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Abstract—We consider a nonlinear Schrödinger equation arising in a number of physical prob-
lems. It is shown that when the real part is separated in this equation, there arises a nonlinear
differential equation that has at least two types of solutions, a multiwave solution and a solution
in the form of standing waves. Numerical examples of the multiwave solution and its transition
to the standing wave solution are presented.
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INTRODUCTION

Nonlinear Schrödinger equations arise when solving various physical and technical problems. The
most frequently studied nonlinear Schrödinger equation is the one with a cubic nonlinearity; it has
special types of solutions in the form of solitons [1, Ch. 1, Sec. 1.7a; 2, Ch. 4, Sec. 4.1]. For such
an equation, single- and multisoliton solutions are found by various methods, in particular, by the
inverse scattering transform. However, there arise nonlinear Schrödinger equations with other types
of nonlinearities in physical and technical problems. One such equation is studied in the present
paper.

1. NONLINEAR SCHRÖDINGER EQUATION

Consider a nonlinear Schrödinger equation of the form

iµ
∂Φ

∂t
+ V 2 ∂

2Φ

∂X2
=

(
∂ ln |Φ|
∂t

)2

Φ, (1)

where µ and V are real constants and Φ = Φ(X, t) is the unknown function.
Although Eq. (1) is not usually discussed in the mathematical literature, it arises, for example,

in the analysis of self-induced transparency [3].
Let us study progressing waves satisfying Eq. (1) and described by the relation

Φ(X, t) = (ϕ− ϕ0) exp{i(kX − ωt)}, (2)

where k is the wave number of the progressing wave, ω is its cyclic frequency, ϕ0 is a constant, and
ϕ = ϕ(X, t) is a real-valued function that has the second X-derivative and the first t-derivative and
satisfies ϕ > ϕ0 for all X and t; in particular, |Φ| = ϕ− ϕ0.

Substituting the expression (2) for the function Φ into Eq. (1) and taking into account the fact
that

∂ ln |Φ|
∂t

=
1

(ϕ− ϕ0)

∂ϕ

∂t
,

we arrive at the following equation for the function ϕ:

V 2 ∂
2ϕ

∂X2
+ i

(
µ
∂ϕ

∂t
+ 2V 2k

∂ϕ

∂X

)
+ (µω − ω2)(ϕ− ϕ0) =

1

ϕ− ϕ0

(
∂ϕ

∂t

)2

. (3)
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The function ϕ is real-valued; therefore,

µ
∂ϕ

∂t
+ 2V 2k

∂ϕ

∂X
= 0. (4)

Denote the factor multiplying ϕ− ϕ0 on the left-hand side in Eq. (3) by ν; i.e.,

ν = µω − ω2. (5)

Then Eq. (3) (under condition (4)) is written in the form

V 2 ∂
2ϕ

∂X2
+ ν(ϕ− ϕ0) =

1

ϕ− ϕ0

(
∂ϕ

∂t

)2

. (6)

An equation of the form (6) also arises when studying a nervous impulse [4] and the electromagnetic
field propagation in a chiral medium [5].

Thus, the Schrödinger equation (1) has a solution of the form (2) with a real-valued function ϕ
if and only if the function ϕ satisfies Eqs. (4) and (6) and the inequality ϕ > ϕ0.

Equation (4) is a linear homogeneous first-order partial differential equation with constant co-
efficients and hence is easy to solve; its general real-valued solution has the form ϕ − ϕ0 = f(ξ),
where f : R→ R is an arbitrary differentiable function and

ξ = µX − 2V 2kt.

The minus sign in ξ corresponds to a wave propagating from left to right, just as in the exponen-
tial (2).

Consequently, the Schrödinger equation (1) has a solution of the form (2) if and only if there
exists a twice differentiable positive function f defined on some (possibly, infinite) interval such that
the function

ϕ(X, t) = ϕ0 + f(µX − 2V 2kt) (7)

satisfies Eq. (6).
Replacing the function ϕ by its representation (7) in Eq. (6), we arrive at the ordinary differential

equation

V 2µ2f ′′ + νf = 4V 4k2
1

f
(f ′)2 (8)

(where the prime stands for the derivative with respect to ξ).
For simplicity, we assume that V µ 6= 0. Equation (8) does not contain the independent variable

and hence can be integrated by quadratures in a standard way (see, e.g., [6, p. 169]); namely, the
function p = df/dξ is taken to be the new unknown function, and f is taken for the independent
variable. Then f ′′ = pdp/df , and in this notation Eq. (8) acquires the form

p
dp

df
+
a

f
p2 + bf = 0,

where a = −4V 2k2/µ2 and b = ν/(V 2µ2). This equation can be reduced to the Bernoulli equation.
We do not write and analyze the general solution of Eq. (8) in the case of arbitrary coefficients,

because our goal is to indicate some parametric family of solutions (2) of Eq. (1) as well as solutions
of Eqs. (1) and (6) in the form of progressing waves. Therefore, we assume that the number k in
the representation (2) is taken to satisfy

4V 2k2 = µ2. (9)

Then the numerical coefficients multiplying f ′′ and (f ′)2 in Eq. (8) coincide, and dividing both sides
of the equation by 4V 4k2, after obvious transformations, in view of relation (5), we arrive at the
equation (

f ′

f

)′
= −µω − ω

2

4V 4k2
,
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whence we find

f(ξ) = C1 exp

{
− µω − ω2

4V 4k2
ξ2

2
+ C2ξ

}
, (10)

where C1 and C2 are arbitrary real constants.
Thus, if V µ 6= 0, then for either k = −µ/(2V ) and k = µ/(2V ) the Schrödinger equation (1)

has the three-parameter family of solutions (2), where ϕ = f(µX − 2V 2kt) and the function f(ξ) is
given by relation (10) with arbitrary real constants C1 > 0, C2, and ω.

2. SOLUTIONS IN THE FORM OF PROGRESSING WAVES

Let us proceed to constructing solutions of Eqs. (1) and (6) in the form of progressing waves. In
this section, we assume that the number ν in relation (5) is nonnegative; i.e.,

ω2
0 = µω − ω2. (11)

(If we seek a particular solution of Eq. (6) in the form proposed below, then, as is shown, µω − ω2

must be nonnegative; therefore, we have denoted it by ω2
0 straight away.) Thus, in what follows we

seek solutions of Eq. (1) and the equation

V 2 ∂
2ϕ

∂X2
+ ω2

0(ϕ− ϕ0) =
1

ϕ− ϕ0

(
∂ϕ

∂t

)2

(12)

in the form of progressing waves.
We seek a solution of the nonlinear equation (12) in the form of a running solitary wave

ϕ− ϕ0 = ϕmax exp
{
−(k0(X −X0)± ω0(t− t0))2/2

}
, (13)

where k0, X0, and t0 are real constants and the physical meaning of the quantities occurring in
the representation (13) is as follows: ϕmax is the amplitude value of the function ϕ − ϕ0, X0 is
the coordinate of the maximum (center) of the wave impulse, and t0 is the time of attaining this
maximum. The minus sign refers to a wave running from left to right; and the plus sign, from right
to left.

By a straightforward substitution of the function ϕ defined by relation (13) into Eq. (12), it is
easy to make sure that this function is a solution of this equation only if

V 2k20 = ω2
0. (14)

Moreover, the function (13) a solution of Eq. (4) if we select the minus sign in (13) in front of ω0

and if the coefficients k0 and ω0 are proportional with one and the same factor to the coefficients µ
and 2V 2k, respectively, of the linear form ξ; i.e.,

2V 2kk0 = µω0. (15)

Indeed, in this case, by virtue of (13), (15), and (11), we obtain

ϕ− ϕ0 = ϕmax exp

{
−
(

ω2
0

4V 4k2
ξ2

2
+
ω0δ0ξ

2V 2k
+
δ20
2

)}
,

where δ0 = −k0X0 +ω0t0; i.e., since relations (14) and (15) imply relation (9), we obtain the above
solution corresponding to the function (10) under the condition that µω − ω2 ≥ 0.

Figure 1 shows the graph of a solitary impulse Φ(X, t) constructed using formula (2) with the
function (13) substituted into it under the following conditions: ω0 = ω = 0, the dependence on
time is lacking, ϕmax = 1, X0 = 0, and the ratio of the wave numbers is k/k0 = 5.

The nonlinear equation (12), and hence also Eq. (1) admit a multiwave solution.
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Fig. 1. Solitary impulse of the function Φ(X).

Multiwave solutions have been found for a very narrow range of nonlinear equations [1, 2]. We
seek a multiwave solution of Eq. (12) in the form

ϕ = ϕ0 + ϕmax

N∑
n=1

ϕn(X, t), (16)

where

ϕn(X, t) = ϕn = exp{−∆2
n(X, t)/2} and ∆n(X, t) = ∆n = k0(X −X0n)− ω0(t− t0n). (17)

In the representation (16), (17), the number N is the total number of wave impulses, n is the
current impulse number, X0n are the coordinates of the maxima of wave impulses, and t0n are the
times when they attain these maxima.

Replacing the function ϕ in Eq. (12) by its representation (16), (17), we obtain the relation

N∑
n=1

ϕn

N∑
n=1

ϕn∆2
n =

(
N∑

n=1

ϕn∆n

)2

. (18)

Consider two consecutive identical impulses with n = 1, 2. Writing relation (18) for this
case (N = 2), we have

(ϕ1 + ϕ2)(ϕ1∆
2
1 + ϕ2∆

2
2) = (ϕ1∆1 + ϕ2∆2)

2. (19)

Obviously, relation (19) is equivalent to the equation ∆1 −∆2 = 0, or

k0(X02 −X01)− ω0(t02 − t01) = 0. (20)

Relation (20) shows that the distance between the impulses δ = X02 −X01 is covered by a wave
in time t02 − t01 with velocity V = ω0/k0.

If we take t0n = X0n/V = k0X0n/ω0 in ∆n for each n, then we conclude that ∆n = k0X − ω0t
for all n = 1, . . . , N ; i.e., then ∆1 = ∆2 = . . . = ∆N and they can be taken outside the sum and
canceled. As a result, (18) turns into an identity.

Consequently, with this choice of the values of t0n, n = 1, . . . , N , the function (16) is a multiwave
solution of the nonlinear equation (12).

The multiwave solution (16) acquires the simplest form in the case of the same distance δ be-
tween all wave impulses. In this case, for the coordinates of the maxima of impulses one has the
formula X0n = nδ and for the times of attaining maxima, the formula t0n = k0X0n/ω0 = k0nδ/ω0.

Figure 2 shows several consecutive impulses constructed using formula (16) under the conditions

ω0 = 0, ϕ0 = 0, ϕmax = 1, k0 = 2, δ = 4.

Let us consider another type of a wave representing a solution of Eq. (16).
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Fig. 2. Consecutive impulses in a multiwave solution.

3. SOLUTION IN THE FORM OF A STANDING WAVE

Standing waves are most often formed in linear systems as a result of superposition (interference)
of forward and reflected traveling waves. However, it is well known that standing waves can also
arise in nonlinear systems [7, Ch. 4, Sec. 2]. Many physical processes are fundamentally nonlinear,
and the process of the appearance of standing waves in such systems is nontrivial. We will not
discuss the physical mechanisms of the appearance of standing waves in these systems. Let us
investigate the mathematical possibility of the occurrence of standing waves obeying the nonlinear
equation (12).

Some solutions of the nonlinear equation (12) can be found by separation of variables (see,
e.g., [8, Ch. 2, Sec. 3]). Consider a solution of Eq. (12) of the form

ϕ− ϕ0 = φ(X)T (t), (21)

where φ(X) is a function of the coordinate X alone and T (t) is a function only of time t.
Substituting (21) into (12), we obtain

V 2φ(X)T 2(t)
d2φ(X)

dX2
=

(
φ(X)

dT (t)

dt

)2

− φ2(X)T 2(t)ω2
0. (22)

Let us divide both sides of Eq. (22) by φ2(X)T 2(t) to obtain

V 2 1

φ(X)

d2φ(X)

dX2
+ ω2

0 =

(
1

T (t)

dT (t)

dt

)2

= −α2, (23)

where α is a constant.
Equations (23) split into two mutually independent equations. One of them is an equation for

the function φ(X) and has the form

d2φ(X)

dX2
+

(
k20 +

α2

V 2

)
φ(X) = 0; (24)

here we have used relation (14), by virtue of which ω2
0/V

2 = k20.
Denote k2S = k20 + α2/V 2. The general solution of Eq. (24) is

φ(X) = φ(0) exp(ikSX), (25)

where φ(0) is the value of the function φ(X) at the origin.
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Fig. 3. Transition of the multipulse solution into a solution in the form of a standing wave: (1 ) multiwave solu-
tion, (2 ) standing wave.

Another equation following from (23) is an equation for the function T (t); it has the form

dT (t)

dt
= iαT (t). (26)

The number α can be positive as well as negative; this does not affect further reasoning. The
general solution of Eq. (26) is

T (t) = T (0) exp(iαt), (27)

where T (0) is the initial value of the function T (t).
Substituting the general solutions (25) and (27) into the representation (21), we obtain

ϕ− ϕ0 = ϕA exp(iαt) exp(ikSX), (28)

where we have denoted ϕA = T (0)φ(0).
As shown above, the function ϕ−ϕ0 must be real-valued. However, the use of exponentials with

imaginary exponents is introduced solely for the ease of transformations. In fact, only real terms
should be taken into account in these exponentials. Therefore, formula (28) describes a solution of
Eq. (12) in the form of standing waves

ϕ− ϕ0 = ϕA cos(αt) cos(kSX) = ϕA cos(αt) cos(2πX/δ), (29)

where ϕA is the amplitude value of standing waves and δ is the wavelength.
It is of interest to trace the transition of the multiwave solution (16) into the solution in the form

of standing waves (29) graphically. This transition occurs when the pulses approach each other (see
Fig. 2), i.e. with decreasing δ.

Figure 3 shows two graphs. Graph 1 has been constructed using formula (16) under the conditions
ω0 = 0, ϕ0 = 0, ϕmax = 1, k0 = 2, and δ = 2 for N = 8 impulses. Graph 2 (dashed line) has been
constructed by formula (29) under the conditions ϕ0 = 0.65 and ϕA cos(αt) = 0.38 for some time t.

CONCLUSIONS

In the present paper, the problem of finding solutions of a nonlinear Schrödinger equation in the
form of traveling waves is reduced to solving a system of two partial differential equations for the
same function. It is shown how to find all the solutions of this system in closed form. One of the
equations of this system is nonlinear and arises in various problems of an applied nature. It has
been established that this nonlinear equation has both multiwave and standing-wave solutions. As
the distance between the wave impulses decreases, the multiwave solution transforms into a solution
in the form of standing waves.
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