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Abstract—We construct a regularized asymptotics of the solution of the first boundary value
problem for a singularly perturbed two-dimensional differential equation of the parabolic type
for the case in which the limit equation has a regular singularity. There arise power-law and
corner boundary layers along with parabolic ones in such problems.
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INTRODUCTION

Lomov’s regularization method [1] for singularly perturbed problems was originally developed
for equations whose order does not decrease as the small parameter tends to zero but exhibits some
singularity [2]. The method allows one to construct a regularized asymptotics of the solution [1].
Subsequently, this method was generalized to many classes of singularly perturbed equations in
various settings. (A bibliography of recent papers dealing with the construction of regularized
asymptotics can be found in the monograph [3].) Problems with a power-law boundary layer
were studied from various points of view in [2–7]. For example, the asymptotics of solutions of
boundary and initial value problems was constructed in [4] for ordinary differential equations with
a small parameter and with a power-law boundary layer. The same paper also gives examples of
mixed boundary value problems for partial differential equations of parabolic and hyperbolic types
which, when solved, give rise to the phenomenon of a power-law boundary layer. There is no small
parameter multiplying the self-adjoint elliptic operator in the equations studied in [4]. The Fourier
method was used there to reduce the original problem to an ordinary differential equation for which
the asymptotics of the solution contains only a power-law boundary layer.

In contrast to [4], the parabolic equation studied in the present paper contains a small parameter
multiplying part of the second spatial derivatives. The small parameter thus introduced into the
equation results in the onset of an additional parabolic boundary layer described by the special
function known as the complementary error function. Moreover, the asymptotics of the solution
contains corner boundary layer functions, which are products of power-law and parabolic bound-
ary layer functions. Fundamental results on power-law boundary layers for ordinary differential
equations can be found in the monograph [3, pp. 379–401], where a regularized asymptotics is con-
structed using the regularization method for singularly perturbed problems. This asymptotics of
the solution contains a polynomial in powers of ln(1 + τ), τ = t/ε. By introducing regularizing
functions in a different way, we manage to simplify the structure of the solution so that it does not
contain a polynomial in powers of ln(1 + τ). For ordinary differential equations, such a result was
published in [7]. An algebraic method was used in [5, 6] to study singularly perturbed initial and
boundary value problems for systems of ordinary differential equations with singularities of various
types, and asymptotics of the solution containing power-law boundary layers were constructed.

The method can be applied to problems in hydro- and aerodynamics. Singularly perturbed
problems in fluid mechanics, explosion theory, and other applied fields are given in the paper [8],
while the paper [9] describes such problems in radio engineering.

The present paper deals with the asymptotic solution of the first boundary value problem for
a singularly perturbed two-dimensional differential equation of the parabolic type

Lεu(x, y, t, ε) ≡ (ε+ t)∂tu(x, y, t, ε)− ε2a(x)∂2
xu(x, y, t, ε)− L(y, t)u(x, y, t, ε) = f(x, y, t),

(x, y) ∈ Ω ≡ (0, 1)× (0, 1), (x, y, t) ∈ Q ≡ Ω× (0, T ],

u(x, y, t, ε)|t=0 = u(x, y, t, ε)|∂Ω = 0.

(1)
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Along with a parabolic boundary layer function, the asymptotics of the solution of this problem
also contains the power-law boundary layer function

Πε(t) =

(
ε

t+ ε

)λ
, λ > 0,

as well as their product, which describes a corner boundary layer [7].
The problem is solved under the following assumptions.

Assumption 1. The function a(x) belongs to the class C∞[0, 1] and is positive for all x ∈ [0, 1].
The free term f(x, y, t) belongs to the class C∞(Q).

Assumption 2. For each t ∈ [0, T ], the self-adjoint operator L(y, t) on the Hilbert space L2[0, 1]
has simple discrete spectrum {λk(t) : k ∈ N} (i.e., Lψk(y, t) = λk(t)ψk(y, t), ψk(y, t)|y=0 =
ψk(y, t)y=1 = 0) such that
(a) λi(t) 6= λj(t) for any i 6= j and t ∈ [0, T ].
(b) λk(0) < 0 for each k ∈ N.

1. REGULARIZATION OF THE PROBLEM

Along with the independent variables x and t, we introduce regularizing variables with the use
of the relations

µj = λj(0) ln

(
t+ ε

ε

)
≡ Kj(t, ε), τ =

1

ε
ln

(
t+ ε

ε

)
, ζl =

ϕl(x)

ε3/2
,

ϕl(x) = (−1)l−1

x∫
l−1

ds√
a(s)

, l = 1, 2,

(2)

and declare them to be independent variables of the extended function

ũ(M, ε)|θ=χ(x,t,ε) ≡ u(x, y, t, ε),

M = (x, y, t, θ), θ = (ζ, τ, µ), µ = (µ1, µ2, . . .), ζ = (ζ1, ζ2),

χ(x, t, ε) =

(
ϕ(x)

ε3/2
,
1

ε
ln

(
t+ ε

ε

)
,K1(t, ε),K2(t, ε), . . .

)
, ϕ(x) =

(
ϕ1(x), ϕ2(x)

)
.

(3)

In view of definition (2), from (3) we find the derivatives of the extended function,

∂tu(x, y, t, ε) ≡
(
∂tũ+

1

ε(t+ ε)
∂τ ũ+

∞∑
j=1

λj(0)

t+ ε
∂µj

ũ

)
θ=χ(x,t,ε)

,

∂2
xu ≡

(
∂2
xũ+

2∑
l=1

[(
ϕ′l(x)

ε3/2

)2

∂2
ζl
ũ+

1

ε3/2

(
2ϕ′l(x)∂2

x,ζl
+ ϕ′′l (x)∂ζl

)
ũ

])
θ=χ(x,t,ε)

.

(4)

To simplify the notation, we omit the terms containing ∂2
ζ1,ζ2

ũ(M), because the asymptotics does
not contain functions depending on (ζ1, ζ2).

Based on (1) and (2)–(4), for the extended function ũ(M, ε) we pose the problem

L̃εũ(M, ε) ≡ ε∂tũ+
1

ε
T0ũ+ T1ũ−

√
εLζ ũ− ε2Lxũ = f(x, y, t), M ∈ B,

ũ(M, ε)|t=τ=µ=0 = 0, ũ(M, ε)|∂B = 0,
(5)
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where

B ≡ Q× (0,∞)3, T0 ≡ ∂τ −∆ζ , T1 ≡ t∂t +

∞∑
j=1

λj(0)∂µj
− L(y, t), ∆ζ ≡

2∑
l=1

∂2
ζl
,

Lζ ≡ a(x)

2∑
l=1

Lζ,l, Lx ≡ a(x)∂2
x, Lζ,l ≡ ∂ζlDx,l, Dx,l ≡ 2ϕ′l(x)∂xl

+ ϕ′′l (x).

Here one has the identity (
L̃εũ(M, ε)

)
θ=χ(x,t,ε)

≡ Lεu(x, y, t, ε). (6)

We seek a solution of problem (5) in the form of the series

ũ(M, ε) =

∞∑
k=0

εk/2uk(M).

In a standard manner, for the coefficients of this series we obtain the iterative problems

Tνu0(M) = 0,

T0u2(M) = −T1u0(M) + f(x, y, t),

T0uk(M) = −T1uk−2(M) + Lζuk−3(M)− ∂tuk−4(M) + Lxuk−6(M),

uk(M)|t=τ=µ=0 = 0, uk(M)|∂B = 0, k ≥ 0, ν = 0, 1.

(7)

2. SPACE OF RESONANCE-FREE SOLUTIONS

Let us define a function class in which each of problems (7) is uniquely solvable. To this end, we
introduce the function spaces

G0 =

{
g0(x, y, t) : g0(x, y, t) =

〈
υ(x, t), ψ(y, t)

〉
, υ(x, t) ∈ C∞

(
[0, 1]× [0, T ]

)}
,

G1 =

{
g1(N l) : g1(N l) =

2∑
l=1

〈
Y (N l), ψ(y, t)

〉
,
∥∥Y (N l)

∥∥ < c exp

(
− ζ

2
l

8τ

)
,

Y (N l) = y(x, t)Y (ζl, τ), y(x, t) ∈ C∞
(
[0, 1]× [0, T ]

)}
,

G2 =

{
g2(x, y, t, µ) : g2(x, y, t, µ) =

〈[
C(x, t) + Λ

(
P (x)

)]
exp(µ), ψ(y, t)

〉
,

C(x, t) ∈ C∞
(
[0, 1]× [0, T ]

)
, P (x) ∈ C∞

(
[0, 1]

)}
,

G3 =

{
g3(N l) : g3(N l) =

2∑
l=1

〈
Z(N l) exp(µ), ψ(y, t)

〉
,
∥∥Z(N l)

∥∥ < c exp

(
− ζ

2
l

8τ

)
,

Z(N l) = z(x, t)Z(ζl, τ), z(x, t) ∈ C∞
(
[0, 1]× [0, T ]

)}
,

N l = (x, t, ζl, τ), µ = (µ1, µ2, . . .), υ(x, t) =
(
υ1(x, t), υ2(x, t), . . .

)
, Z(N l) =

(
Zij(N

l)
)
,

Y (N l) =
(
Y1(N l), Y2(N l), . . .

)
, C(x, t) =

(
cij(x, t)

)
, Λ(P (x)) = diag

(
P1(x), P2(x), . . .

)
,

exp(µ) =
(

exp(µ1), exp(µ2), . . .
)
, ψ(y, t) =

(
ψ1(y, t), ψ2(y, t), . . .

)
, i, j = 1, 2, . . . ,〈

υ(x, t), ψ(y, t)
〉

=

∞∑
i=1

υi(x, t)ψi(y, t),
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78 OMURALIEV et al.〈[
C(x, t) + Λ

(
P (x)

)]
exp(µ), ψ(y, t)

〉
=

∞∑
ij=1

cij(x, t) exp(µj)ψi(y, t) +

∞∑
i=1

Pi(x) exp(µi)ψi(y, t),

〈
Z(N l) exp(µ), ψ(y, t)

〉
=

∞∑
ij=1

Zij(N
l) exp(µj)ψi(y, t),

〈
Y (N l), ψ(y, t)

〉
=

∞∑
i=1

Yi(N
l)ψi(y, t).

From these spaces we construct the new space defined as the direct sum of these spaces,

U = G0 ⊕G1 ⊕G2 ⊕G3.

Following [1], we refer to this new space as the space of resonance-free solutions. An arbitrary
element uk(M) of the space U has the form

uk(M) =
〈
vk(x, t), ψ(y, t)

〉
+

2∑
l=1

〈
Y k(N l), ψ(y, t)

〉
+

〈[
Ck(x, t) + Λ

(
P k(x)

)]
exp(µ), ψ(y, t)

〉
+

2∑
l=1

〈
Zk(N l) exp(µ), ψ(y, t)

〉
.

(8)

Let us calculate the action of the operators T0, T1, and Lζ on a function uk(M) ∈ U . We have

T0uk(M) =

2∑
l=1

〈[
∂τY

k(N l)− ∂2
ζl
Y k(N l) +

(
∂τZ

k(N l)− ∂2
ζl
Zk(N l)

)
exp(µ)

]
, ψ(y, t)

〉
,

T1uk(M) =

〈(
D1υk(x, t) +

2∑
l=1

D1Y k(N l)

)
, ψ(y, t)

〉

+

〈
D3
(
Ck(x, t) + Λ

(
P k(x)

))
exp(µ), ψ(y, t)

〉

+

〈 2∑
l=1

D3Zk(N l) exp(µ), ψ(y, t)

〉
,

Lζuk(M) = a(x)

2∑
l=1

〈[
∂ζl
(
Dx,l

(
Y k(N l)

))
+ ∂ζl

(
Dx,l

(
Zk(N l)

))
exp(µ)

]
, ψ(y, t)

〉
,

D1 ≡ t∂t − Λ
(
λ(t)

)
+ tAT(t), D3Z ≡ t∂tZ + tAT(t)Z + ZΛ(0)− Λ(t)Z,

αik(t) =
(
∂tψi(y, t), ψk(y, t)

)
, Λ(t) = diag

(
λ1(t), λ2(t), . . .

)
, A(t) =

(
αik(t)

)
.

(9)

3. SOLVABILITY OF THE ITERATIVE PROBLEMS

In the general case, the iterative equations (7) can be written in the form

T0uk(M) = hk(M). (10)

Theorem 1. Let Assumptions 1 and 2 be satisfied, and let the function hk(M) lie in the
space G1 ⊕G3. Then Eq. (10) has a solution uk(M) in the space U .

Proof. Let hk(M) ∈ G1 ⊕G3; i.e.,

hk(M) =

〈 2∑
l=1

[
hk,1(N l) + hk,2(N l) exp(µ)

]
, ψ(y, t)

〉
,
∥∥hk,r(N l)

∥∥ < c exp

(
− ζ

2
l

8τ

)
, r = 1, 2.
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Let us substitute the representation (8) into Eq. (10). Then, based on the calculations in (9),
for the functions Y k(N l) and Zk(N l) we obtain the equations

∂τZ
k
ij(N

l)− ∂2
ζl
Zkij(N

l) = hk,2ij (N l), ∂τY
k
i (N l)− ∂2

ζl
Y k
i (N l) = hk,1i (N l).

These equations with the corresponding boundary conditions

Zkij(N
l)|τ=0 = 0, Zkij(N

l)|ζl=0 = W k,l
ij (x, t), Y k

i (N l)|τ=0 = 0, Y k
i (N l)|ζl=0 = dk,li (x, t)

have solutions representable in the form

Zkij(N
l) = W k,l

ij (x, t) erfc

(
ζl

2
√
τ

)
+ hk,2ij (x, t)I2(ζl, τ), erfc (x) =

2√
π

∞∫
x

exp(−t2) dt,

Y k
i (N1,l) = dk,li (x, t) erfc

(
ζl

2
√
τ

)
+ hk,1i (x, t)I1(ζl, τ),

Ir(ζl, τ) =
1

2
√
π

τ∫
0

∞∫
0

hk,r1 (η, s)√
τ − s

[
exp

(
−(ζl − η)2

4(τ − s)

)
− exp

(
−(ζl + η)2

4(τ − s)

)]
dη ds, r = 1, 2,

(11)

where hk,r1 (x, t) and hk,r2 (η, s) are known functions.
Let us estimate the integral Ir(ηl, τ) using the mean value theorem,

∣∣Ir(N l)
∣∣ ≤ c∣∣∣∣ 1

2
√
π

τ∫
0

dν√
τ − ν

∞∫
0

[
exp

(
−(ζl − η)2

4(τ − ν)

)
− exp

(
−(ζl + η)2

4(τ − ν)

)]
exp

(
− η

2

8ν

)
dη

∣∣∣∣
=

c

2
√
π

∣∣∣∣
τ∫

0

dν√
τ − ν

∞∫
0

exp

[
−
(
ζl + η

)2

4(τ − ν)
+ θ

(
−(ζl − η)2

4(τ − ν)
+

(ζl + η)2

4(τ − ν)

)]

×
(
−(ζl − η)2

4(τ − ν)
+

(ζl + η)2

4(τ − ν)

)
exp

(
− η

2

8ν

)
dη

∣∣∣∣
=

c

2
√
π

∣∣∣∣
∞∫

0

τ∫
0

exp

(
− η

2

8ν

)
exp

(
−(1− θ)(ζl + η)2

4(τ − ν)
− θ (ζl − η)2

4(τ − ν)

)
ζlη√

(τ − ν)3
dη dν

∣∣∣∣.
Since

− 1

(τ − ν)
≤ −1

τ
, −1

ν
≤ −1

τ
,

∣∣∣∣ ζlη

2
√
τ − ν

exp

(
− ζlη

4(τ − ν)

)∣∣∣∣ < c,

we have, choosing θ = 1/4,

∣∣I1(Nl)
∣∣ ≤ c∣∣∣∣ 1

2
√
π

∞∫
0

exp

(
− η

2
l

4τ

)
exp

(
− η

2

8τ

) τ∫
0

exp

(
− η2

4(τ − ν)

)
1

(τ − ν)
dν dη

∣∣∣∣.
Let us make the change of variables τ − ν = z. Applying the mean value theorem, we obtain

∣∣I1(Nl)
∣∣ ≤ c∣∣∣∣ 1

2
√
π

∞∫
0

exp

(
− η

2
l

4τ

)
exp

(
− η

2

8τ

)
1

τ

τ∫
θ

exp

(
−η

2

4z

)
dz dη

∣∣∣∣.
Sharpening the inequality and applying the mean value theorem one more time, we arrive at the
inequality

∣∣I1(Nl)
∣∣ ≤ c∣∣∣∣1τ exp

(
− η

2
l

4τ

) ∞∫
0

exp

(
− η

2

8τ

)
τ exp

(
− η2

4θτ

)
dη

∣∣∣∣, θ ∈ (0, τ).
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Hence, using formula 3.321.3 in [10], we obtain the desired estimate. The proof of the theorem is
complete.

In what follows, given a matrix C, by C (respectively, C) we denote the matrix with the same
diagonal entries and zero off-diagonal entries (respectively, with the same off-diagonal entries and
zero diagonal entries); in particular, C = C + C.

Theorem 2. Let Assumptions 1 and 2 be satisfied, and let hk,2(x, t)|t=0 = 0 (i.e., hk,2ii (x, 0) = 0).
Then the problem

D3(Ck(x, t) + Λ(P k(x))) = hk,2(x, t),

Ck(x, t)|t=0 = −
[
Λ
(
υk(x, 0)

)
+ Λ

(
Ck(x, t)1

)
+ Λ

(
P k(x)

)]
t=0(

i.e., cki,i(xt)|t=0 = −υki(x, 0)− P k
i (x)−

∑
i 6=j

ckij(x, 0)

)
,

(12)

where 1 = col (1, 1, . . .), is uniquely solvable.
Proof. In Eq. (12), set

Ck(x, t)Λ(0)− Λ(t)Ck(x, t)|t=0 =
[
hk,2(x, t)

]
|t=0(

i.e., ckij(x, t)|t=0 =
hk,2i,j (x, 0)

λj(0)− λi(0)
, i 6= j

)
.

(13)

Then, by virtue of the condition hk,2(x, t)|t=0 = 0, system (12) is nonsingular.
Under the corresponding initial conditions in (12) and (13), Eq. (12) unambiguously determines

the function Ck(x, t). The proof of the theorem is complete.

Remark. When solving the iterative equations, the condition hk,2(x, t)|t=0 = 0 is ensured by the
choice of the vector function P k(x) = (P k

1 (x), P k
2 (x), . . .).

Theorem 3. Let Assumptions 1 and 2 be satisfied. Then Eq. (10) has a unique solution satisfying
the conditions
(a) uk(M)|t=τ=µ=0 = 0, uk(M)|∂B = 0.
(b) T1uk(M) + hk(M) ∈ G1 ⊕G3.
(c) Lζuk(M) = 0.

Proof. By Theorem 1, there exists a solution of Eq. (10), which can be represented in the
form (8). Let us subject the solution (8) to condition (b), which holds if the arbitrary func-
tions υk(x, t) and Ck(x, t) are chosen to be solutions of the equations

D1vk,i(x, t) = −hk,1i (x, t), D3
[
ckij(x, t) + P k

i (x)
]

= −hk,2ij (x, t).

Then, based on (9), the expression T1uk(M) + hk(M) is written in the form

T1uk(M) + hk(M) =

2∑
l=1

[〈
D1Y k(N l) + hk,3(N l), ψ(y, t)

〉
+
〈(
D3Zk(N l) + hk,4(N l)

)
exp(µ), ψ(y, t)

〉]
∈ G1 ⊕G3,

hk(M) =

2∑
l=1

〈
hk,3(N l) + hk,4(N l) exp(µ), ψ(y, t)

〉
.
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Subjecting the function (8) to the boundary conditions (a), we find

Y k
i (N l)|t=τ=0 = 0, Y k

i (N l)|ζl=0 = dk,li (x, t), dk,li (x, t)|x=l−1 = −υk,i(l − 1, t),

Ck(x, t)|t=0 = −Λ
(
υk(x, 0)

)
− Λ

(
P k(x)

)
− Λ

(
Ck(x, 0)1

)(
i.e., ckii(x, t)|t=0 = −υki(x, 0)− P k

i (x)−
∑
i6=j

ckij(x, 0)

)
, Zkij(N

l)|t=τ=0 = 0,

Zkij(N
l)|ζl=0 = W k,l

ij (x, t), W k,l
ij (x, t)|x=l−1 = −ckij(l − 1, t)− P k

i (l − 1).

(14)

The matrix function Ck(x, t) is determined unambiguously by Theorem 2.
Let us substitute the function uk(M) into condition (c). Then, taking into account the rep-

resentations (11) as well as the relation hk,r+3(N l) = hk,r+3(x, t)Ir(ζl, τ), and noticing that the
function erfc (ζl/2

√
τ) satisfies the same estimate as the function Ir(ζl, τ), r = 1, 2, according to (9)

we obtain the equations
Dx,l

[
dk,li (x, t) + hk,3i (x, t)

]
= 0,

Dx,l

[
W k,l
i,j (x, t) + hk,4i,j (x, t)

]
= 0.

Under the initial conditions in (14), from these equations we unambiguously determine the func-
tions dk,li (x, t) and W k,l

i,j (x, t) and hence, by virtue of (11), uniquely find the functions Y k(N l)

and Zk(N l).
The equation for υk(x, t) has a unique smooth solution (see [2, 3, 11, 12]) satisfying the condi-

tion ‖υk(x, 0)‖ <∞.
Thus, the solution of Eq. (10) has been unambiguously determined. The proof of the theorem is

complete.

4. SOLUTION OF THE ITERATIVE PROBLEMS

The iterative equation (7) is homogeneous for k = 0, 1; therefore, according to Theorem 1, these
equations are solvable in the space U if the functions Y k(N1) and Zk(N l) are solutions of the
equations

∂τY
k
i (N1) = ∂2

ζl
Y k
i (N l),

∂τZ
k
ij(N

1) = ∂2
ζl
Zkij(N

l).

Under the boundary conditions

Y k
i (N1)|τ=0 = 0, Y k

i (N1)|ζl=0 = dk,li (x, t), Zkij(N
1)|τ=0 = 0, Zkij(N

1)|ζl=0 = W k,l
ij (x, t),

the solutions of these equations can be represented as

Y k
i (N1) = dk,li (x, t) erfc

(
ζl

2
√
τ

)
,

Zkij(N1) = W k,l
ij (x, t) erfc

(
ζl

2
√
τ

)
,

(15)

where the arbitrary functions dk,li (x, t) and W k,l
ij (x, t) satisfy the conditions

dk,li (x, t)|x=l−1 = −vk,i(l − 1, t),

W k,l
ij (x, t)|x=l−1 = −ckij(l − 1, t)− P k

i (l − 1).

Let us calculate the free term in Eq. (7) for k = 2, having preliminarily expanded the free
term f(x, y, t) in the series

f(x, y, t) =

∞∑
i=1

fi(x, t)ψi(y, t).
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As a result, we obtain

F2(M) = −T1u0(M) + f(x, y, t) = −
〈
D1υ0(x, t)− f(x, t), ψ(y, t)

〉
−

2∑
l=1

〈
D1Y 0(N1), ψ(y, t)

〉
−
〈
D3
[
C0(x, t) + Λ

(
P 0(x)

)]
exp(µ), ψ(y, t)

〉

−
2∑
l=1

〈
D3Z0(N l) exp(µ), ψ(y, t)

〉
,

f(x, t) =
(
f1(x, t), f2(x, t), . . .

)
.

Set
D1v0i(x, t)− fi(x, t) = 0, D3

[
c0
ij(x, t) + Λ

(
P 0
i (x)

)]
= 0; (16)

then

F2(M) = −
2∑
l=1

〈[
D1Y 0(N1) +D3Z0(N l) exp(µ)

]
, ψ(y, t)

〉
.

The equation with this right-hand side is solvable in the space U if the functions Y 2
i (N l) and Z2

ij(N
l)

are the solutions of the equations

T0Y
2
i (N l) = −D1Y 0

i (N1),

T0Z
2
ij(N

l) = −D3Z0
ij(N

l).

Consider Eqs. (16). The first equation has a solution satisfying the condition ‖υ0(x, 0)‖ < ∞
(see [2, 3, 11, 12]).

Removing the degeneracy of the second system in (16), we set

C0(x, t)Λ(0)− Λ(t)C0(x, t)|t=0 = 0(
i.e.,

(
λi(0)− λj(t)

)
c0
i,j(x, t)|t=0 = 0, i 6= j

)
.

(17)

Moreover, from the initial condition (14) we find

C0(x, t)|t=0 = −
[
Λ
(
v0(x, t)

)
+ Λ

(
C0(x, t) 1

)
+ Λ

(
P 0(x)

)]
t=0

; (18)

in coordinate form, in view of (17), this relation can be written as

c0
ii(x, t)|t=0 = −

[
v0,i(x, 0) + P 0

i (x)
]
.

Relations (17) and (18) are used in the initial conditions of the second system in (16), which is
uniquely solvable.

Let us proceed to the next iterative equation for k = 3. Based on the calculations in (9), the
free term of this equation can be written in the form

F3(M) = −T1u1(M) + Lζu0(M) = −
〈
D1v1(x, t) +

2∑
l=1

D1Y 1(N l), ψ(y, t)

〉

−
〈
D3
(
C1(x, t) + Λ

(
P 1(x)

))
exp(µ), ψ(y, t)

〉
−

2∑
l=1

〈
D3Z1(N l) exp(µ), ψ(y, t)

〉
+ a(x)

2∑
l=1

〈
∂ζlDx,l

[
Y 0(N l) + Z0(N l) exp(µ)

]
, ψ(y, t)

〉
.
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To ensure the solvability of this equation, based on (15), we set

D1v1,i(x, t) = 0, Dx,ld
0,l
i (x, t) = 0, Dx,lW

0,l
i,j (x, t) = 0, D3(c1

i,j(x, t) + P 1
i (x)) = 0. (19)

From the first equation in (19), we find v1(x, t) = 0. Solving the second and third equations
under the conditions d0,l

i (x, t)|t=0 =−v0,i(x, 0) andW 0,l
i,j (x, t)|t=0 =−c0

i,j(x, 0), we determine d0,l
i (x, t)

and W 0,l
i,j (x, t). The fourth equation is solvable if(

λi(0)− λj(t)
)
c1
ij(x, 0)

∣∣
t=0

= 0 for all i 6= j.

From the initial condition (14), we find

C1(x, t)|t=0 = −Λ
(
v1(x, 0)

)
− Λ

(
P 1(x)

)(
c1
ii(x, t)|t=0 = −v1,i(x, 0)− P 1

i (x)
)
.

It will be shown below that P k
i (x) = 0 for odd k. The equation for c1

ij(x, t) is homogeneous;
therefore, c1

ij(x, t) = 0. The free term of the iterative equation for k = 3 acquires the form

F3(M) = −
2∑
l=1

〈[
D1Y 1(N l) +D3Z1(N l) exp(µ)

]
, ψ(y, t)

〉
.

By Theorem 1, this equation has a solution representable in the form (8) with k = 3.
At the next step (k = 4), the free term of the iterative equation is written in the form

F4(M) = −T1u2(M) + Lζu1 − ∂tu0 = −
〈
D1v2(x, t) + ∂tv0(x, t) +AT(t)v0(x, t), ψ(y, t)

〉
−

2∑
l=1

〈D1Y 2(N l) +D3Z2(N l) exp(µ), ψ(y, t)〉

−
〈
D3[C2(x, t) + Λ(P 2(x))] exp(µ), ψ(y, t)

〉
+ a(x)

2∑
l=1

〈
∂ζlDx,l

[
Y 1(N l) + Z1(N l) exp(µ)

]
, ψ(y, t)

〉
−

2∑
l=1

〈
∂tY

0(N l) + ∂tZ
0(N l) exp(µ) +AT(t)Y 0(N l) +AT(t)Z0(N l) exp(µ), ψ(y, t)

〉
−
〈[
∂tC

0(x, t) +AT(t)C0(x, t) +AT(t)Λ
(
P 0(x)

)]
exp(µ), ψ(y, t)

〉
.

To ensure the solvability of the iterative equation for k = 4, we set

D1v2,i(x, t) = −
[
∂tv0,i +

∞∑
j=1

αji(t)v0,i(x, t)

]
,

D3
[
c2
ij(x, t) + P 2

i (x)
]

= −
[
∂tc

0
ii(x, t) + αii(t)c

0
ii(x, t) + αii(t)P

0
i (x)

]
,

Dx,ld
1,l
i (x, t) = 0, Dx,lW

1,l
ij (x, t) = 0.

(20)

The first equation permits one to determine the function v2(x, t). Removing the degeneracy of
the second equation, we set(

λi(0)− λj(t)
)
c2
ij(x, t)

∣∣
t=0

= 0 for all i 6= j,

−
(
∂tc

0
ii + αii(t)c

0
ii(x, t) + αii(t)P

0
i (x)

)∣∣
t=0

= 0.
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The last relation is ensured by the choice of the components of the vector P 0(x)=(P 0
1 (x), P 0

2 (x), . . .),

P 0
i (x) = −∂tc

0
ii(x, t) + αii(t)c

0
ii(x, t)

αii(t)

∣∣∣∣
t=0

.

The equations for the functions d1,l
i (x, t) and W 1,l

ij (x, t) in (20) are solved under the zero initial
conditions

d1,l
i (x, t)|x=l−1 = −v1,i(l − 1, t) = 0,

W 1,l
ij (x, t)|x=l−1 = −c1

ij(l − 1, t)− P 1
i (l − 1) = 0;

here we have taken into account the fact that P 1
i (x) = 0, hence Y 1(N l) = 0 and Z1(N l) = 0, and

consequently, u1(M) = 0.
Based on (20), the free term F4(M) acquires the form

F4(M) = −
2∑
l=1

{〈
D1Y 2(N l) +D3Z2(N l) exp(µ), ψ(y, t)

〉
+
〈
∂tY

0(N l) +AT (t)Y 0(N l) +
[
∂tZ

0(N l) +AT (t)Z0(N l)
]

exp(µ), ψ(y, t)
〉}
∈ G1 ⊕G3;

the iterative equation for k = 4 is solvable in U by Theorem 1.
Consider one more iterative equation for k = 5. The free term of this equation is written in the

form

F5(M) = −T1u3(M) + Lζu2(M)− ∂tu1 = −
〈
D1υ3(x, t) + ∂tυ1(x, t) +AT(t)υ1(x, t), ψ(y, t)

〉
−

2∑
l=1

〈
D1Y 3(N l) +D3Z3(N l) exp(µ), ψ(y, t)

〉
−
〈
D3
[
C3(x, t) + Λ(P 3(x))

]
, ψ(y, t)

〉
+ a(x)

2∑
l=1

〈
∂ζlDx,l

[
Y 2(N l) + Z2(N l) exp(µ)

]
, ψ(y, t)

〉
−

2∑
l=1

〈
∂tY

1(N l) + ∂tZ
1(N l) exp(µ) +AT(t)

[
Y 1(N l) + Z1(N l) exp(µ)

]
, ψ(y, t)

〉
−
〈
∂tC

1(x, t) +AT(t)
[
C1(x, t) + Λ(P 1(x))

]
, ψ(y, t)

〉
.

By Theorem 1, the iterative equation for k = 5 is solvable if

D1υ3i(x, t) = −∂tυ1i(x, t)−
∞∑
k=1

αkiυ1k(x, t),

D3
[
C3(x, t) + Λ

(
P 3(x)

)]
= ∂tC

1(x, t) +AT(t)
[
C1(x, t) + Λ

(
P 1(x)

)]
,

∂ζlDx,lY
2(N l) = 0, ∂ζlDx,lZ

2(N l) = 0.

(21)

Since C1(x, t) = 0, we set P 1(x) = 0 to ensure the solvability of the second equation in (21).
Further, in a similar way, we successively determine the coefficients of the partial sum

un,ε(M) =

n∑
k=0

εku2k(M).
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5. REMAINDER ESTIMATE

We substitute the expression

ũ(M, ε) =

n+1∑
k=0

εku2k(M)− εn+1u2(n+1)(M) + εn+1Rε(M) (22)

into the extended problem (5). Then, considering the iterative problems (7), for the remainder term
we obtain the problem

L̃εRε(M) = gε,n(M), Rε(M)|t=τ=µ=0(M) = Rε(M)|x=l−1,ζl=0(M) = 0, (23)

where
gε,n(M) = −T1u2n(M)− ∂tu2n−2(M) + Lxu2n−4(M)− L̃εu2(n+1)(M). (24)

In relations (23) and (24), we perform restriction by means of the regularizing functions
θ = χ(x, t, ε). Then, by virtue of identity (6), for Rε,n(x, t) ≡ Rε(M) we obtain the problem

LεRε,n(x, t) = gε,n(x, t), Rε,n(x, t)|t=0 = Rε,n(x, t)|x=l−1 = 0. (25)

The very construction of the functions uk(M) and identity (6) imply the boundedness of the right-
hand side gε,n(x, t) ≡ gε,n(M)|θ=χ(x,t,ε) of the equation in problem (25). For sufficiently small ε > 0,
the operator Lε satisfies all the conditions of the maximum principle [13, p. 22]; therefore, follow-
ing [14], we obtain the estimate ‖Rε,n(x, t)‖ < c. From (22), we have the estimate∥∥ũ(M)− un,ε(M)

∥∥
θ=χ(x,t,ε)

< cεn+1, (26)

where the constant c is independent of ε > 0, n = 0, 1, 2, . . .

Theorem 4. Let Assumptions 1 and 2 be satisfied. Then the partial sum (22) obtained by
the above-described method with θ = χ(x, t, ε) is an asymptotic solution of problem (1); i.e., for
sufficiently small ε > 0 and all n = 0, 1, 2, . . . one has the estimate (26).
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