
ISSN 0012-2661, Differential Equations, 2021, Vol. 57, No. 3, pp. 284–290. © Pleiades Publishing, Ltd., 2021.
Russian Text © The Author(s), 2021, published in Differentsial’nye Uravneniya, 2021, Vol. 57, No. 3, pp. 306–312.

ORDINARY DIFFERENTIAL EQUATIONS

Lyapunov Vector Functions,
Rotation of Vector Fields, Guiding Functions,

and the Existence of Poisson Bounded Solutions

K. S. Lapin1∗

1Mordovian State Pedagogical Institute, Saransk, 430007 Russia
e-mail: ∗klapin@mail.ru

Received October 4, 2020; revised December 29, 2020; accepted January 22, 2021

Abstract—We use the Lyapunov vector function method and the guiding function method to
obtain sufficient conditions for the existence of Poisson bounded and partially Poisson bounded
solutions of systems of differential equations.

DOI: 10.1134/S0012266121030022

The application of the Lyapunov function method [1] to the study of the boundedness of solu-
tions of differential systems is given in [2], and its application to the study of the boundedness of
solutions with respect to part of variables is given in the monograph [3, pp. 223–228]. A generaliza-
tion of the Lyapunov function method—the Lyapunov vector function method—is presented in the
monographs [4, 5]. The book [5] shows how the Lyapunov vector function method can be applied
to the derivation of conditions ensuring the boundedness of all solutions of an arbitrary nonlinear
system. Independently of the methods in the paper [2], the monograph [6] developed the guiding
function method based on the technique of rotation of vector fields. The method was used in [6] to
obtain sufficient conditions for the existence of solutions of an arbitrary nonlinear system bounded
on the entire real line.

On the other hand, the present author (see, e.g., [7]) has recently begun a study of a new form of
solution boundedness—the Poisson boundedness. The concept of Poisson boundedness of a solution
on the half-line is that there exists a ball in the state space and a countable system of disjoint
intervals on the time half-line with the sequence of their right endpoints tending to +∞ such that
the solution is contained in the ball at all times belonging to these intervals. Obviously, a bounded
solution is Poisson bounded; the opposite, as is easily seen, is not true. In papers by the present
author, conditions have been studied under which all solutions of a differential system are Poisson
bounded.

To study conditions for the existence of Poisson bounded solutions, the present paper develops
a method that is a synthesis of the Lyapunov vector function method and the guiding function
method. Using this method, we obtain sufficient conditions for the existence of Poisson bounded
solutions (Theorem 1) as well as partially (in part of the variables) Poisson bounded solutions
(Theorem 2). Let us now proceed to rigorous definitions and statements.

Consider the system of differential equations

dx

dt
= F (t, x), F (t, x) =

(
F1(t, x), . . . , Fn(t, x)

)T
, x ∈ Rn, t ∈ R+ ≡ [0,+∞), n ≥ 2, (1)

where F : R+ × Rn → Rn is a continuous function satisfying the local Lipschitz condition in the
variable x ∈ Rn. In addition, we assume that all solutions of system (1) are extendible to the time
half-line R+.

In what follows, by ‖·‖ we denote the Euclidean norm on Rn. The solution x = x(t) of system (1)
with the initial condition (t0, x0) ∈ R+ × Rn is denoted by x(t, t0, x0). Any nonnegative increasing
number sequence (τi)i∈N such that lim

i→+∞
τi = +∞ will be called a P-sequence.

Recall [2] that a solution x = x(t, t0, x0) of system (1) is said to be bounded if there exists
a number β > 0 such that ‖x(t, t0, x0)‖ ≤ β for all t ∈ R+.
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Definition 1. A solution x = x(t, t0, x0) of system (1) is said to be Poisson bounded if there
exists a P-sequence (τi)i∈N and a number β > 0 such that ‖x(τi, t0, x0)‖ ≤ β for all i ∈ N.

Obviously, if a solution of system (1) is bounded, then it is also Poisson bounded, because in this
case one can take any P-sequence for the required P-sequence. It is also obvious that increasing the
number β if necessary, we can assume that the inequality ‖x(t, t0, x0)‖ ≤ β for a Poisson bounded
solution is satisfied for all t belonging to some sequence of intervals whose right endpoints tend
to +∞, as was underlined above. Therefore, the above definition is equivalent to the definition of
a Poisson bounded solution given in the paper [8].

Following [4, pp. 46–48], let us recall some facts needed in what follows about Lyapunov vector
functions. Given a continuously differentiable vector function

V : R+ × Rn → Rk, V (t, x) =
(
V1(t, x), . . . , Vk(t, x)

)T
, k ≥ 1,

the derivative according to system (1) of this vector function is defined by the relation

V̇ (t, x) =
(
V̇1(t, x), . . . , V̇k(t, x)

)T
,

where V̇i(t, x) is the derivative according to system (1) of the function Vi(t, x), 1 ≤ i ≤ k. In
what follows, the notation ξ ≤ η for vectors ξ = (ξ1, . . . , ξk)T and η = (η1, . . . , ηk)T ∈ Rk means
that ξi ≤ ηi for each 1 ≤ i ≤ k. We say [3, p. 235] that a continuous vector function

f : R+ × Rk → Rk, f(t, ξ) =
(
f1(t, ξ), . . . , fk(t, ξ)

)T
, k ≥ 1,

satisfies the Ważewski condition if for each 1 ≤ s ≤ k the function fs is nondecreasing with respect
to the variables ξ1, . . . , ξs−1, ξs+1, . . . , ξk, i.e., if it follows from the relations ξi ≤ ηi, 1 ≤ i ≤ k, i 6= s,
and ξs = ηs that fs(t, ξ) ≤ fs(t, η). If f satisfies the Ważewski condition, then we write f ∈W . Note
that the condition f ∈ W degenerates for k = 1; therefore, we adopt the convention that f ∈ W
for each continuous function f : R+ × R→ R.

A continuously differentiable vector function V : R+×Rn→Rk satisfying the condition V (t, x)≥0
for any t ∈ R+ and x ∈ Rn, where 0 is the zero vector in Rk, and a system

dξ

dt
= f(t, ξ), f ∈W, (2)

are called a Lyapunov vector function and a comparison system, respectively, for system (1) if the
following condition is satisfied: V̇ (t, x) ≤ f(t, V (t, x)). In what follows, we always assume that
the right-hand side of system (2) satisfies the local Lipschitz condition with respect to ξ and, in
addition, the solutions of this system are extendible to the entire half-line R+. Since we have the
uniqueness of solution of the Cauchy problem for system (2), it follows from the Ważewski theorem
(see, e.g., [3, p. 236]) that for each point (t0, x0) ∈ R+×Rn the solution x(t, t0, x0) of system (1), the
Lyapunov vector function V : R+ × Rn → Rk, and the solution ξ(t, t0, V (t0, x0)) of the comparison
system (2) for system (1) are related for all t ≥ t0 by the inequality

V
(
t, x(t, t0, x0)

)
≤ ξ(t, t0, V (t0, x0)). (3)

Now let us recall necessary notions and constructions related to the rotation of vector fields and
to operators of shift along trajectories [6] (see also [9]). Let Ω be an arbitrary compact subset
of Rn with boundary ∂Ω. Following [6], we define a continuous vector field, or, for brevity, a vector
field Q, on Ω as an arbitrary continuous mapping Q : Ω→ Rn. For a vector field Q on Ω, consider
its restriction to ∂Ω, i.e., the vector field Q|∂Ω : ∂Ω ⊂ Ω → Rn. A vector field Q on Ω is said to
be nondegenerate on ∂Ω if Q(x) 6= 0 ∈ Rn for all x ∈ ∂Ω. It can readily be seen that any vector
field Q nondegenerate on ∂Ω defines a continuous mapping

T : ∂Ω→ Sn−1 =
{
a ∈ Rn : ‖a‖ = 1

}
, T (x) = Q(x)

/∥∥Q(x)
∥∥, x ∈ ∂Ω.

The rotation γ(Q, ∂Ω) of a vector field Q nondegenerate on ∂Ω is the degree deg (T ) ∈ Z of the
mapping T : ∂Ω→ Sn−1. In the case where the compact subset Ω in Rn is an n-dimensional smooth
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orientable manifold with boundary ∂Ω (see, e.g., [10]), the integer deg (T ) is easy to define, for
example, by using the functor Hn−1(−;Z) of singular (n− 1)-dimensional homology of topological
spaces with integer coefficients [11]. Indeed, the continuous mapping T : ∂Ω → Sn−1 induces
a homomorphism Hn−1(T ;Z) : Hn−1(∂Ω;Z) → Hn−1(Sn−1;Z) of the singular homology groups. It
is well known (see, e.g., [11]) that the groups Hn−1(∂Ω;Z) and Hn−1(Sn−1;Z) are isomorphic to
the group Z and the generators of these groups are the fundamental classes [∂Ω] and [Sn−1] of
the manifolds ∂Ω and Sn−1, respectively. Using the group homomorphism Hn−1(T ;Z) and the
fundamental classes [∂Ω] and [Sn−1], the degree of the mapping deg (T ) ∈ Z is defined by the rule

Hn−1(T ;Z)
(
[∂Ω]

)
= deg (T )[Sn−1].

In the general case, where Ω is an arbitrary compact subset in Rn, the definition of the degree
deg (T ) ∈ Z of the mapping T : ∂Ω→ Sn−1 is described in detail in the monograph [9, p. 9–29].

We use the following terminology. The subset

Tr (x0) =
{
x ∈ Rn : x = x(t, 0, x0), t ≥ 0

}
⊂ Rn,

where x(t, 0, x0) is the solution of system (1) and x0 is an arbitrary point in Rn, will be called the
trajectory of system (1) issuing from the point x0. For each τ > 0, consider the continuous mapping

U(τ) : Ω→ Rn, U(τ)(x0) = x(τ, 0, x0),

where x(t, 0, x0) is the solution of system (1) and x0 is an arbitrary point in Ω. The mapping U(τ)
is called [6, pp. 11–12] the operator of shift along the trajectories of system (1) for time 0 ≤ t ≤ τ .
A τ -nonrecurrent point of a trajectory of system (1) is a point x0 ∈ Rn such that the solu-
tion x(t, 0, x0) of system (1) satisfies the condition x(t, 0, x0) 6= x0 for all 0 < t ≤ τ [6, p. 101].

Consider the vector field
S0 : Ω→ Rn, S0(x) = −F (0, x),

where F (t, x) is the right-hand side of system (1). The rotation γ(S0, ∂Ω) of this vector field
is closely related to the problem on the existence of fixed points of the operator U(τ) of shift
along the trajectories of system (1). Indeed, it was shown in [6, p. 102–104] that if a vector
field S0 : Ω→ Rn nondegenerate on ∂Ω has rotation γ(S0, ∂Ω) 6= 0 and all points of the boundary ∂Ω
are τ -nonrecurrent points of the trajectories of system (1), then the operator U(τ) of shift along
the trajectories of system (1) has at least one fixed point inside Ω, i.e., a point x ∈ Ω \ ∂Ω such
that U(τ)(x) = x. We will use the following terminology. The subsets

Tr+(x0, t0) =
{
x ∈ Rn : x = x(t, t0, x0), t > t0

}
⊂ Rn,

Tr−(x0, t0) =
{
x ∈ Rn : x = x(t, t0, x0), 0 ≤ t ≤ t0

}
⊂ Rn,

where x(t, t0, x0) is the solution of system (1) and (t0, x0) is any point in R+ × Rn, will be called
the right part and the left part , respectively, of the trajectory Tr (x(0, t0, x0)) of system (1).

We state and prove the following sufficient condition for the existence of Poisson bounded solu-
tions of system (1) in terms of Lyapunov vector functions and rotations of vector fields.

Proposition 1. Assume that for system (1) there exists a P-sequence (τi)i∈N , a Lyapunov vector
function V : R+×Rn → Rk with a comparison system (2), and a nondecreasing function b : R+ → R+

with the property b(r)→ +∞ as r → +∞ such that the inequality

b(‖x‖) ≤
k∑

q=1

Vq(τi, x) (4)

holds for any x ∈ Rn and i ∈ N. Moreover, let the following conditions be satisfied for the comparison
system (2):

1. There exists a subset Ω ⊂ Im (V : {0} × Rn → Rk) compact in Rk such that the vector
field S0 : Ω→ Rk , S0(ξ) = −f(0, ξ), where f(t, ξ) is the right-hand side of the comparison
system (2), is nondegenerate on ∂Ω and γ(S0, ∂Ω) 6= 0.
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2. For each ξ0 ∈ ∂Ω, the right part Tr+(ξ0, t0) of the trajectory Tr (ξ(0, t0, ξ0)) of the comparison
system (2) does not have any points in Ω in common with the left part Tr−(ξ0, t0) of the same
trajectory.

Then system (1) has at least one Poisson bounded solution.

Proof. For each m ∈ N, consider the operator U(m) : Ω→ Rk of shift along the trajectories of
the comparison system (2) for system (1) for time 0 ≤ t ≤ m. Since, by assumption, the intersec-
tion Tr+(t0, ξ0) ∩ Tr−(t0, ξ0) ∩ Ω is empty for each (t0, ξ0) ∈ R+×∂Ω, we conclude that all points of
the boundary ∂Ω arem-nonrecurrent points of the trajectories of system (2) for eachm ∈ N. As was
indicated above, it follows that for each m ∈ N the operator U(m) has a fixed point ϑm ∈ Ω \ ∂Ω.

Consider the family of solutions {ξ(t, 0, ϑm)}m∈N of system (2). It follows from the assumptions
of the theorem to be proved that ξ(t, 0, ϑm) ∈ Ω \ ∂Ω for each 0 ≤ t ≤ m. Indeed, if the opposite
were true, then for some point ξ0 = x(t0, 0, ϑm) ∈ Tr (ϑm), where 0 < t0 < m and ξ0 ∈ ∂Ω, we
would have

Tr+(t0, ξ0) ∩ Tr−(t0, ξ0) ∩ Ω = {ϑm} 6= ∅,

which contradicts the assumptions of the theorem.
Consider the sequence of points (ϑm)m∈N in Ω \ ∂Ω. Using the fact that the set Ω is compact,

from the sequence (ϑm)m∈N we select a subsequence (ϑmi
)i∈N converging to some point µ ∈ Ω. Let

us show that the solution ξ(t, 0, µ) of system (2) satisfies the condition ξ(t, 0, µ) ∈ Ω for all t ≥ 0.
Assume the contrary: there exists a number η ≥ 0 such that ξ(η, 0, µ) 6∈ Ω. Since system (2)
satisfies the assumptions of the theorem on the continuous dependence on the initial conditions
(see, e.g., [12]), it follows that ξ(η, 0, ϑmi

) 6∈ Ω, where η ≤ mi, for sufficiently large i. We have
arrived at a contradiction with the inclusion

ξ(t, 0, ϑmi
) ∈ Ω \ ∂Ω ⊂ Ω for all 0 ≤ t ≤ mi.

Thus, we have shown that ξ(t, 0, µ) ∈ Ω for any t ≥ 0. Since the set Ω is compact in Rk, we
conclude that in Rk there exists a ball of radius α > 0 centered at the origin such that Ω is contained
in this ball, and hence ‖ξ(t, 0, µ)‖ ≤ α for all t ≥ 0.

Now let us show that system (1) has a Poisson bounded solution x(t, 0, x0) for some x0 ∈
Rn. Since, by assumption, Ω ⊂ Im (V : {0} × Rn → Rk), it follows that there exists a point
(0, x0) ∈ {0} × Rn such that V (0, x0) = µ. We use condition (4) and inequality (3) to obtain the
inequalities

b
(∥∥x(τi, 0, x0)

∥∥) ≤ k∑
q=1

Vq

(
τi, x(τi, 0, x0)

)
≤

k∑
q=1

ξq
(
τi, 0, V (0, x0)

)
,

which hold for all i ∈ N, for the solution x(t, 0, x0) of system (1) and the solution ξ(t, 0, V (0, x0))
of the comparison system (2). Moreover, we have the obvious inequalities

k∑
i=1

ξi
(
t, 0, V (0, x0)

)
≤

k∑
i=1

∣∣∣ξi(t, 0, V (0, x0)
)∣∣∣ ≤ k∥∥∥ξ(t, 0, V (0, x0)

)∥∥∥
for each t ≥ 0. Since V (0, x0) = µ, we have ‖ξ(t, 0, V (0, x0))‖ ≤ α for all t ≥ 0. This fact, as
well as the above-indicated inequalities, implies that b(‖x(τi, 0, x0)‖) ≤ kα for all i ∈ N. Using
the condition b(r)→ +∞ as r → +∞ and the fact that the number kα is fixed, we select a num-
ber β > 0 such that kα ≤ b(β). It follows that b(‖x(τi, 0, x0)‖) ≤ b(β) for all i ∈ N. Since the
function b : R+ → R+ is nondecreasing, it follows from the last inequality that ‖x(τi, 0, x0)‖ ≤ β
for all i ∈ N. Thus, we have shown that the solution x(t, 0, x0) of system (1) is Poisson bounded.
The proof of the proposition is complete.

Given arbitrary positive integers n ≥ 2 and 1 ≤ m < n, for each fixed element (t0, x0) ∈ R+×Rn

and the corresponding solution x(t, t0, x0) = (x1(t, t0, x0), . . . , xn(t, t0, x0))T of system (1) consider
the mapping

y : R+ ×
{

(t0, x0)
}
→ Rm, y(t, t0, x0) =

(
x1(t, t0, x0), . . . , xm(t, t0, x0)

)T
.
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Recall [3] that a solution x(t, t0, x0) of system (1) is said to be y-bounded if there exists a num-
ber β > 0 such that ‖y(t, t0, x0)‖ ≤ β for all t ∈ R+.

Definition 2. A solution x = x(t, t0, x0) of system (1) is said to be y-bounded in the sense of
Poisson if there exists a P-sequence (τi)i∈N and a number β > 0 such that ‖y(τi, t0, x0)‖ ≤ β for
all i ∈ N.

It is obvious that if a solution of system (1) is y-bounded, then it is also y-bounded in the sense
of Poisson, because in this case we can take any P-sequence for the required P-sequence. It can
readily be seen that the above definition is equivalent to the definition of solution y-bounded in the
sense of Poisson in the paper [8].

The following assertion is a sufficient condition for system (1) to have solutions y-bounded in
the sense of Poisson.

Proposition 2. Let all the assumptions in Proposition 1 with inequality (4) replaced by the
inequality

b(‖y‖) ≤
k∑

q=1

Vq(τi, x) (5)

be satisfied. Then system (1) has at least one solution that is y-bounded in the sense of Poisson.
Proof. By reproducing the argument in the proof of Proposition 1 word for word and by

replacing inequality (4) with inequality (5), we obtain the inequality

b(‖y(τi, 0, x0)‖) ≤
k∑

q=1

Vq(τi, x(τi, 0, x0)) ≤
k∑

q=1

ξq(τi, 0, V (0, x0)), i ∈ N.

Now, by reproducing the argument in the proof of Proposition 1 word for word with x(t, 0, x0)
replaced by y(t, 0, x0), we obtain the desired inequality ‖y(τi, 0, x0)‖ ≤ β for all i ∈ N. Thus, we
have shown that the solution x(t, 0, x0) of system (1) is y-bounded in the sense of Poisson. The proof
of the proposition is complete.

Now let us recall necessary facts about guiding functions and their indices [6]. A continuously
differentiable function G : Rn → R is called a guiding function, or, more precisely, an r0-guiding
function, for system (1) if the following condition is satisfied:(

gradG(x), F (t, x)
)
> 0, t ≥ 0, ‖x‖ ≥ r0. (6)

Consider the vector field gradG : Bn(r0) → Rn, where Bn(r0) = {x ∈ Rn : ‖x‖ ≤ r0}. It can be
seen from condition (6) that the vector field gradG : Bn(r0) → Rn is nondegenerate on ∂Bn(r0),
and consequently, the rotation γ(gradG, ∂Bn(r0)) of this vector field is well defined. It was shown
in the monograph [6, p. 90–91] that if for each r > r0 we consider the corresponding vector field
gradG : Bn(r) → Rn, which is obviously nondegenerate on ∂Bn(r), then one has the equality
of rotations γ(gradG, ∂Bn(r)) = γ(gradG, ∂Bn(r0)). The index of an r0-guiding function G for
system (1) is the integer ind (G) defined by the formula

ind (G) = γ
(
gradG, ∂Bn(r0)

)
= γ

(
gradG, ∂Bn(r)

)
, r > r0.

It was shown in [6, p. 110–111] that if system (1) has an r0-guiding function G, then for each r ≥ r0

the rotation of the vector field S0 : B(r) → Rn, S0(x) = −F (0, x), where F (t, x) is the right-hand
side of system (1), and the index of the r0-guiding function G are related by the formula

γ
(
S0, ∂B

n(r)
)

= (−1)n indG.

An unbounded r0-guiding function for system (1) is any r0-guiding function G for this system sat-
isfying the condition G(x)→ +∞ as ‖x‖ → +∞. It was shown in [6, p. 111–113] that ind (G) = 1
for each unbounded r0-guiding function G for system (1). It follows that if system (1) has an un-
bounded r0-guiding function, then the rotation of the above-indicated vector field S0 : Bn(r)→ Rn

is calculated by the formula γ(S0, ∂B
n(r)) = (−1)n.
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Let us state and prove a sufficient condition in terms of Lyapunov vector functions and guiding
functions for system (1) to have Poisson bounded solutions.

Theorem 1. Assume that for system (1) there exists a P-sequence (τi)i∈N , a nondecreasing
function b : R+ → R+ for which b(r) → +∞ as r → +∞, and a Lyapunov vector function
V : R+ × Rn → Rk with the comparison system (2) such that inequality (4) is satisfied for any x ∈ Rn

and i ∈ N. Moreover, assume that there exist numbers r1 > r0 and an unbounded r0-guiding func-
tion G for the system

d%

dt
= g(t, %), (t, %) ∈ R+ × Rk, g(t, %) = f(t, %+ r1), r1 = (r1, . . . , r1)T ∈ Rk, (7)

where f(t, ξ) is the right-hand side of system (2), with the number r1 satisfying the conditions
1. G(%) ≥M0 for all % ∈ Rk , ‖%‖ = r1 , where M0 = max

‖%‖≤r0
G(%).

2. Bk
r1

(r1) = {ξ ∈ Rk|‖ξ − r1‖ ≤ r1} ⊂ Im (V : {0} × Rn → Rk).
Then system (1) has at least one Poisson bounded solution.
Proof. Consider the vector field L0 : Bk(r1) → Rk defined by the formula L0(%) = −g(0, %),

where g(t, %) is the right-hand side of system (7). By the preceding, γ(L0, ∂B
k(r1)) = (−1)k.

Thus, γ(L0, ∂B
k(r1)) 6= 0.

Let us show that whatever the point %0 ∈ ∂Bk(r1) is, the right part Tr+(%0, t0) of the trajectory
Tr (%(0, t0, %0)) of system (7) does not have points in Bk(r1) in common with the left part Tr−(%0, t0)
of the same trajectory. Consider the function ϕ(t) = G(%(t, t0, %0)), t ≥ 0, and its derivative

ϕ′(t) =
d
(
G
(
%(t, t0, %0)

))
dt

=
(

gradG
(
%(t, t0, %0)

)
, g(t, %

(
t, t0, %0)

))
, t ≥ 0.

Since G is an r0-guiding function for system (7), it follows that ϕ′(t) > 0 for t ≥ 0 such that
‖%(t, t0, %0)‖ ≥ r0. It is obvious that ϕ(t0) = G(%0) ≥ M0 and ϕ(t) ≤ M0 for t ≥ 0 such that
‖%(t, t0, %0)‖ ≤ r0. Moreover, it is obvious that ϕ(t) is an increasing function for t ≥ 0 such that
‖%(t, t0, %0)‖ ≥ r0. It follows that ϕ(t) ≤ ϕ(t0) for each point %(t, t0, %0) ∈ Tr−(%0, t0).

Now let us show that if %(t, t0, %0) ∈ Tr+(%0, t0), then∥∥%(t, t0, %0)
∥∥ > r0.

Assume the contrary: ‖%(t1, t0, %0)‖ ≤ r0 for some t1 > t0 and hence ϕ(t1) ≤M0. Since ϕ(t0) ≥M0

and ϕ′(t0) > 0, it follows that there exists a t0 < t′ < t1 such that ϕ(t′) > M0 and hence
‖%(t′, t0, %0)‖ > r0. Since the function ‖%(t, t0, %0)‖ is continuous, it follows from the preceding
that there exists a t′ < t2 ≤ t1 such that ‖%(t2, t0, %0)‖ = r0 and ‖%(t, t0, %0)‖ ≥ r0 for t′ < t ≤ t2. It
is obvious that ϕ(t2) ≤ M0, because ‖%(t2, t0, %0)‖ = r0. Since ‖%(t, t0, %0)‖ ≥ r0 for t′ ≤ t ≤ t2, we
conclude that ϕ′(t) > 0 for t′ ≤ t ≤ t2 and hence ϕ(t′) < ϕ(t2). Based on this, we obtain ϕ(t2) > M0;
this contradicts the above-indicated inequality ϕ(t2) ≤ M0. Thus, ‖%(t, t0, %0)‖ > r0 for each
point %(t, t0, %0) ∈ Tr+(%0, t0).

Based on the preceding, we conclude that ϕ′(t) > 0 for t > t0 and hence ϕ(t) > ϕ(t0) for t > t0.
Thus, ϕ(t) ≤ ϕ(t0) for 0 ≤ t ≤ t0 and ϕ(t) > ϕ(t0) for t > t0. It follows that the right part Tr+(%0, t0)
of the trajectory Tr (%(0, t0, %0)) of system (7) does not have points in Bk(r1) in common with the left
part Tr−(%0, t0) of the same trajectory. Arguing by analogy with the proof of Theorem 1, we obtain
a solution %(t, 0, µ) (where µ ∈ Bk(r1)) of system (7) for which the inclusion %(t, 0, µ) ∈ Bk(r1) is
satisfied for all t ≥ 0.

Since system (7) has been obtained from system (2) by the change of variables ξ = %+ r1, we
see that the solution ξ(t, 0, µ + r1) = %(t, 0, µ) + r1 of system (2) satisfies ξ(t, 0, µ+ r1) ∈ Bk

r1
(r1)

for all t ≥ 0. One obviously has the inclusion µ + r1 ∈ Bk
r1

(r1). It follows from condition 2 in the
theorem that there exists a point (0, x0) ∈ {0}×Rn such that V (0, x0) = µ+r1. Arguing by analogy
with the proof of Proposition 1, we obtain the Poisson boundedness of the solution x(t, 0, x0) of
system (1). The proof of the theorem is complete.

DIFFERENTIAL EQUATIONS Vol. 57 No. 3 2021



290 LAPIN

The next assertion is a sufficient condition for system (1) to have solutions y-bounded in the
sense of Poisson.

Theorem 2. Let all assumptions of Theorem 1 with inequality (4) replaced by (5) be satisfied.
Then system (1) has at least one solution y-bounded in the sense of Poisson.

Proof. Let us repeat word for word the argument in the proof of Theorem 1 up to the point
of considering the solutions ξ(t, 0, µ + r1) = %(t, 0, µ) + r1 of system (2) for which the inclusion
ξ(t, 0, µ + r1) ∈ Bk

r1
(r1) holds for all t ≥ 0, where V (0, x0) = µ + r1 ∈ Bk

r1
(r1). After this, arguing

by analogy with the proof of Proposition 2, we conclude that the solution x(t, 0, x0) of system (1)
is y-bounded in the sense of Poisson. The proof of the theorem is complete.
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