) satisfies Eq. (1). It also follows from properties (25) and (26) that one
has the two-sided inequality

εψ(x) + ϕ(x) ≤ f(x) ≤ η, x ∈ R. (27)

3.3. Asymptotic Behavior of the Solution at −∞
In this section, we prove that the solution f(x) thus constructed satisfies the inequality

f(x) ≤ ηeσx, x ≤ 0, (28)

where the number σ is determined from Eq. (17) and σ ∈ (0, λ0). To this end, by induction on n
we first prove the inequality

fn(x) ≤ ηeσx, x ≤ 0, n ∈ Z+. (29)

For n = 0, this inequality readily follows from (24), (20), and the definition of the zero approxima-
tion,

f0(x) = εψ(x) + ϕ(x) ≤ ϕ(x)

ε x∫
−∞

K(y) dy + 1


≤ η0eσx(ε+ 1) ≤ η0eσx

(
η − η0
η0

+ 1

)
= ηeσx, x ≤ 0.

Assume that fn(x) ≤ ηeσx, x ≤ 0, for some positive integer n. Then, using condition (d), the
monotonicity of the functions G0(x, u) and G(u) with respect to u, condition 4, and Eq. (17), in
view of definition (23) for x ≤ 0 we obtain

fn+1(x) ≤ G0(x, ηe
σx) +

∫
R

K(x− t)G
(
fn(t)

)
dt

≤ G0(x, η) +

0∫
−∞

K(x− t)G(ηeσt) dt+

∞∫
0

K(x− t)G(η) dt

≤
(
ηG′(0)−G(η)

)
α0

x∫
−∞

K(y) dy + ηG′(0)

0∫
−∞

K(x− t)eσt dt+G(η)

x∫
−∞

K(y) dy

≤
(
ηG′(0)−G(η)

) x∫
−∞

K(y) dy + ηG′(0)

∞∫
x

K(y)eσ(x−y) dy +G(η)

x∫
−∞

K(y) dy

= ηG′(0)

x∫
−∞

K(y) dy + ηG′(0)eσx
∞∫
x

K(y)e−σy dy

= ηG′(0)

x∫
−∞

K(y) dy + ηeσx

G′(0)

∫
R

K(y)e−σy dy −G′(0)

x∫
−∞

K(y)e−σy dy


= ηG′(0)

x∫
−∞

K(y) dy + ηeσxL(σ)− ηeσxG′(0)

x∫
−∞

K(y)e−σy dy
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774 KHACHATRYAN et al.

= ηeσx − ηG′(0)

x∫
−∞

K(y)
(
eσ(x−y) − 1

)
dy ≤ ηeσx.

The proof of inequality (29) is complete. Passing to the limit as n → ∞ on both sides in this
inequality, we arrive at the estimate (28). In particular, it follows from (28) that

lim
x→−∞

f(x) = 0 and f ∈ L1(−∞, 0). (30)

Thus, based on the above, we conclude that the following assertion holds.

Theorem 1. Under properties (2)–(4), conditions 1–5 and (a)–(d), and inequalities (7)
and (16), Eq. (1) has a positive essentially bounded solution f satisfying relations (30). More-
over, the following two-sided estimate holds:

εψ(x) + ϕ(x) ≤ f(x) ≤ Φ(x) :=

ηeσx for x ≤ 0

η for x > 0,

where the number ε is determined by relation (24), ψ(x) is any measurable “test” function satisfy-
ing conditions (21) and (22), and ϕ(x) is a continuous monotone nondecreasing positive bounded
solution of Eq. (6) on R with properties (18) and (19).

In the next section, we prove that the solution f has some additional properties in one special
case.

4. ASYMPTOTIC BEHAVIOR OF THE SOLUTION AT +∞ IN ONE SPECIAL CASE

4.1. Main Conditions. Statement of the Theorem

In this section, we assume that the nonlinearity G0(x, u) admits a representation of the form

G0(x, u) = G1(u)

x∫
−∞

K(y) dy, x ∈ R, u ∈ R+, (31)

where G1(u) is a real continuous function defined on R+ and satisfying the conditions
(A) G1(u) is concave and monotone increasing on R+.
(B) G1(u) ≥ u, u ∈ [0, ξ], ξ ∈ (η0, η).
(C) G1(η) = (G′(0)η −G(η))α0.

Remark 1. It can readily be verified that if the function G0 admits the representation (31) and
the function G1 has properties (A)–(C), then conditions (a)–(d) are satisfied automatically.

We use the concavity of the functions G1 and G0 and some geometric inequalities to prove the
following assertion.

Theorem 2. Let the kernel K and the nonlinearity G satisfy properties (2)–(4), inequalities (7)
and (16), and conditions 1–5, and let the function G0(x, u) admit the representation (31) in which
the function G1(u) has properties (A)–(C). Then the solution f(x) has the following additional
properties:

lim
x→+∞

f(x) = η and η − f ∈ L1(0,+∞).

4.2. Proof of Theorem 2

Note that (18) implies the existence of a number r0 > 0 such that

η0 − ϕ(x) < ε inf
x≥r

ψ(x)
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for x ≥ r0. Set r∗ := max(r, r0). Then, by virtue of inequality (27), the solution f(x) has the
following lower bound for all x ∈ [r∗,+∞):

f(x) ≥ ε inf
x≥r∗

ψ(x) + ϕ(x) ≥ ε inf
x≥r

ψ(x) + ϕ(x) > η0. (32)

By virtue of relations (31), (2), and (9) and condition (C), Eq. (1) implies that

0 ≤ η − f(x) = η −
x∫

−∞

K(y) dy ·G1(f(x))−
∫
R

K(x− t)G
(
f(t)

)
dt

=
(
ηG′(0)−G(η)

)
α0 +G(η)−G1

(
f(x)

)
+

∞∫
x

K(y) dy ·G1

(
f(x)

)
−

0∫
−∞

K(x− t)G
(
f(t)

)
dt−

∞∫
0

K(x− t)G
(
f(t)

)
dt

≤ G1(η)

∞∫
x

K(y) dy +G1(η)−G1

(
f(x)

)

+

0∫
−∞

K(x− t)
(
G(η)−G

(
f(t)

))
dt+

∞∫
0

K(x− t)
(
G(η)−G

(
f(t)

))
dt

≤ G1(η)

∞∫
x

K(y) dy +G(η)

∞∫
x

K(y) dy +G1(η)−G1

(
f(x)

)

+

r∗∫
0

K(x− t)
(
G(η)−G

(
f(t)

))
dt+

∞∫
r∗

K(x− t)
(
G(η)−G

(
f(t)

))
dt

≤ η
∞∫
x

K(y) dy +G(η)

x∫
x−r∗

K(y) dy +G1(η)−G1

(
f(x)

)
+

∞∫
r∗

K(x− t)
(
G(η)−G

(
f(t)

))
dt.

Note that by virtue of the estimate (32) and conditions (A), 1, and 2, the inequalities

0 ≤ G1(η)−G1(f(x)) ≤ G1(η)

η

(
η − f(x)

)
, (33)

0 ≤ G(η)−G(f(x)) ≤ G(η)− η0
η − η0

(
η − f(x)

)
(34)

hold for all x ≥ r∗. Indeed, by virtue of the estimate (32), one has the inequality η0 < f(x) < η.
Since the function G1 is concave according to condition (A), we see that, in view of condition (B),
inequality (33) can be proved in exactly the same manner as inequality (11). Taking η̃ = η0 in (11),
we obtain the inequality

G(η)−G(η0)

η − η0
<
G(η)

η
. (35)

Let us prove inequalities (34). Since the function G is monotone increasing by condition 1, we see
that the left inequality in (34) is obvious. To prove the right inequality, we replace η0 by G(η0) in
the numerator of the fraction according to condition 2 and take into account the fact that η > f(x);
then the right inequality in (34) acquires the form

G(η)−G
(
f(x)

)
η − f(x)

≤ G(η)−G(η0)

η − η0
. (36)
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Writing the numerator of the fraction on the left-hand side as (G(η)−G(η0)) + (G(η0)−G(f(x))),
we see that inequality (36) is equivalent to the inequality(

G(η)−G(η0)
)
(η − η0) +

(
G(η0)−G

(
f(x)

))
(η − η0) ≤

(
G(η)−G(η0)

)(
η − f(x)

)
,

i.e., the inequality (G(η0)−G(f(x)))(η − η0) ≤ (G(η)−G(η0))(η0 − f(x)), or

G
(
f(x)

)
−G(η0)

f(x)− η0
≥ G(η)−G(η0)

η − η0
. (37)

Inequality (37) holds true and can be proved in the same way as inequality (11). Indeed, consider
the points E(η0, G(η0)), A(η,G(η)), and F (f(x), G(f(x)). Since the points E, A, and F belong to
the graph of the function G(u) and this function is concave, it follows that the point F lies above
the segment EA; therefore, the slope of the segment EF to the abscissa axis is greater than the
slope of the segment EA to the abscissa axis; i.e., inequality (37) is satisfied, and then so is the
right inequality in (34), equivalent to it.

Taking into account the estimates (33) and (34) in the inequality derived above,

0 ≤ η − f(x) ≤ η
∞∫
x

K(y) dy +G(η)

x∫
x−r∗

K(y) dy

+G1(η)−G1

(
f(x)

)
+

∞∫
r∗

K(x− t)
(
G(η)−G

(
f(t)

))
dt,

(38)

we arrive the following estimate for x ≥ r∗:

0 ≤ η − f(x) ≤ η
∞∫
x

K(y) dy +G(η)

x∫
x−r∗

K(y) dy

+
G1(η)

η

(
η − f(x)

)
+
G(η)− η0
η − η0

∞∫
r∗

K(x− t)
(
η − f(t)

)
dt, x ≥ r∗,

(39)

or

0 ≤ η −G1(η)

η

(
η − f(x)

)
≤ η

∞∫
x

K(y) dy +G(η)

x∫
x−r∗

K(y) dy

+
G(η)− η0
η − η0

∞∫
r∗

K(x− t)
(
η − f(t)

)
dt, x ≥ r∗.

(40)

It follows from inequality (37) that η − f ∈ Lloc
1 (R+). Let us verify that η − f ∈ L1(r

∗,+∞).
Let δ > r∗ be an arbitrary number. Let us integrate both parts of inequality (38) from r∗ to δ.
Then, taking into account properties (2)–(4), by the Fubini theorem (see [11, p. 317]) we have

0 ≤
δ∫

r∗

(
η − f(x)

)
dx ≤ η

δ∫
r∗

∞∫
x

K(y) dy dx+G(η)

δ∫
r∗

 ∞∫
x−r∗

K(y) dy −
∞∫
x

K(y) dy


+
G1(η)

η

δ∫
r∗

(
η − f(x)

)
dx+

G(η)− η0
η − η0

δ∫
r∗

∞∫
r∗

K(x− t)
(
η − f(t)

)
dt dx

≤ η
∞∫
0

yK(y) dy +G(η)

∞∫
0

yK(y) dy +
G1(η)

η

δ∫
r∗

(
η − f(x)

)
dx
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+
G(η)− η0
η − η0

δ∫
r∗

δ∫
r∗

K(x− t)
(
η − f(t)

)
dt dx+

G(η)− η0
η − η0

δ∫
r∗

∞∫
δ

K(x− t)
(
η − f(t)

)
dt dx

≤
(
η +G(η)

) ∞∫
0

yK(y) dy +
G1(η)

η

δ∫
r∗

(
η − f(x)

)
dx

+
G(η)− η0
η − η0

δ∫
r∗

(
η − f(t)

)
dt+ η

G(η)− η0
η − η0

δ∫
r∗

∞∫
δ

K(x− t) dt dx

=
(
η +G(η)

) ∞∫
0

yK(y) dy +
G1(η)

η

δ∫
r∗

(
η − f(x)

)
dx

+
G(η)− η0
η − η0

δ∫
r∗

(
η − f(t)

)
dt+ η

G(η)− η0
η − η0

δ∫
0

x−δ∫
−∞

K(y) dy dx

≤
(
η +G(η)

) ∞∫
0

yK(y) dy +

(
G1(η)

η
+
G(η)−η0
η−η0

) δ∫
r∗

(
η − f(x)

)
dx+ η

G(η)−η0
η−η0

0∫
−∞

K(y)(−y) dy,

or (
1− G1(η)

η
− G(η)− η0

η − η0

) δ∫
r∗

(
η − f(x)

)
dx

≤
(
η +G(η)

) ∞∫
0

yK(y) dy + η
G(η)− η0
η − η0

0∫
−∞

K(y)(−y) dy.

By virtue of inequality (35) and the relation G1(η) +G(η) = η, we have

λ0 := 1− G1(η)

η
− G(η)− η0

η − η0
> 1− G1(η) +G(η)

η
= 0.

Consequently,
δ∫

r∗

(
η − f(x)

)
dx ≤ 1

λ0

(η +G(η)
) ∞∫

0

yK(y) dy + η
G(η)− η0
η − η0

0∫
−∞

K(y)(−y) dy

 .

Letting δ tend to infinity in this inequality, we conclude that f ∈ L1(r
∗,+∞) and

∞∫
r∗

(
η − f(x)

)
dx ≤ 1

λ0

(η +G(η)
) ∞∫

0

yK(y) dy + η
G(η)− η0
η − η0

0∫
−∞

K(y)(−y) dy

 .

To complete the proof, it remains to verify that lim
x→+∞

f(x) = η. Indeed, since K ∈ L1(R)∩M(R)

and η − f ∈ L1(R+) ∩M(R+), it follows by Lemma 5 in the paper [12] that

lim
x→+∞

∞∫
r∗

K(x− t)
(
η − f(t)

)
dt = 0. (41)

Taking into account inequality (40) and the limit relation (41), we conclude that lim
x→+∞

f(x) = η.
The proof of Theorem 2 is complete.
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Let us make an important remark.

Remark 2. If the function G0(x, u) is periodic in x with principal period T > 0 and jointly
continuous on R×R+, then the solution f(x) constructed here gives rise to a one-parameter family
of new solutions of the form {f(x+ cT )}c∈R.

This assertion follows from the obvious equation

G0

(
x, f(x+ cT )

)
+

∫
R

K(x− t)G
(
f(x+ cT )

)
dt

= G0

(
x+ cT, f(x+ cT )

)
+

∫
R

K(x+ cT − y)G
(
f(y)

)
dy = f(x+ cT ).

5. EXAMPLES

As an application and illustration of the results obtained, we give applied examples of the non-
linearities G0 and G. The following functions are well-known examples in the mathematical theory
of the space-time propagation of an epidemic (see [2, 3]):

G0(x, u) =

x∫
−∞

K(y) dy · q
√
u, x ∈ R, u ∈ R+, (42)

G(u) = γ(1− e−u), u ∈ R+, (43)

where q := α0(ηG
′(0) − G(η))/

√
η and γ > 1 is a numerical parameter. In this theory, the in-

equality γ > 1 is called the “threshold condition” and represents the critical value of the number
of infected persons, above which the epidemic cannot be stopped without serious medical interven-
tion. From the mathematical viewpoint, if γ ≤ 1, then, in the framework of the model considered
by Diekmann [2], the corresponding nonlinear equation has only the trivial solution in the class of
bounded functions. The latter means that the epidemic will not die out over time.

In the example (42), for ξ we can take, say, the number

ξ := max
{
α2

0(ηG
′(0)−G(η))2/η, η0 + ε0

}
,

where ε0 > 0 is an arbitrary sufficiently small parameter.
Let us also provide an applied example of the kernel K for which properties (2)–(4), as well

as the related inequalities (7) and (16), are satisfied. For such a kernel K we take the following
antisymmetric Gaussian distribution:

K(x) =
1√
π
e−(x−1)

2

. (44)

Obviously, the kernel (44) satisfies properties (2)–(4). In this case, the Diekmann function L(λ) has
the form

L(λ) = G′(0)

∫
R

K(t)e−λt dt = G′(0)eλ
2/4−λ.

For the nonlinearity G(u) we take a function of the form (43) and assume that γ ∈ (1, e). Ob-
viously, L(λ) decays on the interval [0, 2], is concave on R+, and if for λ0 we take λ0 = 2,
then L(λ0) = γ/e < 1; i.e., condition (16) is satisfied. Now let us verify condition (7). By virtue of
the choice in (44), we have

G′(0)α0 = γ

0∫
−∞

K(y) dy =
γ√
π

0∫
−∞

e−(y−1)
2

dy =
γ
(
1− erf(1)

)
2

≈ 0.079γ < 1,

because γ ∈ (1, e). Condition (7) is satisfied.
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It is of interest to note that the answer to the question of the uniqueness of the solution in
a particularly chosen cone segment for Eq. (1) still remains an open problem.
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