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INTRODUCTION

In what follows, we assume that a standard Brownian motion W (t) and a fractional Brownian
motion BH(t) with Hurst exponent H ∈ (1/2, 1) defined for t ≥ 0 and independent are given on
a probability space (Ω,F ,P).

By a one-dimensional stochastic differential equation of the mixed type we mean the equation

dx(t) = f
(
t, x(t)

)
dt+ g

(
t, x(t)

)
dW (t) + σ

(
t, x(t)

)
dBH(t), t ≥ 0, (1)

where f : [0,∞)× R→ R, g : [0,∞)× R→ R, and σ : [0,∞)× R→ R are deterministic functions.
In what follows, we assume that f(t, 0) = 0, g(t, 0) = 0, and σ(t, 0) = 0 for all t ≥ 0.

To define a solution of Eq. (1), one interprets this equation as an integral equation. There
are several ways to define integrals over dW and over dBH [1, Chs. 2–5; 2, Chs. 1, 2]. In the
present paper, the integral over dW is the Itô stochastic integral, and the integral over dBH is the
pathwise Riemann–Stieltjes integral introduced in the paper [3] and often referred to as the pathwise
Young integral. The different nature of these integrals accounts for certain difficulties in studying
Eqs. (1); for example, the pathwise Young integral, generally speaking, does not have the zero
mean and is not a semimartingale. Theorems that give sufficient conditions for the existence and
uniqueness of solutions of Eqs. (1) were first obtained in [4] for equations without drift and in [5] for
Eqs. (1) of the general form. Later on, the conditions for the existence of solutions of Eqs. (1) were
considerably weakened, and the continuous dependence of solutions on the initial data was proved
under the same conditions that ensure the existence of the solutions [6–11]. Moreover, as shown in
the papers [12–15], involving the theory of rough paths and Gubinelli’s integration theory permits
one to study the properties of solutions of Eqs. (1) of a class wider than the one indicated above,
namely, equations containing fractional Brownian motions with Hurst exponents H ∈ (1/3, 1).

The stability of the Itô equations (1) and systems of such equations (i.e., equations not containing
a fractional Brownian motion, σ ≡ 0) is explored rather well with an extensive literature devoted to
it (see, e.g., [16–18]). In particular, the monograph [17] describes a stability analysis method that
uses Lyapunov functions and is based on the Markov property of solutions x(t) of the Itô equations.
In turn, sufficient conditions for the stability of the zero solutions of the linear Itô equations (1)
and systems of such equations were obtained in the monograph [17].

The stability analysis of Eqs. (1) of the general form is an extremely hard problem. Significant
difficulties are encountered when trying to extend the scope of the Lyapunov function method
to the class of Eqs. (1) with coefficient σ 6≡ 0: the Young integral does not have zero mean,
and there exist no estimates for this integral similar to those for the Itô stochastic integral. In
addition, the process BH(t) has large variance t2H , 2H > 1, which implies certain restrictions on
the coefficient σ and complicates the study of stability properties. The stability of a fairly general
class of equations (1) is dealt with in [19, 20]. The conditions obtained in [19] ensure the local (i.e.,
on a finite interval [0, T ]) almost sure exponential stability of the zero solution of the autonomous

570



STABILITY OF LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 571

equation (1) not containing W (t) (g ≡ 0) as well as the global almost sure exponential stability for
the case in which the coefficient multiplying dBH is linear, σ(x) = γx, γ ∈ R. The conditions found
in the paper [20] guarantee the (α, p)-asymptotic stability in probability and the (α, p)-attraction
of solutions of Eqs. (1) with isolated linear part, f(t, x) = A(t)x+ F (t, x).

In this paper, we restrict our considerations to the case of linear homogeneous equations of the
mixed type

dx(t) = a(t)x(t) dt+ b(t)x(t) dW (t) + c(t)x(t) dBH(t), t ≥ 0, (2)

where a : [0,∞) → R, b : [0,∞) → R, and c : [0,∞) → R are deterministic functions. Special
attention is paid to Eqs. (2) that are time-invariant ,

dx(t) = ax(t) dt+ bx(t) dW (t) + cx(t) dBH(t), t ≥ 0, (3)

where a, b, c ∈ R.
In the present paper, we establish necessary and sufficient conditions for the asymptotic stability

in probability, p-stability, and exponential stability of the zero solution of Eq. (2) generalizing the
results for the corresponding Itô equations [17, Ch. 6]. In addition, we obtain an explicit formula
expressing the pth moment, p > 0, of the solution of Eq. (2). The results of this paper can be
used, say, in the stability analysis of equations reducible to linear ones (e.g., equations of Bernoulli
type [21]) as well as when studying the stability of the zero solution of Eq. (1) by the linear
approximation.

1. PRELIMINARIES AND NOTATION

By the symbol E we denote the expectation of random variables defined on a probability
space (Ω,F ,P). The abbreviation “a.s.” is used for the phrase “almost surely,” which means that
an assertion holds on a set Ω̃ ⊂ Ω of probability measure 1; i.e., P{Ω̃} = 1.

A fractional Brownian motion with Hurst exponent H ∈ (0, 1) is a centered continuous Gaussian
process BH(t), t ≥ 0, with covariance function

RH(t, s) := EBH(t)BH(s) =
1

2

(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0.

For H = 1/2, the fractional Brownian motion B1/2(t) is a Wiener process. In other words, the
process W (t) is the special process with H = 1/2 in the family BH(t).

Consider the function

φ(t, s) := H(2H − 1)|t− s|2H−2, t, s ≥ 0.

One can readily see that the following representation holds [1, p. 24]:

RH(t, s) =

t∫
0

s∫
0

φ(u, v) dv du. (4)

By L2
φ[0, T ] we denote the linear space of measurable functions f : [0, T ] → R such that the

Lebesgue integral
∫ T
0

∫ T
0
f(s)f(u)φ(s, u) ds du is finite. It was proved in the paper [22] that on the

linear space of equivalence classes of functions in L2
φ[0, T ] one can define the inner product

〈f, g〉L2
φ;T

:=

T∫
0

T∫
0

f(s)g(u)φ(s, u) ds du, f, g ∈ L2
φ[0, T ],

and accordingly the norm

‖f‖L2
φ;T

:=
√
〈f, f〉L2

φ;T
=

 T∫
0

T∫
0

f(s)f(u)φ(s, u) ds du

1/2

, f ∈ L2
φ[0, T ];

this linear space with the inner product 〈 , 〉L2
φ;T

is a pre-Hilbert space (it is not complete).
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By Cλ(0, T ) we denote the normed linear space of functions f : [0, T ] → R Hölder continuous
with exponent λ ∈ (0, 1]; the norm on this space is given by the formula

‖f‖Cλ;T := sup
t∈[0,T ]

∣∣f(t)
∣∣+ sup

0≤s<t≤T

∣∣f(t)− f(s)
∣∣

(t− s)λ
.

The space Cλ(0, T ) is a Banach space.
The most important property of the fractional Brownian motion BH(t) used when constructing

pathwise integrals is the Hölder property of its sample paths: for each ε∈(0, H), the sample paths
of the process BH(t), t ∈ [0, T ], a.s. belong to the class CH−ε(0, T ).

Let α ∈ (0, 1/2). By Wα,1
0 (0, T ) we denote the space of measurable functions f : [0, T ]→ R such

that

‖f‖α,1;T :=

T∫
0

∣∣f(s)
∣∣

sα
ds+

T∫
0

s∫
0

∣∣f(s)− f(u)
∣∣

(s− u)α+1
du ds <∞.

In what follows, we use the notation ‖f‖α,T := ‖f‖α,1;T for brevity.
By f |Y we denote the restriction of a function f : X → R to a set Y ⊂ X ⊂ R.
Definition 1. A solution of Eq. (1) (in the strong sense) is a process x(t), t ≥ 0, defined on the

probability space (Ω,F ,P), consistent with the flow of σ-algebras Ft generated by the processesW (t)
and BH(t), and having the following properties.

1. There exists an α > 1−H such that the sample paths of the process x(t) are Hölder continuous
with exponent α a.s.

2. For each t ≥ 0, one a.s. has the relation

x(t) = x(0) +

t∫
0

f
(
s, x(s)

)
ds+

t∫
0

g
(
s, x(s)

)
dW (s) +

t∫
0

σ
(
s, x(s)

)
dBH(s),

where the integral over the process W (t) is an Itô stochastic integral and the integral over the
process BH(t) is a pathwise Young integral [5].

Remark 1. Quite often the integral over the process BH(t) is defined as a generalized Stieltjes
integral with the use of fractional derivatives of the integrand processes [23]. However, according
to Remark 4.1 in [23], the generalized Stieltjes integral

∫ T
0
f(t) dg(t) coincides with the ordinary

Riemann–Stieltjes integral (the Young integral) if f ∈ Cλ(0, T ), g ∈ Cµ(0, T ), and λ+ µ > 1.
Further, we introduce the definitions of stability used throughout the paper.

Definition 2. The zero solution of Eq. (1) is said to be stable in probability if for any ε1, ε2 > 0
there exists a δ = δ(ε1, ε2) > 0 such that for each t > 0 and each solution x(t) of Eq. (1) satisfying
the condition |x(0)| < δ one a.s. has the inequality

P
{∣∣x(t)

∣∣ > ε1

}
< ε2.

Definition 3. The zero solution of Eq. (1) is said to be asymptotically stable in probability if it
is stable in probability and for each ε > 0 there exists a δ = δ(ε) > 0 such that for each solution x(t)
of Eq. (1) satisfying the condition |x(0)| < δ one a.s. has the relation

P
{∣∣x(t)

∣∣ > ε
}
−−−→
t→∞

0.

Definition 4. The zero solution of Eq. (1) is said to be p-stable (p > 0) if for each ε > 0 there
exists a δ = δ(ε) > 0 such that for each t > 0 and each solution x(t) of Eq. (1) satisfying the
condition |x(0)| < δ one a.s. has the inequality

E
∣∣x(t)

∣∣p < ε.
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Definition 5. The zero solution of Eq. (1) is said to be asymptotically p-stable (p > 0) if it
is p-stable and for each ε > 0 there exists a δ = δ(ε) > 0 such that for each solution x(t) of Eq. (1)
satisfying the condition |x(0)| < δ one a.s. has the relation

E
∣∣x(t)

∣∣p −−−→
t→∞

0.

Definition 6. The zero solution of Eq. (1) is said to be exponentially p-stable (p > 0) if there
exist constants A = A(p) > 0 and α = α(p) > 0 such that

E
∣∣x(t)

∣∣p ≤ AE∣∣x(0)
∣∣e−αt

for all t > 0.
As shown in the paper [21], the solution of the linear equation (2) is expressed by the formula

x(t) = x(0) exp

 t∫
0

(
a(s)− 1

2
b2(s)

)
ds+

t∫
0

b(s) dW (s) +

t∫
0

c(s) dBH(s)

 , t ≥ 0, (5)

which, however, can be obtained by applying the Itô formula for processes with standard and
fractional Brownian motions [2, p. 184] to the process

y(t) = y(0) +

t∫
0

b(s) dW (s) +

t∫
0

c(s) dBH(s)

and to the function

F (t, y) = exp

 t∫
0

(
a(s)− 1

2
b2(s)

)
ds+ y

 .

For convenience, we introduce special notation for the process occurring in the exponent in
formula (5),

ν(t) :=

t∫
0

(
a(s)− 1

2
b2(s)

)
ds+

t∫
0

b(s) dW (s) +

t∫
0

c(s) dBH(s), t ≥ 0.

Then the solution formula (5) acquires the form x(t) = x(0)eν(t).

2. ASSUMPTIONS
From now on, we always assume that the following conditions are satisfied.

C1. The processes W (t) and B(H)(t), t ≥ 0, are independent.
C2. The random variable x(0) is F0-measurable and independent of W (t) and B(H)(t).
C3. The functions a(t) and b(t) are continuous for t ≥ 0.
C4. There exists a λ > 1−H such that the function c(t)|[0,T ] belongs to the class Cλ(0, T ) for

each T > 0.
Note that conditions C2–C4 guarantee the existence of a solution of Eq. (5) and its representation

in the form (5).

3. AUXILIARY ASSERTIONS
In what follows, several auxiliary assertions be will useful.
In the following two lemmas, we need to consider an arbitrary sequence

Pn =
{
t0, t1, . . . , tNn ∈ [0, t] : 0 = t0 < t1 < . . . < tNn = t

}
(6)
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of partitions of the interval [0, t] with radii

|Pn| = max
{
ti+1 − ti : i = 0, . . . , Nn − 1

}
tending to zero as n→∞.

Lemma 1. If the processes W (t) and BH(t) are independent, then the Itô stochastic inte-
gral

∫ t
0
b(s) dW (s) and the pathwise Young integral

∫ t
0
c(s) dBH(s) are independent as well.

Proof. Consider the integral sums

I(W )
n =

Nn−1∑
i=0

b(ti)
(
W (ti+1)−W (ti)

)
and I(B)

n =

Nn−1∑
i=0

c(ti)
(
BH(ti+1)−BH(ti)

)
for the Itô integral I(W ) =

∫ t
0
b(s) dW (s) and the Young integral I(B) =

∫ t
0
c(s) dBH(s), respectively,

along the partitions (6). It is well known that I(W )
n tends to I(W ) in probability and I(B)

n tends to I(B)

a.s. as n→∞.
It is obvious that the sums I(W )

n and I(B)
n are linear combinations of components of the vec-

tors WPn = (W (t0), . . . ,W (tNn)) and BPn = (BH(t0), . . . , B
H(tNn)). The independence of the

processes W (t) and BH(t) implies the independence of the vectors WPn and BPn , which implies the
independence of the integral sums I(W )

n and I(B)
n . Hence for each n ∈ N one has the relation

F
(I

(W )
n ,I

(B)
n )

(x1, x2) = F
I
(W )
n

(x1)FI(B)
n

(x2),

where Fξ(x) is the distribution function of the random variable ξ. Since the vector (I(W )
n , I(B)

n ) tends
to the vector (I(W ), I(B)) in probability as n→∞, and since the convergence in probability implies
the convergence in distribution, we have, passing to the limit in the last relation,

F(I(W ),I(B))(x1, x2) = FI(W )(x1)FI(B)(x2).

This implies the independence of the integrals I(W ) and I(B). The proof of the lemma is complete.

Proposition 1. Let c(s) 6≡ 0 be a function continuous for s ≥ 0, and let c|[0,t] ∈ L2
φ[0, t] for

some t > 0. Then the Young integral
∫ t
0
c(s) dBH(s) is a normally distributed random variable with

zero mean µ(t) = 0 and variance

σ2(t) = ‖c‖2L2
φ;t

=

t∫
0

t∫
0

c(s)c(u)φ(s, u) ds du.

Proof. Set S := ‖c‖2L2
φ;t

> 0. Consider the integral sums In along the partitions (6) with the
intermediate points τi ∈ [ti, ti+1], i = 0, . . . , Nn − 1, arising when the mean value theorem is applied
to the integrals

ti+1∫
ti

tj+1∫
tj

φ(u, v) du dv = φ(τi, τj)(ti+1 − ti)(tj+1 − tj);

i.e.,

In :=

Nn−1∑
i=0

c(τi)
(
BH(ti+1)−BH(ti)

)
−−−→
n→∞

t∫
0

c(s) dBH(s) (a.s.).

Since In is a linear combination of the values BH(t) and BH(τi), i = 0, . . . , Nn − 1, of the Gaussian
process BH(t), we conclude that In = In(ω) is a normally distributed random variable for each n.
Its mean is zero,

µn = EIn(t) =

Nn−1∑
i=0

c(τi)
(
EBH(ti+1)− EBH(ti)

)
= 0,
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and the variance is calculated by the formula

σ2
n = EI2n(t) =

Nn−1∑
i,j=0

c(τi)c(τj)E
(
BH(ti+1)−BH(ti)

)(
BH(tj+1)−BH(tj)

)
=

Nn−1∑
i,j=0

c(τi)c(τj)
(
RH(ti+1, tj+1)−RH(ti+1, tj)−RH(ti, tj+1) +RH(ti, tj)

)
,

where RH(u, v) is the covariance function of the fractional Brownian motion BH(t). Applying the
representation (4) and the mean value theorem, we obtain

σ2
n =

Nn−1∑
i,j=0

c(τi)c(τj)

ti+1∫
ti

tj+1∫
tj

φ(u, v) dv du =

Nn−1∑
i,j=0

c(τi)c(τj)φ(τi, τj)(ti+1 − ti)(tj+1 − tj).

Thus, lim
n→∞

σ2
n = S.

It remains to show that the a.s. limit lim
n→∞

In = I is a normally distributed random variable.
The a.s. convergence implies the convergence in distribution; therefore, for each x ∈ R we have

FI(x) = lim
n→∞

FIn(x) = lim
n→∞

1√
2πσ2

n

x∫
−∞

e−y
2/(2σ2

n) dy =
1√
2πS

lim
n→∞

x∫
−∞

e−y
2/(2σ2

n) dy,

where Fξ(x) is the distribution function of the random variable ξ. Let us consider the function
f(y, τ) = e−y

2/(2τ), y ∈ (−∞, x), τ ∈ [S/2, 3S/2]. Obviously, f(y, τ) ≤ f(y, 3S/2) for each y, and

x∫
−∞

f(y, 3S/2) dy ≤
√

2π

√
3S

2
;

therefore, the integral
∫ x
−∞ f(y, τ) dy converges uniformly with respect to τ ∈ [S/2, 3S/2] for each x.

On the other hand, for each y one has the relation

f ′τ (y, τ) =
y2

2τ 2
e−y

2/(2τ) ≤ 2

Se
,

because max
z∈R

z2e−z
2

= 1/e. Hence the finite increment formula implies the inequality

∣∣f(y, τ)− f(y, S)
∣∣ ≤ 2|τ − S|/(Se)

for each y and for τ ∈ [S/2, 3S/2]; it follows that f(y, σ2
n) → f(y, S) uniformly with respect to y

as n→∞. Thus, passing to the limit in the integrand, we obtain

FI(x) =
1√
2πS

x∫
−∞

e−y
2/(2S) dy;

i.e., the random variable I obeys the normal distribution law with parameters (µ, σ2) = (0, S), as
desired. The proof of the proposition is complete.

The following lemma was proved in the monograph [17, Lemma 6.1].
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Lemma 2. The Itô stochastic integral
∫ t
0
b(s) dW (s) is a.s. representable in the form

t∫
0

b(s) dW (s) = W̃
(
τ(t)

)
for all t ≥ 0, where W̃ (τ), τ ≥ 0, is some other Brownian motion (a Wiener process) and
τ(t) =

∫ t
0
b2(s) ds.

Lemma 3. Assume that c|[0,t] ∈ Wα,1
0 (0, t) for some t > 0 and α ∈ (1 − H, 1/2). Then the

following assertions hold for each ε ∈
(
0, α− (1−H)

)
.

1. There exists a constant K = KH,ε,α depending only on ε, α, and H such that one a.s. has the
estimate ∣∣∣∣∣∣

t∫
0

c(s) dBH(s)

∣∣∣∣∣∣ ≤ KηH,ε,t(ω)‖c‖α,ttH−ε+α−1 =: CH
ε,α(t, ω), (7)

where ηH,ε,t(ω) for a given t is a random variable for which one a.s. has the inequality
|BH(s)−BH(u)| ≤ ηH,ε,t|s− u|H−ε for all s, u ∈ [0, t] and which is given by the relation

ηH,ε,t := γH,ε

 t∫
0

t∫
0

∣∣BH(s)−BH(u)
∣∣2ε

|s− u|2H/ε
ds du

2/ε

with some constant γH,ε depending only on H and ε.
2. For the random process CH

ε,α(t, ω) defined by the right-hand side of inequality (7), there exists
a constant L = LH,ε,α depending only on ε, α, and H such that for each number M > 0 one
has the estimate

P
{
CH
ε,α(t) ≤M

}
≥ 1− L

(
‖c‖α,ttH+α−1

M

)2/ε

. (8)

Proof. The estimate (7) readily follows from the results in the paper [23]. Indeed, first, according
to [23, p. 74], one a.s. has the inequality∣∣∣∣∣∣

t∫
0

c(s) dBH(s)

∣∣∣∣∣∣ ≤ Gα,t(ω)‖c‖α,t,

where
Gα,t =

1

Γ(1− α)
sup

0<s<u<t

∣∣D1−α
u− BH

u−(s)
∣∣;

here Γ is the gamma function, D1−α
u− is the operator of the left Weyl fractional derivative of

order 1 − α [23, pp. 59–60], and BH
u−(s) = (BH(s) − BH(u−))1(0,u)(s), where 1(0,u)(s) is the in-

dicator function of the interval (0, u). Second, the estimate derived in [23, Lemma 7.5] gives the
inequality

Gα,t ≤
1

Γ(1− α)Γ(α)

(
1 +

1

H − ε+ α− 1

)
ηH,ε,tt

H−ε+α−1,

which implies the estimate (7).
The estimate (8) is obtained by using the estimate in [23, Lemma 7.4] and the Markov inequality.

It follows from the proof of Lemma 7.4 in [23, p. 77] that the inequality E(ηH,ε,t)
q ≤ γqH,εc̃ε,qtqε holds

for each q ≥ 2/ε and for some constant c̃ε,q depending on ε and q. Setting q = 2/ε, we obtain the
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estimate E(ηH,ε,t)
2/ε ≤ LH,εt2 for some constant LH,ε depending on ε and H. Applying the Markov

inequality, for each M > 0 we arrive at the inequality

P
{

(ηH,ε,t)
2/ε > M

}
≤ LH,εt

2

M
,

which is equivalent to the inequality P{ηH,ε,t > M} ≤ LH,εt2/M2/ε, which, in turn, is equivalent to
the inequality

P
{
CH
ε,α(t) > M

}
≤ LH,εt2

(
K‖c‖α,ttH−ε+α−1

M

)2/ε

= L

(
‖c‖α,ttH+α−1

M

)2/ε

,

where L = LH,εK
2/ε is a constant depending on ε, α, and H. The proof of the lemma is complete.

4. STABILITY OF LINEAR EQUATIONS

Set

A(t) :=

t∫
0

a(s) ds, τ(t) :=

t∫
0

b2(s) ds, Aτ (t) := A(t)− 1

2
τ(t), κ(t) :=

√
2τ(t) ln ln τ(t). (9)

Sufficient conditions for the asymptotic stability in probability of the zero solution of Eq. (2) are
given by the following assertion.

Theorem 1. Assume that there exists an α ∈ (1 − H, 1/2) such that c|[0,T ] ∈ Wα,1
0 (0, T ) for

each T > 0, and let A(t), τ(t), Aτ (t), and κ(t) be the functions defined in (9). Then the following
assertions hold:

1. If τ(∞) <∞ and the conditions

A(∞) = −∞, lim
t→∞

tH+α−1‖c‖α,t/A(t) = 0

are satisfied, then the zero solution of Eq. (2) is asymptotically stable in probability.
2. If τ(∞) =∞ and the conditions

lim
t→∞

Aτ (t)/κ(t) < −1, lim
t→∞

tH+α−1‖c‖α,t/κ(t) = 0

are satisfied, then the zero solution of Eq. (2) is asymptotically stable in probability.
Proof. Take an arbitrary ε1 > 0 and a solution x(t) = x(0)eν(t) of Eq. (2) whose initial value x(0)

a.s. satisfies the inequality |x(0)| < δ < ε1. Consider the probability

P
{∣∣x(t)

∣∣ > ε1

}
= P

{
ν(t) > ln

(
ε1/|x(0)|

)}
= 1− P

{
ν(t) ≤ ln

(
ε1/|x(0)|

)}
.

It suffices to show that lim
t→∞

P{ν(t) ≤ ln(ε1/δ)} = 0 under the assumptions of the theorem.
Indeed, if this is the case, then, on the one hand, lim

t→∞
P{|x(t)| > ε1} = 0, because

P
{
ν(t) ≤ ln

(
ε1/
∣∣x(0)

∣∣)} ≥ P
{
ν(t) ≤ ln(ε1/δ)

}
.

On the other hand, the inequality E|ν(t)| ≤ CT < ∞ holds on each interval t ∈ [0, T ] with some
constant CT depending on T , because the inequalities

∣∣A(t)
∣∣ ≤ T∫

0

∣∣a(s)
∣∣ ds, E

∣∣∣∣∣∣
t∫

0

b(s) dW (s)

∣∣∣∣∣∣ ≤ (τ(T )
)1/2

,

E

∣∣∣∣∣∣
t∫

0

c(s) dBH(s)

∣∣∣∣∣∣ ≤ KE|ηH,ε,T |‖c‖α,TTH−ε+α−1 <∞
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are satisfied for each t ∈ [0, T ] (in view of Lemma 3 and [23, Lemma 7.4]). Then an application of
the Markov inequality gives the estimate

P{|x(t)| > ε1} ≤ P{|ν(t)| > ln(ε1/δ)} ≤ CT/ ln(ε1/δ),

and by choosing a sufficiently small δ one can ensure that the right-hand side of the last inequality
is less than any prescribed ε2 > 0.

Let us separately consider two cases indicated in the assumptions of the theorem.
Case 1. Let τ(∞) = τ0 < ∞, and let the conditions in assertion 1 of the theorem be satisfied.

We introduce the notation

νW (t) =
1

2
A(t)− 1

2
τ(t) +

t∫
0

b(s) dW (s), νB(t) =
1

2
A(t) +

t∫
0

c(s) dBH(s).

With this notation, one has ν(t) = νW (t) + νB(t). Consider the events

AWt =

{
νW (t) ≤ 1

2
ln(ε1/δ)

}
and ABt =

{
νB(t) ≤ 1

2
ln(ε1/δ)

}
.

It can readily be seen that P{ν(t) ≤ ln(ε1/δ)} ≥ P{AWt ∩ ABt } = P{AWt }P{ABt }, because the
processes

∫ t
0
b(s) dW (s) and

∫ t
0
c(s) dBH(s) are independent.

Consider the probability P{AWt }. Let

M(t) =
1

2
ln(ε1/δ)−

1

2
A(t) +

1

2
τ(t).

By Lemma 2 and the properties of the Wiener process,

P{AWt } = P
{
W̃
(
τ(t)

)
≤M(t)

}
=

1√
2πτ(t)

M(t)∫
−∞

e−s
2/(2τ(t)) ds =

1√
2π

M(t)/
√
τ(t)∫

−∞

e−s
2/2 ds −−−→

t→∞
1,

because A(∞) = −∞, τ(∞) = τ0, and accordingly

lim
t→∞

M(t)/
√
τ(t) =

1
√
τ0

lim
t→∞

M(t) =∞.

Now let us estimate the probability P{ABt } using Lemma 3,

P{ABt } ≥ P

{
CH
ε,α(t) ≤ 1

2
ln(ε1/δ)−

1

2
A(t)

}
≥ 1− L

(
2‖c‖α,ttH+α−1

ln(ε1/δ)−A(t)

)2/ε

−−−→
t→∞

1,

because
lim
t→∞

tH+α−1‖c‖α,t/A(t) = 0.

Thus, P{ν(t) ≤ ln(ε1/δ)} ≥ P{AWt }P{ABt } −−−→
t→∞

1, as desired.

Case 2. Let τ(∞) = ∞, and let the conditions in assertion 2 of the theorem be satisfied. We
introduce the following notation for the function in the condition in assertion 2:

J(t) := Aτ (t)/κ(t), lim
t→∞

J(t) < −1.

For brevity, we also write

ξ(t) := Aτ (t) +

t∫
0

c(s) dBH(s).
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By Lemma 2,

W̃ (τ(t)) =

t∫
0

b(s) dW (s)

a.s., hence ν(t) = W̃ (τ(t)) + ξ(t) a.s., and consequently,

P
{
ν(t) ≤ ln(ε1/δ)

}
= P

{
ν(t)

κ(t)
≤ ln(ε1/δ)

κ(t)

}
≥ P

{
W̃
(
τ(t)

)
κ(t)

+
ξ(t)

κ(t)
≤ 0

}
=: P{A}.

Take a sufficiently small positive ε̃ ∈ (0,−1− lim
t→∞

J(t)) and consider the events

AW̃t =

{
W̃ (τ(t))

κ(t)
≤ 1 + ε̃

}
and Aξt =

{
ξ(t)

κ(t)
≤ −1− ε̃

}
.

By analogy with case 1, we obtain P{A} ≥ P{AW̃t ∩ A
ξ
t} = P{AW̃t }P{A

ξ
t}.

Consider the probability P{AW̃t }. For brevity, we introduce the notation

ζ(τ) := sup
s≥τ

W̃ (s)/
√

2s ln ln s.

By the iterated logarithm law, lim
t→∞

ζ(τ(t)) = lim
τ→∞

ζ(τ) = 1 a.s. Further, the function τ(t) is
increasing and the function ζ(τ) is decreasing with respect to τ for each ω ∈ Ω. Hence for
any t1, t2 > 0, t1 < t2, one has the inclusion {ζ(τ(t1)) ≤ 1 + ε̃} ⊂ {ζ(τ(t2)) ≤ 1 + ε̃}, whence,
using the continuity axiom, we obtain

lim
t→∞

P{AW̃t } ≥ lim
t→∞

P
{
ζ
(
τ(t)

)
≤ 1 + ε̃

}
≥ P

{
lim
t→∞

ζ
(
τ(t)

)
≤ 1 + ε̃

}
= 1.

Now let us estimate the probability P{Aξt} for sufficiently large t using Lemma 3. We have

P{Aξt} = P

 1

κ(t)

t∫
0

c(s) dBH(s) ≤ −1− ε̃− J(t)


≥ P

{
CH
ε,α(t)

κ(t)
≤ −1− ε̃− sup

s≥t
J(s)

}
≥ 1− L

(
‖c‖α,ttH+α−1(

−1− ε̃− sups≥t J(s)
)
κ(t)

)2/ε

.

Passing to the limit in the last inequality, we obtain

lim
t→∞

P{Aξt} ≥ 1− L

(
1(

−1− ε̃− limt→∞ J(s)
) lim
t→∞

‖c‖α,ttH+α−1

κ(t)

)2/ε

= 1.

Thus, P{ν(t) ≤ ln(ε1/δ)} ≥ P{A} ≥ P{AW̃t }P{A
ξ
t} −−−→

t→∞
1. The proof of the theorem is complete.

Corollary 1. For Eq. (3), any of the following conditions is sufficient for the asymptotic stability
in probability of the zero solution:

1. b = 0, a < 0, and c is arbitrary.
2. b 6= 0, a < b2/2, and c = 0.
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The proof can be obtained by a straightforward application of Theorem 1 with allowance for
the fact that in the case of a constant function c(t) ≡ c the norm ‖c‖α,t is |c|t1−α/(1− α).

The next theorem is a criterion for the asymptotic stability in probability of the zero solution of
Eq. (2) under the assumption that the coefficient b(t) is not identically zero. Set

Cφ(t) = ‖c‖2L2
φ;t

=

t∫
0

t∫
0

c(s)c(u)φ(s, u) ds du. (10)

Theorem 2. Let b 6≡ 0, and let c|[0,T ] ∈ L2
φ[0, T ] for each T > 0. The zero solution of Eq. (2) is

asymptotically stable in probability if and only if

lim
t→∞

Aτ (t)√
τ(t) + Cφ(t)

= −∞,

where Aτ (t), τ(t), and Cφ(t) are the functions defined in (9) and (10).
Proof. Let c 6≡ 0. It follows from Lemmas 1 and 2 and Proposition 1 that the Itô integral

IW (t) =
∫ t
0
b(s) dW (s) and the Young integral IB(t) =

∫ t
0
c(s) dBH(s) for a given t are independent

normally distributed random variables with zero means and with variances τ(t) and Cφ(t), respec-
tively. Consequently, their sum is again a normally distributed random variable with zero mean
and variance τ(t) + Cφ(t); hence for each M > 0 we obtain the relation

P
{
ν(t) > M

}
= P

{
IW (t) + IB(t) > M −Aτ (t)

}
=

1√
2π
(
τ(t) + Cφ(t)

)
∞∫

M−Aτ (t)

e−s
2/(2(τ(t)+Cφ(t))) ds =

1√
2π

∞∫
M(t)

e−s
2/2 ds,

M(t) =
M −Aτ (t)√
τ(t) + Cφ(t)

.

(11)

It can readily be seen that formula (11) remains valid for c ≡ 0. The condition b 6≡ 0 guarantees
that the denominator of the fraction M(t) is nonzero for sufficiently large t.

Further, the asymptotic stability is equivalent to the relation lim
t→∞

P{ν(t) > M} = 0, which is

in turn equivalent to lim
t→∞

M(t) = ∞. Note that the expression M/
√
τ(t) + Cφ(t) is bounded for

sufficiently large t; namely, for a sufficiently small ε > 0 it belongs to the interval[
M

/√
lim
t→∞

τ(t) + lim
t→∞

Cφ(t) + ε,M

/√
lim
t→∞

τ(t) + lim
t→∞

Cφ(t)− ε

]
,

which, however, can degenerate into the point 0 if at least one of the limits lim
t→∞

τ(t) or lim
t→∞

Cφ(t) is

infinity. The boundedness of the function M/
√
τ(t) + Cφ(t) implies the equivalence of the relations

lim
t→∞

M(t) = ∞ and lim
t→∞

Aτ (t)/
√
τ(t) + Cφ(t) = −∞, as desired. The proof of Theorem 2 is

complete.

Corollary 2. The inequality a < b2/2 is a necessary and sufficient condition for the asymptotic
stability in probability of the zero solution of Eq. (3).

Proof. If the coefficients of the equation are constant, then the relations ν(t) = (a − b2/2)t +
bW (t) + cBH(t) and Cφ(t) = c2RH(t, t) = c2t2H hold. For b = c = 0, the assertion of the theorem
is obvious.

If b 6= 0 and c = 0, then formula (11) implies the equivalence

M(t) ∼ −(a− b2/2)t1/2/|b|
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as t→∞. If, however, c 6= 0, then formula (11) implies the equivalence

M(t) ∼ −(a− b2/2)t1−H/|c|

as t → ∞. Thus, it is necessary and sufficient for the asymptotic stability in probability that the
inequality a < b2/2 be satisfied, as desired. The proof of the corollary is complete.

Remark 2. It follows from the last assertion that the term cx(t) dBH(t) in Eq. (3) does not
affect the asymptotic stability in probability of the zero solution.

In the following proposition, we derive an explicit formula for the pth moment, p > 0, of the
solution of Eq. (2).

Proposition 2. Let c|[0,t] ∈ L2
φ[0, t] for some t > 0. Then for each p > 0 one has the relation

E
∣∣x(t)

∣∣p = E
∣∣x(0)

∣∣p exp

p t∫
0

a(s) +
p− 1

2
b2(s) + pH(2H − 1)

s∫
0

(s− u)2H−2c(s)c(u) du

 ds

,
where x(t) is the solution of Eq. (2) with the initial value x(0).

Proof. The representation (5) of the solution of Eq. (2), the independence of x(0), W (t),
and BH(t), and Lemma 1 imply the relation

E
∣∣x(t)

∣∣p = E
∣∣x(0)

∣∣p exp

p t∫
0

(
a(s)− 1

2
b2(s)

)
ds


× E exp

 t∫
0

pb(s) dW (s)

E exp

 t∫
0

pc(s) dBH(s)

 .

(12)

Let us calculate u(t) = E exp(
∫ t
0
pb(s) dW (s)). It follows from the representation (5) that the

process η(t) = exp(
∫ t
0
pb(s) dW (s)) is a solution of the linear equation

η(t) = 1 +
p2

2

t∫
0

b2(s)η(s) ds+ p

t∫
0

b(s)η(s) dW (s).

Let us take the expectation of both sides of the last equality. Using the Fubini theorem and the
fact that the mean of the Itô integral is zero, we obtain

u(t) = 1 +
p2

2

t∫
0

b2(s)u(s) ds.

By differentiating the last relation, we arrive at the equation

u′(t)− p2

2
b2(t)u(t) = 0

with the initial condition u(0) = Eey(0) = 1. Its solution is

E exp

 t∫
0

pb(s) dW (s)

 = u(t) = exp

(
p2

2
τ(t)

)
. (13)
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It remains to calculate v(t) = E exp(
∫ t
0
pc(s) dBH(s)). For brevity, we introduce the notation

y(t) =
∫ t
0
pc(s) dBH(s), z(t) = ey(t); then v(t) = Ez(t). It follows from the representation of the

solution (5) that the process z(t) is a solution of the linear equation

z(t) = 1 + p

t∫
0

c(s)z(s) dBH(s). (14)

According to [1, Sec. 5.1], the pathwise Young integral
∫ t
0
c(s)z(s) dBH(s) coincides with the sym-

metric integral
∫ t
0
c(s)z(s)d◦BH(s). By [1, Theorem 5.5.1], the symmetric integral can be expressed

via the Wick–Itô–Skorokhod integral
∫ t
0
c(s)z(s) � dBH(s) by the formula

t∫
0

c(s)z(s)d◦BH(s) =

t∫
0

c(s)z(s) � dBH(s) +

t∫
0

Dφ
s (c(s)z(s)) ds

(a.s.), where Dφ
t is the operator of the φ-derivative [1, Sec. 3.5] (the generalized derivative with

respect to ω). Since the Wick–Itô–Skorokhod integral has zero mean, we obtain, by taking the
expectation of both sides of relation (14),

v(t) = 1 + pE
t∫

0

Dφ
s (c(s)z(s)) ds.

Let us calculate the φ-derivativeDφ
s (c(s)z(s)). Using the relationship between the Young integral,

the symmetric integral, and the Wick–Itô–Skorokhod integral, one can readily see that

y(t) = p

t∫
0

c(s) dBH(s) = p

t∫
0

c(s)d◦BH(s) = p

t∫
0

c(s) � dBH(s),

because the function c(s) is independent of ω and hence of Dφ
s (c(s)) = 0. Consequently, we have

z(t) = F (
∫ t
0
c(s) � dBH(s)), where F (y) = epy. By the properties of φ-derivative [1, Sec. 3.5],

Dφ
t

(
c(t)z(t)

)
= c(t)Dφ

t F (y(t)) = c(t)F ′
(
y(t)

)
= c(t)pey(t)Dφ

t

 ∞∫
−∞

c(s)1[0,t](s) � dBH(s)


= pc(t)z(t)

∞∫
−∞

φ(s, t)c(s)1[0,t](s) ds = pH(2H − 1)c(t)z(t)

t∫
0

(t− s)2H−2c(s) ds.

Thus, using the last relation and applying the Fubini theorem to the integral (14), we obtain the
integral equation

v(t) = 1 + p2H(2H − 1)

t∫
0

c(s) s∫
0

(s− u)2H−2c(u) du

 v(s) ds

for the function v(t). By differentiating the last relation, we arrive at the equation

v′(t)− p2H(2H − 1)c(t)

 t∫
0

(t− s)2H−2c(s) ds

 v(t) = 0
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with the initial condition v(0) = Eey(0) = 1. Its solution is

E exp

 t∫
0

pc(s) dBH(s)

 = v(t) = exp

p2H(2H − 1)

t∫
0

c(s)

 s∫
0

(s− u)2H−2c(u) du

 ds

 . (15)

Now relations (12), (13), and (15) imply the desired assertion. The proof of the proposition is
complete.

Set

Fp(t) := a(t) +
p− 1

2
b2(t) + pH(2H − 1)

t∫
0

(t− u)2H−2c(t)c(u) du, Ip(t) :=

t∫
0

Fp(s) ds. (16)

Proposition 2 obviously implies the theorem on the p-stability of the zero solution of Eq. (2).

Theorem 3. Let c|[0,T ] ∈ L2
φ[0, T ] for each T > 0, and let Fp(t) and Ip(t) be the functions defined

by relations (16). Then the following assertions hold:

1. The zero solution of Eq. (2) is p-stable if and only if lim
t→∞

Ip(t) <∞.

2. The zero solution of Eq. (2) is asymptotically p-stable if and only if lim
t→∞

Ip(t) = −∞.

3. The zero solution of Eq. (2) is exponentially p-stable if supt>0 Fp(t) < 0.

Corollary 3. The following assertions hold for Eq. (3):
1. A necessary and sufficient condition for the p-stability of its zero solution is that c = 0

and a ≤ (1− p)b2/2.
2. A necessary and sufficient condition for the exponential p-stability of its zero solution is

that c = 0 and a < (1− p)b2/2.
In particular, its zero solution is not p-stable for any c 6= 0.
Proof. If the coefficients of Eq. (2) are constant, then the expression for Ip(t) becomes

Ip(t) =

t∫
0

(
a+

p− 1

2
b2 + pHc2s2H−1

)
ds =

(
a+

p− 1

2
b2 +

p

2
c2t2H−1

)
t.

If c 6= 0, then one has the equivalence Ip(t) ∼ pc2t2H/2, and hence lim
t→∞

Ip(t) = ∞ and the zero
solution is not p-stable. Therefore, we necessarily have c = 0. In that case, Ip(t) = (a+(p−1)b2/2)t,
and the assertion becomes obvious. The proof of the corollary is complete.

Remark 3. The conditions for the asymptotic stability in probability of the zero solution of
the time-invariant equation (3) differ from the conditions for the asymptotic p-stability. In the
criterion for the asymptotic stability in probability, c is arbitrary, while c = 0 in the criterion for
the asymptotic p-stability (under the conditions a < b2/2 and a < (1− p)b2/2, respectively).

This happens because the asymptotic stability in probability depends on the standard deviation
σ(t) =

√
b2t+ c2t2H of the process ν(t) = (a − b2/2)t + bW (t) + cBH(t). The function σ(t) has

growth order tH lower than that of the expectation µ(t) = (a − b2/2)t of the process ν(t). In
turn, the asymptotic p-stability depends on the variance σ2(t) of the process ν(t), which has growth
order t2H higher than that of the function µ(t).

Remark 4. The linear time-invariant Itô equation (3) (c = 0) has the important property that
the asymptotic stability in probability implies the p-stability of the zero solution of this equation
for sufficiently small p [17, Sec. 6.1]. This property does not hold in the general case for c 6= 0.

DIFFERENTIAL EQUATIONS Vol. 57 No. 5 2021



584 KACHAN

5. EXAMPLES

Example 1. Consider the equation

dx(t) = −2tx(t) dt+
x(t)√
1 + t2

dW (t) + tx(t) dBH(t), t ≥ 0.

For this equation,

τ(t) = arctan t −−−→
t→∞

π/2, A(t) = −t2 −−−→
t→∞

−∞, ‖c‖α,t = t2−α/(1− α),

and one can readily compute

lim
t→∞

tH+α−1‖c‖α,t/A(t) = lim
t→∞

tH−1/(1− α) = 0.

Therefore, based on Theorem 1, we conclude that the zero solution of this equation is asymptotically
stable in probability.

Example 2. Consider the equation

dx(t) = t(cos2 t)x(t) dt+ 2
√
t(cos t)x(t) dW (t) + x(t) dBH(t), t ≥ 0.

In this case,

τ(t) = t2 + t sin 2t+
1

2
cos 2t −−−→

t→∞
∞, a(s) =

1

4
b2(t),

and accordingly,

lim
t→∞

Aτ (t)/κ(t) = −1

4
lim
τ→∞

√
τ

2 ln ln τ
= −∞.

Since ‖c‖α,t = t1−α/(1− α) and τ(t) ∼ t2, we have

lim
t→∞

tH+α−1‖c‖α,t/κ(t) =
1√

2(1− α)
lim
t→∞

tH−1√
ln ln τ(t)

= 0,

and, based on Theorem 1, we conclude that the zero solution is asymptotically stable in probability.

Example 3. Consider the equation

dx(t) = a(t)x(t) dt+ b(t)x(t) dW (t) + e−tx(t) dBH(t), t ≥ 0. (17)

Since c(u) = e−u ∈ (0, 1] for u ≥ 0, we have

t∫
0

(t− u)2H−2c(t)c(u) du ≤ c(t)
t∫

0

(t− u)2H−2 du =
1

2H − 1
e−tt2H−1.

Note that the function ψ(t) = e−tt2H−1 attains its maximum at the point t0 = 2H − 1, because
ψ(0) = ψ(∞) = 0 and ψ′(t) = e−tt2H−2((2H − 1)− t). Hence, in the notation of Theorem 3,

Fp(t) ≤ a(t) +
p− 1

2
b2(t) + pH(2H − 1)2H−1e1−2H < a(t) +

p− 1

2
b2(t) + pH;

based on Theorem 3, a sufficient condition for the exponential p-stability is given by the inequality

sup
t≥0

(
a(t) +

p− 1

2
b2(t)

)
≤ −pH.
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In a sense, the last inequality is an analog of condition 2 in Corollary 3 in the class of equations (17)
with nonconstant coefficients.

In particular, the latter assertion implies that, for example, the zero solution of the equation

dx(t) =

(
−β +

(p− 1)H

2
sin2 t

)
x(t) dt+

√
H(cos t)x(t) dW (t) + e−tx(t) dBH(t), t ≥ 0,

is p-exponentially stable for any p > 0 and β ≥ (3p− 1)H/2.
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