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Abstract—We consider a quasi-hydrodynamic regularized model of the phase field type that
describes the dynamics of an isothermal compressible two-phase viscous mixture with allowance
for interphase effects. The dissipativity of the model, i.e., the lack of growth in the complete
energy of the closed system as it tends to an equilibrium state, is discussed. A spatially discrete
approximation to the one-dimensional model that possesses the dissipativity property with re-
spect to total energy is constructed for the plane-parallel case. The working capacity of the
discretization constructed is demonstrated using the spinodal decomposition of the two-phase
mixture.
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INTRODUCTION

Multiphase multicomponent microflows, in which capillary effects play a significant role, often
occur in nature and technology. They are encountered in motors, reactors, pipelines, pores of
container rocks, living organisms, and many other natural and technical systems. Therefore, creating
new and perfecting the existing mathematical models to describe such systems and developing
counterpart numerical methods is a topical problem.

Depending on the typical spatial scale of the problem, various approaches are used to construct
the mathematical model for describing the multiphase system. In the present paper, we consider
models in which the interface and its dynamics are resolved. All such models can be divided into
two groups. The first group includes models that represent the interface as a mathematical surface
(of “zero” thickness) with prescribed contact conditions. These conditions determine the nature of
interaction between the phases and are an indispensable part of the model. The interface position
can be tracked both explicitly (on Lagrangian meshes) and implicitly (on Eulerian meshes). In
the latter case, one can use, for example, the Volume of Fluid (VoF) method [1] or the level set
method [2]. The second group incorporates models with a diffuse boundary [3–7], in which the
interface is described by a thin layer of finite thickness within which the properties of the medium
undergo “rapid” but smooth changes.

These models are based on using a specially defined (in space) function, referred to as the order
parameter, that plays the role of a phase indicator. The order parameter can be one of the medium
characteristics (for example, density or concentration) or, alternatively, some artificially introduced
variable. Note that there can be several order parameters and they can be scalars or quantities
of a higher tensor dimension. One can consider phase-field models [8, 9] as a particular case of
models with diffuse boundary. The nature of interaction between the phases is determined in these
models by a special form of the Helmholtz free energy (or another thermodynamic potential of the
system): it depends on both the order parameter and its spatial derivatives (this is why such models
are sometimes called “weakly nonlocal” or “gradient”); in this case, the dependence on the order
parameter is nonconvex. The indicated special form of free energy determines the thickness of the
interface and the interphase energy (the surface tension coefficient in problems of hydrodynamics).
Phase field models quite naturally, from the viewpoint of the original mathematical model, describe
such phenomena as coagulation and fragmentation of droplets (which are topological changes in the
spatial distribution of phases).
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Note that no explicit concept of a phase is introduced in the models under consideration. How-
ever, in view of the special form of free energy, subdomains with virtually uniform (in space) compo-
sition form the flow range. It is these subdomains that are interpreted as separate phases. Phase-field
type models are exemplified by the Navier–Stokes–Cahn–Hilliard (NSCH) equations [3, 5], which
describe the dynamics of a two-component two-phase mixture. The mass or volume concentration
of one of the components serves as the order parameter in the NSCH equations. Another example
of frequently used phase field models is Navier–Stokes–Korteweg (NSK) equations [3, 4, 10], which
describe the dynamics of a one-component two-phase system (a liquid and its vapor). The mass
density is considered in this model as the order parameter.

Liu et al. [11] (see also [12]) considered a system that describes the dynamics of a compressible
two-phase two-component mixture. In this case, the medium is treated as one-velocity. The order
parameters in this system are the mass densities of components (rather than concentrations as in
the NSCH model). This choice of phase fields in some sense combines the NSCH and NSK systems.
Similar systems in which molar densities are taken for the phase fields were considered in [12–16].
The model in [13–15] was constructed with the use of the density functional method.

In the present paper, for the isothermal case, we suggest a QHD-regularized version of the
system proposed in [11] (see Eqs. (1) and (2) below). The dissipativity (in the sense of the lack
of growth of total energy) of the system under study is discussed. The problem of constructing
a spatial discretization is considered for the one-dimensional plane-parallel case. In this case, the
discretization is constructed with allowance for the conservation of the system total energy for
a discrete analog of the property of dissipativity. It is important that this property be satisfied at
the discrete level. In particular, as was noted in [4, 17, 18], this allows one to get rid of the so-called
“parasitic currents,” a numerical artifact that is an eddy-like velocity field in a neighborhood of
the interface that does not fade as the system approaches the equilibrium state. To this end, it
was proposed in [4, 17, 18] to use a representation of capillary stresses in a potential form. In its
turn, such a representation leads to a momentum-nonconservative difference scheme, but this is not
critical in view of no shock waves or other strong discontinuities being present. Such discretizations
were constructed for QHD-regularized NSCH equations in the papers [19, 20].

QHD-regularization of various models in the continuum mechanics presumes that, in the general
case, the mass density of the flow of a mixture differs from the average momentum of unit volume,
with the case of the two being equal not excluded . Thus, QHD-regularized models include original
models as a special case. In view of the above assumption, additional terms of dissipative nature
arise in the equations of the original model. On the one hand, these terms allow one to solve
relatively simple-to-implement explicit stable central difference schemes. On the other hand, in
some cases they ensure more precise coincidence with the results of experiments [21–23]. Note that
similar regularization techniques were also considered in the papers [24, 25].

QHD-regularized (and also related quasi-gasdynamic) models of the dynamics of viscous fluid,
magnetic hydrodynamics, shallow water etc. have been successfully applied before [21–23, 26]. For
multiphase multicomponent models with surface effects, a QHD-regularization was constructed
in [27]. Its particular case corresponding to the isothermal Navier–Stokes–Cahn–Hilliard model was
considered in the papers [19, 20, 28, 29].

This paper is organized as follows. Section 1 introduces the notation used in the paper. In Sec. 2,
we present the isothermal two-component phase-field model in [11] and its QHD-regularization.
In Sec. 3, we discuss the potential form of capillary stresses. Section Sec. 4 proves the dissipativity
of the regularized model. In Sec. 5, we propose a space-discrete difference scheme for the one-
dimensional plane-parallel case and prove its dissipativity. In Sec. 6, following the paper [11],
the equations of the model are rendered dimensionless. In the concluding section 7, we carry out
numerical modeling of the spinodal decomposition and analyze the dynamics of the system total
energy.

1. NOTATION

For convenience, let us list the notation used in the paper. Consider a bounded domain Ω ⊂ R
n

(n = 1, 2, or 3) with piecewise smooth boundary ∂Ω, Ω = Ω ∪ ∂Ω. In R
n, define a Cartesian

coordinate system Ox1 . . . xn with basis unit vectors e1, . . . , en. For a vector (point) x ∈ R
n, we

denote its ith component in this basis by xi, i.e., x := (x1, . . . , xn)
T, and the time variable, by t.

Hereinafter the symbol “ :=” designates equality by definition.
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We will index the spatial coordinates by Latin letters i and j and use Greek letters α, β, κ, and υ
for the numbers of mixture components. In this case, if not stated otherwise, repeated indices i
and j assume summation from 1 to n and repeated indices α and β indicate summation from 1
to 2 (according to the number of mixture components); no summation is performed over repeated
indices κ and υ.

Let u = uiei and v = viei be arbitrary smooth vector fields, let A = Aijei⊗ej and B = Bijei⊗ej

be arbitrary smooth tensor fields of the second rank, and let ei⊗ej be the basis dyad. In the sequel,
we will use the following notation and operations: ∂i := ∂/∂xi, ∂t := ∂/∂t, u · v := uivi is the
inner product, |u|2 := u · u, Au ≡ A · u := Aijujei, u ·A := Aijuiej , ∇ := (∂i)ei stands for the
gradient, div A ≡ ∇ ·A := (∂iAij)ej is the divergence of a tensor, A : B := AijBij is the double
inner product, |A|2 := A : A, u ⊗ v := uivjei ⊗ ej stands for the tensor product of vectors, δij is
Kronecker’s delta, and I = δijei ⊗ ej is the identity tensor.

2. REGULARIZED MODEL OF A TWO-COMPONENT TWO-PHASE FLUID

The system of equations describing the dynamics of a two-component two-phase isothermal
compressible viscous fluid in the domain Ω allowing for interphase effects and neglecting gravity has
the form [11]:

∂tρα + div (ραu) = (−1)α+1 div (M∇μ̂12), α = 1, 2, (1)

∂t(ρu) + div (ρu⊗ u) +∇p = div Πc + div ΠNS, (2)

where u(x, t) is the mass-averaged fluid velocity, ρα(x, t) > 0 is the density of component α,
and ρ := ρ1 + ρ2 is the total density of the mixture. To determine the remaining variables in this
system, we preliminarily introduce the volume density of the Helmholtz free energy ψ [11]

ψ(ρ1, ρ2,∇ρ1,∇ρ2) := ψ0(ρ1, ρ2) +
1

2
λαβ∇ρα · ∇ρβ, (3)

ψ0(ρ1, ρ2) := kBT
ρα
mα

ln

[
ραΛ

3
α

mα(1− φ)
]
− kBT ρα

mα

− aαβ ρα
mα

ρβ
mβ

, (4)

where mα is the molecular mass of component α, Λα = (2πmαkBT )
−1/2

�, � is the Planck constant,
φ = bαρα/mα is the volume fraction occupied by the molecules, bα is the molecular volume of
component α, and kB is the Boltzmann constant. The function ψ0(ρ1, ρ2) is the volume density of
the homogeneous part of Helmholtz’ free energy of the mixture. The capillary coefficients λκυ > 0
are constants calculated by the formula λκυ := kBTDκυ/(mκmυ), κ, υ = 1, 2, where Dκυ = Dυκ > 0
are constant coefficients. Recall that no summation is performed over the indices κ and υ.

The pressure p is linked to the densities ρ1 and ρ2 by the relation

p(ρ1, ρ2) = ρ1μ1 + ρ2μ2 − ψ0(ρ1, ρ2),

where μα(ρ1, ρ2) = ∂ρα
ψ0 is the (classical) chemical potential of component α.

The Navier–Stokes viscous stress tensor is prescribed in the form

ΠNS := 2ηD+

(
ζ − 2

3
η

)
(div u)I, D(u) :=

1

2
(∇⊗ u+

(∇⊗ u)T
)
,

where η(ρ1, ρ2) > 0 and ζ(ρ1, ρ2) ≥ 0 are the dynamic and volume viscosity coefficients, respectively.
Further, we set η(ρ1, ρ2) = ρανα, where the να > 0 are the constant kinematic viscosity coefficients
of component α = 1, 2.

The capillary stress tensor has the form

Πc :=

(
λαβραΔρβ +

1

2
λαβ∇ρα · ∇ρβ

)
I− λαβ∇ρα ⊗∇ρβ.

Note that Πc ≈ 0 in domains where ρα ≈ const. Thus, the tensor Πc significantly differs from zero
only within the interphase boundary. The tensor Πc, together with the nonconvex dependence of
the function ψ0 on ρ1 and ρ2, permits one to take the interphase tension into account.
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On the right-hand side of Eqs. (1), the coefficient M(ρ1, ρ2) := M0ρ1ρ2/ρ
2 is the mobility of

components, where M0 > 0 is a constant; μ̂12 := T−1(μ̂1 − μ̂2), where T > 0 is the temperature,
which is a constant parameter by virtue of the assumption about the problem being isothermal; μ̂α is
the generalized chemical potential of component α, and

μ̂α(ρ1, ρ2,Δρ1,Δρ2) = μα(ρ1, ρ2)− λαβΔρβ. (5)

System (1), (2) is equipped with the boundary conditions

u = 0, n · ∇ρα = 0, n · ∇μ̂α = 0 on ∂Ω (6)

and the initial conditions

ρα(x, 0) = ρα,0(x), u(x, 0) = u0(x) in Ω.

Here n is the unit outward normal to the domain boundary ∂Ω. The first condition in (6) corre-
sponds to the standard no-slip condition, the second condition prescribes a neutral wetting angle
(the interface is perpendicular to the domain boundary at the points where they intersect), and the
third condition ensures the lack of mass flux of the component α through the domain boundary.

Consider the QHD-regularization of system (1), (2):

∂tρα + div (ραum) = (−1)α+1 div (M∇μ̂12), α = 1, 2, (7)

∂t(ρu) + div (ρum ⊗ u) +∇p = div Πc + div ΠNS + div Πτ . (8)

In both equations (7) and (8), the expression ρu has been replaced by ρum, where um = u − w
is the regularized velocity. Also, on the right-hand side of the momentum balance equation (8) we
added the term div Πτ , where Πτ := ρu⊗w is the regularizing stress tensor. A thermodynamically
consistent derivation of Eqs. (7) and (8) can be conducted by analogy with the paper [27].

The presence of the auxiliary term w in um provides a basis for the QHD-regularization of various
models of continuum mechanics and corresponds to the mass flux density ρum being, in general,
distinct from the average momentum of the volume unit ρu, with them being equal not ruled out.
In other words, we do not presume the standard hypothesis about the average momentum of a unit
volume being equal to the mass flux density to be satisfied [23]. Similar to other QHD-regularized
models (see, e.g., [23, 27, 20]), the expression for w (see the proof of Theorem 1 below) is constructed
taking into account the necessity of the condition of dissipativity of total energy (entropy in the
nonisothermal case) to be satisfied and has the form

w = ρ−1τ [ρ(u · ∇)u+ ρα∇μ̂α]. (9)

Here the relaxation parameter τ(ρ1, ρ2) > 0 has the dimension of time. Terms having the order O(τ)
can be considered as physically motivated regularizers ensuring the stability of explicit central
difference approximations to Eqs. (7), (8). Obviously, w = 0 for τ = 0, and system (7), (8) becomes
system (1), (2).

Performing summation of Eq. (7) over α, we obtain the total mass balance equation

∂tρ+ div (ρum) = 0. (10)

Throughout the rest of the paper, the parameter τ in (9) will be calculated using the formula
τ(ρ1, ρ1) = α∗η(ρ1, ρ2)/p(ρ1, ρ2), where α∗ > 0 is a dimensionless parameter whose value is chosen
from the considerations of stability of numerical calculations.

Remark. The boundary conditions (6) being satisfied implies the equality n · w = 0 on the
domain boundary; this implies that n ·um = 0. Therefore, for system (7), (8), conditions (6) ensure
the lack of flux through the boundary in the form of the total mass of the mixture as well as the
mass of its separate components. Taking this into account, we have the relations∫

Ω

ρα(x, t) dx =

∫
Ω

ρα,0(x) dx, α = 1, 2;

∫
Ω

ρ(x, t) dx =

∫
Ω

(ρ1,0(x) + ρ2,0(x)) dx,

which express the law of conservation of the total mass of the mixture and the total mass of
individual components.
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3. POTENTIAL FORM OF CAPILLARY STRESSES

Below we will use a representation for capillary stresses in the so-called potential form. This
form is based on the following assertion, which we provide here with its proof for the presentation
to be complete.

Assertion. Under the condition that the capillary coefficients be symmetrical, λαβ = λβα , one
has the relation

∇p− div Πc = ρα∇μ̂α. (11)

Proof. By virtue of λαβ = λβα and ∂i∂j = ∂j∂i, we obtain

λαβ∇ρα · (∇⊗∇ρβ) = λαβ(∂iρα)(∂i∂jρβ)ej

= λαβ(∂iρα)(∂j∂iρβ)ej

= λαβ∂j(∂iρα∂iρβ)ej − λαβ(∂iρβ)(∂j∂iρα)ej

= λαβ∂j(∂iρα∂iρβ)ej − λαβ(∂iρα)(∂i∂jρβ)ej

= ∇(λαβ∇ρα · ∇ρβ)− λαβ∇ρα · (∇⊗∇ρβ).

(12)

It readily follows from (12) that

λαβ∇ρα · (∇⊗∇ρβ) = 1

2
∇(λαβ∇ρα · ∇ρβ);

the last relation and the Leibniz rule imply that

div (λαβ∇ρα ⊗∇ρβ) = λαβ(∇ρβ)Δρα +∇
(
1

2
λαβ∇ρα · ∇ρβ

)
. (13)

Using the representation ∇ψ0 = (∂ρα
ψ0)∇ρα ≡ μα∇ρα, we write the pressure gradient in the

form
∇p = ∇(ραμα)−∇ψ0 = μα∇ρα + ρα∇μα −∇ψ0 = ρα∇μα. (14)

In what follows, considering relation (13), the Leibniz rule, and the fact that the coefficients λαβ

are symmetric, we obtain the relation

div Πc = ∇
(
λαβραΔρβ +

1

2
λαβ∇ρα · ∇ρβ

)
− div (λαβ∇ρα ⊗∇ρβ) = ρα∇(λαβΔρβ).

Subtracting this relation from relation (14) and using the expression for the generalized chemical
potential in (5), we arrive at relation (11). The proof of the assertion is complete.

By applying formula (11), we write the momentum balance equation (8) in the form

∂t(ρu) + div (ρum ⊗ u) + ρα∇μ̂α = div ΠNS + div Πτ . (15)

Thus, in the representation (15), the capillary forces have a nondivergence (potential) repre-
sentation. It was noted in the papers [4, 17, 18] that writing the momentum balance equation
in such a form permits one to construct energy-dissipative approximations even if they lead to
a momentum-nonconservative difference scheme, with the latter not being critical in view of the
absence of shock waves and other strong discontinuities. The representation (15) (for τ = 0) was
used in the papers [17, 12].

4. DISSIPATIVITY OF QHD-REGULARIZED EQUATIONS

One fundamental property described by systems (1), (2) and (7), (8) is their dissipativity. For
isothermal processes, this implies the lack of growth in the total energy Etot(t) of the closed system
as the system moves to the equilibrium state. In this section, we prove the dissipativity of the
system of QHD-regularized equations (7), (8) with the boundary conditions (6). The following
assertion holds.
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Theorem 1. For the QHD-regularized system of equations (7), (8) (or (15)), one has the total-
energy local balance equation

∂tetot + div a+ TM |∇μ̂12|2 + 2η|D|2 +
(
ζ − 2

3
η

)
(div u)2 + ρτ−1|w|2 = 0. (16)

Here etot := ψ0 + (λαβ/2)∇ρβ · ∇ρα + (ρ|u|2)/2 is the volume density of total energy of the system
and

a = (∂ρα
ψ0)ραum − TMμ̂12∇μ̂12 − ∂t(λαβρα)∇ρβ

− (λαβΔρβ)ραum +

(
1

2
|u|2ρum −Πτu−ΠNSu

)
(17)

is the total-energy flux vector.
Proof. 1. Multiply Eq. (7) by μα ≡ ∂ρα

ψ0 and perform summation over α. Then, taking into
account the relation ∂tψ0 = (∂ρα

ψ0)∂tρα, we have

∂tψ0 + μα div (ραum) = μα(−1)α+1 div (M∇μ̂12). (18)

Let us transform the second term on the left-hand side in relation (18) using the Leibniz rule:

μα div (ραum) = div (μαραum)− ραum · ∇μα, (19)

and represent the right-hand side of relation (18) in the form

μα(−1)α+1 div (M∇μ̂12) = (μ1 − μ2) div (M∇μ̂12)

= (T μ̂12 + λ1βΔρβ − λ2βΔρβ) div (M∇μ̂12)

= div (TMμ̂12∇μ̂12)− TM |∇μ̂12|2 + (λ1β − λ2β)Δρβ div (M∇μ̂12),

(20)

where we have also used the Leibniz rule when deriving the last expression.
Let us substitute the expressions (19) and (20) into (18) to arrive at the relation

∂tψ0 + div (μαραum − TMμ̂12∇μ̂12)− ραum · ∇μα

= −TM |∇μ̂12|2 + (λ1β − λ2β)Δρβ div (M∇μ̂12).
(21)

2. Multiply Eq. (7) by −λαβΔρβ and perform summation over α to obtain

−(λαβΔρβ)∂tρα − (λαβΔρβ) div (ραum) = (−1)α+2(λαβΔρβ) div (M∇μ̂12). (22)

Let us transform the first term on the left-hand side in relation (22) as

−(λαβΔρβ)∂tρα = − div (∇ρβ)λαβ∂tρα = − div (λαβ∂tρα∇ρβ) + ∂t

(
1

2
λαβ∇ρβ · ∇ρα

)
, (23)

where we have used the Leibniz rule as well as the identity ∂t∇ = ∇∂t and the relation

λαβ∇ρβ · ∂t∇ρα = ∂t(λαβ∇ρβ · ∇ρα/2), (24)

which holds by virtue of the condition λαβ = λβα. Recall that that repeated indices α and β assume
summation from 1 to 2.

We bring the second term on the left-hand side in relation (22) to the form

−(λαβΔρβ) div (ραum) = − div [(λαβΔρβ)ραum] + ραum · ∇(λαβΔρβ). (25)

Substituting the expressions (23) and (25) into (22), we arrive at the relation

∂t

(
1

2
λαβ∇ρβ · ∇ρα

)
+ ραum · ∇(λαβΔρβ)− div [∂t(λαβρα)∇ρβ + (λαβΔρβ)ραum]

= −(λ1β − λ2β)Δρβ div (M∇μ̂12),

(26)

where we have also used the identity (−1)α+2(λαβΔρβ) ≡ −(λ1β − λ2β)Δρβ.
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3. Let us obtain the kinetic-energy balance equation. First, note that by virtue of the Leibniz
rule, one has the formulas

u · ∂t(ρu) = 1

2
|u|2∂tρ+ ∂t

(
1

2
|u|2ρ

)
= −1

2
|u|2 div (ρum) + ∂t

(
1

2
|u|2ρ

)
, (27)

u · div (ρum ⊗ u) =
1

2
|u|2 div (ρum) + div

(
1

2
|u|2ρum

)
, (28)

u · div ΠNS + u · div Πτ = div
(
Πτu+ΠNSu

)−ΠNS : (∇⊗ u)−Πτ : (∇⊗ u), (29)

where, in relation (27), we have also used the total-mass balance equation (10). Let us transform
the last two terms on the right-hand side in relation (29) as

ΠNS : (∇⊗ u) = 2η|D|2 +
(
ζ − 2

3
η

)
(div u)2, Πτ : (∇⊗ u) = ρw · [(u · ∇)u], (30)

where the first relation is derived taking into account the identity D : (∇⊗u) ≡ |D|2, which holds
in view of the tensor D being symmetric.

Taking the inner product of the momentum balance equation (15) by u and using the relations
in (27)–(30), we obtain

∂t

(
1

2
ρ|u|2

)
+ div

(
1

2
|u|2ρum −ΠNSu−Πτu

)
+ ραu · ∇μ̂α

= −2η|D|2 −
(
ζ − 2

3
η

)
(div u)2 − ρw · [(u · ∇)u].

(31)

Adding relations (21), (26), and (31), we arrive at Eq. (16), and this completes the proof of the
theorem. Note that it is at this stage that it becomes clear that the vector w has the form (9) and
the vector a has the form (17).

Corollary 1. For system (7), (8) (or (15)) with the boundary conditions (6), one has the law
of lack of growth in the system total energy ,

dEtot
dt

= −
∫
Ω

(
2η|D|2 +

(
ζ − 2

3
η

)
(div u)2 + TM |∇μ̂12|2 + ρτ−1|w|2

)
dx ≤ 0, (32)

where Etot(t) :=
∫
Ω

etot(x, t) dx is the total energy of the system.

Proof. The proof is conducted by a straightforward integration of Eq. (16) over the domain Ω
and application of the Gauss divergence theorem with allowance for conditions (6) and the relation

|D|2 − 1

3
(div u)2 ≡

∣∣∣∣D− 1

3
(trD)I

∣∣∣∣
2

≥ 0.

Corollary 2. System (1), (2) with the boundary conditions (6) is dissipative.

Proof. The proof follows from the fact that for τ = 0 system (7), (8) transforms into system (1),
(2), while inequality (32) remains true.

5. SPATIAL APPROXIMATION

The dissipativity is a fundamental property of system (7), (8) (or (15)) that determines its
thermodynamic correctness. Therefore, among all feasible numerical algorithms for solving this
system, one should prefer the ones that ensure this property (in one or another form) at the discrete
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level. This section is devoted to constructing such a spatial discretization of Eqs. (7), (8) that is
dissipative in the above-indicated sense for the one-dimensional plane-parallel case.

Consider the spatial domain Ω = [0, L] ⊂ R. We will use uniform difference meshes with
step h = L/N . The mesh nodes with integer indices will be denoted by xi = hi and those with
half-integer ones, by xi−1/2 = h(i− 1/2), with x0 = 0 and xN = L. Here and below, the subscripts
i, j, and k are reserved for node numbers. In Ω, introduce the main mesh ω̄h := {xi}Ni=0 and
internal meshes ωh := {xi}N−1

i=1 and ω∗h := {xi−1/2}Ni=1. We will need the auxiliary extended meshes
ω̄∗h := {xi−1/2}N+1

i=0 , ¯̄ω∗h := {xi−1/2}N+2
i=−1, and ¯̄ωh := {xi}N+1

i=−1. Note that not all the nodes of the
extended meshes lie in the domain Ω.

Let H(ω) be the set of functions defined on some mesh ω. We introduce the mesh averaging
operators s : H(¯̄ωh) → H(ω̄∗h), s∗ : H(¯̄ω∗h) → H(¯̄ωh) and difference relations δ : H(¯̄ωh) → H(ω̄∗h),
δ∗ : H(¯̄ω∗h)→ H(¯̄ωh) by the formulas

(su)i+1/2 :=
1

2
(ui+1 + ui), (s∗v)i :=

1

2
(vi+1/2 + vi−1/2),

(δu)i+1/2 :=
1

h
(ui+1 − ui), (δ∗v)i :=

1

h
(vi+1/2 − vi−1/2).

Let u and v be some mesh functions in H(¯̄ωh) and let ũ and ṽ be mesh functions in H(¯̄ω∗h).
Define the inner products (u, v) on H(ωh), (u, v)x̄ on H(ω̄h), and (ũ, ṽ)∗ on H(ω∗h) by the formulas

(u, v) := h

N−1∑
i=1

uivi, (u, v)x̄ :=
1

2
hv0u0 + (u, v) +

1

2
hvNuN , (ũ, ṽ)∗ := h

N∑
i=1

ũi−1/2ṽi−1/2.

For the inner products thus introduced, one has the identities

(δv, ũ)∗ = −(v, δ∗ũ)x̄ + (s∗ũ)NvN − (s∗ũ)0v0,

(sv, ũ)∗ = (v, s∗ũ)x̄ +
1

4
h2v0(δ

∗ũ)0 − 1

4
h2vN(δ

∗ũ)N .

In particular, if v0 = vN = 0, then (u, v) = (u, v)x̄ and

(δv, ũ)∗ = −(v, δ∗ũ), (33)

(sv, ũ)∗ = (v, s∗ũ). (34)

Consider the following space-discrete and time-continuous method for system (7) and (15) in the
spatially uniform statement:

∂tρα + δ[(s∗ρα)um] = (−1)α+1δ[(s∗M)δ∗μ̂12] on ω∗h, α = 1, 2, (35)

∂t[(s
∗ρ)u] + δ∗[(sjm)su] + (s∗ρα)δ

∗μ̂α = δ∗ΠNS + δ∗Πτ on ωh, (36)

where
jm = (s∗ρ)um, um = u− w, ΠNS = η

4

3
δu+ ζδu, (37)

μ̂12 = T−1(μ̂1 − μ̂2), Πτ = s[(s∗ρ)uw], w = τ(s∗ρ)−1[(s∗ρ)us∗δu+ (s∗ρα)δ
∗μ̂α], (38)

μ̂α = μα − λαβδδ
∗ρβ. (39)

The main unknown functions are u∈H(ω̄h) and ρα∈H(ω∗h). In addition, {w, τ(s∗ρ1, s∗ρ2)}⊂H(ω̄h)
and {ΠNS, μα, μ̂α, η(ρ1, ρ2), ζ(ρ1, ρ2), M(ρ1, ρ2)} ⊂ H(ω∗h).

On the boundaries x = 0 and x = L of the computational domain, we set

u0 = uN = 0, (δ∗ρα)0 = (δ∗ρα)N = 0, (δ∗μ̂α)0 = (δ∗μ̂α)N = 0, α = 1, 2. (40)

It follows from relations (37)–(39) that for all necessary discrete functions to be determined
correctly, the desired functions u and ρα, as well as μα and μ̂α, must be continued to wider domains.
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To this end, we set u ∈ H(ω̄h), ρα ∈ H(¯̄ω∗h), and {μα, μ̂α,M} ⊂ H(ω̄∗h). In this case, for the second
and third boundary conditions in (40) to be satisfied, we continue ρα in an even manner with respect
to the boundary nodes x0 and xN . Note also that (40) implies the lack of the mass flux through
the boundary; i.e.,

w0 = wN = 0, (um)0 = (um)N = 0. (41)

By analogy with the continuous case, performing summation of Eqs. (35) over α = 1, 2, we obtain
the discrete complete mass balance equation for the mixture,

∂tρ+ δ[(s∗ρ)um] = 0. (42)

Also note that this discretization obeys the conservation laws for the total mass and the masses of
components,

(ρα, 1)∗ = (ρα,0, 1)∗ = const, α = 1, 2, (ρ, 1)∗ = (ρ1,0 + ρ2,0, 1)∗ = const. (43)

The following difference analog of the corollary of Theorem 1 about the lack of growth in the
system total energy holds true.

Theorem 2. For the semidiscrete method (35), (36) one has the relation

dEtot
dt

= −4

3

(
η(δu)2, 1

)
∗ −

(
ζ(δu)2, 1

)
∗ −

(
T (s∗M)(δ∗μ̂12)

2, 1
)− (

τw2, (s∗ρ)−1
) ≤ 0, (44)

where Etot(t) := (etot, 1)∗ is the discrete analog of the system total energy and

etot :=
1

2
ρsu2 + ψ0 +

1

2
λαβs [(δ

∗ρα) (δ
∗ρβ)]

is the discrete analog of the volume density of total energy.
Proof. The derivation of relation (44) presented below is based on the proof of Theorem 1 and

consists of similar steps.
1. Take the inner product of Eq. (35) by ∂ρα

ψ0 ≡ μα, perform summation over α = 1, 2, and
take the relation (∂ρα

ψ0)∂tρα = ∂tψ0 into account to obtain

∂t(ψ0, 1)∗ + (μα, δ[(s
∗ρα)um])∗ = (μα, (−1)α+1δ[(s∗M)δ∗μ̂12])∗. (45)

Considering relations (41), we use formula (33) to transform the second term on the left-hand
side in relation (45). We have

(μα, δ[(s
∗ρα)um])∗ = −(δ∗μα, (s

∗ρα)um). (46)

Transforming the right-hand side of relation (45) by analogy with (20), we obtain

(μα, (−1)α+1δ[(s∗M)δ∗μ̂12])∗ = (T μ̂12 + λ1βδδ
∗ρβ − λ2βδδ

∗ρβ, δ[(s
∗M)δ∗μ̂12])∗

= −(T (s∗M)(δ∗μ̂12)
2, 1) + ([λ1β − λ2β]δδ

∗ρβ, δ[(s
∗M)δ∗μ̂12])∗,

(47)

where we have used the identity μα(−1)α+1 ≡ μ1 − μ2 and applied formula (33) with allowance for
the third condition in (40) when deriving the last expression.

Substituting the expressions (46) and (47) into (45), we arrive at the relation

∂t(ψ0, 1)∗ − ((s∗ρα)um, δ
∗μα) = −(T (s∗M)(δ∗μ̂12)

2, 1) + ([λ1β − λ2β]δδ
∗ρβ, δ[(s

∗M)δ∗μ̂12])∗. (48)

2. In what follows, taking the inner product of Eq. (35) by −λαβδδ
∗ρβ, we have

−(λαβδδ
∗ρβ, ∂tρα)∗ − (λαβδδ

∗ρβ, δ[(s
∗ρα)um])∗ = (λαβδδ

∗ρβ, (−1)α+2δ[(s∗M)δ∗μ̂12])∗. (49)
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Let us transform the first term on the left-hand side in relation (49) using formula (33), which
holds by virtue of the second condition in (40), and taking into account the fact that the coeffi-
cients λαβ are symmetric,

−(λαβδδ
∗ρβ, ∂tρα)∗ = λαβ(δ

∗ρβ, δ
∗∂tρα)

= ∂t

(
1

2
λαβδ

∗ρβδ
∗ρα, 1

)
= ∂t

(
1

2
λαβs[δ

∗ρβδ
∗ρα], 1

)
∗
,

(50)

where the penultimate expression was derived using the relation

λαβ(δ
∗ρβ)∂tδ

∗ρα = ∂t(λαβδ
∗ρβδ

∗ρα/2),

similar to (24), and the relation δ∗∂t = ∂tδ
∗; the last expression was derived using formula (34) with

allowance for the identities 1 ≡ s∗1 and δ∗1 ≡ 0 and the second condition in (40).
By directly applying formula (33), which holds by virtue of (41), we can reduce the second term

on the left-hand side in relation (49) to the form

− (λαβδδ
∗ρβ, δ[(s

∗ρα)um])∗ = ((s∗ρα)um, δ
∗[λαβδδ

∗ρβ]). (51)

Substituting the expressions (50) and (51) into (49), we obtain

∂t

(
1

2
λαβs[δ

∗ραδ
∗ρβ], 1

)
∗
+ ((s∗ρα)um, δ

∗[λαβδδ
∗ρβ])

= − ([λ1β − λ2β]δδ
∗ρβ, δ[(s

∗M)δ∗μ̂12]) ,

(52)

where we have also used the identity (−1)α+2λαβδδ
∗ρβ ≡ −(λ1β − λ2β)δδ

∗ρβ.
Adding relations (48) and (52), we have

∂t

(
ψ0 +

1

2
λαβs[δ

∗ραδ
∗ρβ], 1

)
∗
− ((s∗ρα)um, δ

∗μ̂α) = −
(
T (s∗M)(δ∗μ̂12)

2, 1
)
. (53)

3. Let us obtain the discrete kinetic energy balance equation for the system. To this end, take
the inner product of the momentum balance equation (36) by u,

(u, ∂t[(s
∗ρ)u]) + (u, δ∗[(sjm)su]) + (u, (s∗ρα)δ

∗μ̂α) = (u, δ∗ΠNS) + (u, δ∗Πτ ). (54)

Let us transform the first term on the left-hand side in relation (54). First, note that, by virtue
of the relation ∂ts

∗ = s∗∂t, formulas (33) and (34), the boundary conditions (40), relations (41),
and the discrete total-mass balance equation (42), the following chain of relations holds:

(u2, ∂t(s
∗ρ)) = (su2, ∂tρ)∗ = −(su2, δjm)∗ = (δ∗su2, jm)

= (s∗δu2, jm) = (δu2, sjm)∗ = 2(δu, (sjm)su)∗,
(55)

where the relations s∗δ = δ∗s and δu2 = 2(δu)su have also been taken into account. Using (34)
and (55), we can express the first term on the left-hand side in relation (54) in the form

(u, ∂t[(s
∗ρ)u]) =

1

2
∂t(s

∗ρ, u2) +
1

2
(u2, ∂t(s

∗ρ)) =
1

2
∂t(ρ, su

2)∗ + (δu, (sjm)su)∗. (56)

Using the first boundary condition in (40) and formula (33), we write the second term on the
left-hand side in relation (54) in the form

(u, δ∗[(sjm)su]) = −(δu, (sjm)su)∗. (57)
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Transforming the first and second terms on the right-hand side in relation (54) with the help of
formula (33), we have

(
u, δ∗ΠNS

)
= − (

δu,ΠNS
)
∗ = −

4

3

(
η(δu)2, 1

)
∗ −

(
ζ(δu)2, 1

)
∗ , (58)

(u, δ∗Πτ ) = − (δu,Πτ )∗ = − (δu, s[uws∗ρ])∗ = − (us∗δu, (s∗ρ)w), (59)

where in (59) we have also used formula (34), which holds by virtue of the no-slip conditions (59).
Thus, substituting the expressions (56)–(59) into (54), we obtain the kinetic energy balance

equation for the system,

∂t

(
ρ,

1

2
su2

)
∗
+ (u, (s∗ρ)δ∗μ̂α) = −4

3

(
η(δu)2, 1

)
∗ −

(
ζ(δu)2, 1

)
∗ − (us∗δu, (s∗ρ)w) . (60)

Adding (53) to (60), we obtain relation (44). The proof of the theorem is complete.

6. NONDIMENSIONALIZATION

Let us nondimensionalize system (7), (15) following the paper [11]. For the typical quantities we
take

ρ∗ =
m2

3b2
, p∗ =

a22
27b22

, T ∗ =
8a22

27kBb2
, L∗ = 2b

1/3
2 , u∗ =

√
p∗

ρ∗
.

Here ρ∗, p∗, and T ∗ correspond to the density, pressure, and temperature at the critical point for
the second component, l∗ is the typical spatial scale, which is on the order of the thickness of the
interface, and u∗ is the typical velocity. The dimensionless variables will be equipped with the
symbol “∼” (for example, ρ̃). Thus, we have

ρα = ρ∗ρ̃α, u = u∗ũ, w = u∗w̃, x = L∗x̃, p = p∗p̃,

ψ0 = p∗ψ̃0, T = T ∗T̃ , μα =
p∗

ρ∗
μ̃α, t =

L∗

u∗
t̃, η = ν2ρ

∗η̃,

M0 =
ρ∗2u∗L∗T ∗

p∗
M̃0, ΠNS =

ν2ρ
∗u∗

L∗
Π̃

NS
, λαβ =

L∗2p∗

ρ∗2
λ̃αβ, Dαβ =

m∗2p∗L∗2

ρ∗2kBT ∗
D̃αβ.

In what follows, to simplify the notation, we omit the symbol “∼” over all the variables. It is
convenient to introduce the following dimensionless variables:

m21 =
m2

m1

, r21 =
a21
a22

, r11 =
a11
a22

, b12 =
b1
b2
, A =

1

3

(
27b

1/3
2 �

2

16πa22m2

)3/2

, ν12 =
ν1
ν2
.

The relation (4) for the Helmholtz energy acquires the form

ψ0(ρ1, ρ2) = T
8

3
ρ1m21 ln

[
m

5/2
21 ρ1A

T 3/2(1− φ)
]
+ T

8

3
ρ2 ln

[
ρ2A

T 3/2(1− φ)
]

− 3(r11m
2
21ρ

2
1 + 2r21m21ρ1ρ2 + ρ22)− T

8

3
(m21ρ1 + ρ2),

(61)

where φ(ρ1, ρ2) = b12
1

3
m21ρ1 +

1

3
ρ2. For system (7), (15), we obtain

∂tρα + div (ραum) = (−1)α+1 div (M∇μ̂12), α = 1, 2,

∂t(ρu) + div (ρum ⊗ u) + ρα∇μ̂α =
1

Re
div ΠNS + div Πτ ,
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where Re = L∗u∗/ν2 and

ΠNS = η(∇⊗ u+ (∇⊗ u)T) +

(
ζ − 2

3
η

)
(div u)I, Πτ = ρu⊗w,

η(ρ1, ρ2) = ρ1ν12 + ρ2, w =
τ

ρ
[ρ(u · ∇)u+ ρα∇μ̂α], τ = 0.3

η(ρ1, ρ2)

p(ρ1, ρ2)
.

7. NUMERICAL EXPERIMENT

Let us apply the explicit Euler method to discretize the constructed semidiscrete difference
scheme (35), (36) in time t. To this end, we replace all derivatives with respect to time ∂tf
with δtf := (fn+1 − fn)/Δt, where f is the corresponding difference function, the superscript is
used for the time layer number, and Δt designates the time step.

To demonstrate the capabilities of the constructed difference scheme, we consider the problem
of modeling stratification into different phases of a virtually homogeneous mixture whose compo-
nent composition is unstable under small perturbations. Such a stratification is often referred to
as the spinodal decomposition of the mixture (see, e.g., [13, p. 117]). Modeling this process using
system (7), (15) is possible since (i) the homogeneous part of the free energy (61) (respectively, (4))
is nonconvex, a fact that accounts for “stratification”; and (ii) the free energy (3) contains gradi-
ent terms that prevent the interface from becoming infinitely thin in the course of stratification
(therewith the gradient terms also have a regularizing meaning [5, 9]).

Consider a mixture of components described by the following collection of dimensionless param-
eters: r11 = 3.426, r21 = 1.75, b12 = 2.028, m21 = 0.8356, T = 0.957, ν12 = 10.0, Re = 10.0,
D11 = 12, D22 = 4, D12 = D21 = 6.9282, M0 = 0.1, A = 10−5, and ζ = η.

We take the initial conditions in the form

ρ1,0(xi+1/2) = 0.054(1 + ε(xi+1/2)), ρ2,0(xi+1/2) = 1 + ε(xi), u0(xi+1/2) = 0,

where ε(xi+1/2) is a random variable that has a uniform distribution and assumes values in the
interval [−0.05, 0.05]. Consider the domain of size L = 200. We select the space and time steps to
be h = L/100 and Δt = 2 · 10−3, respectively.

Figure 1 presents the dependence Etot(t) − Etot(tend), where tend = 4.93 · 104 is the moment up
to which the modeling was carried out. It can be seen that the total energy is nonincreasing in
agreement with inequalities (44). Note that a sharp decrease in the total energy is observed at
the moment t ≈ 2.67 · 104. In this case, the change occurs gradually as clearly demonstrated by
the enlarged fragment of the domain t ∈ [26370, 27000] (see the bottom of Fig. 1). The kinetic
energy Ekin(t) := (ρ, 0.5su2)∗ of the system also undergoes a dramatic increase at the same time
moment and then starts to drop (Fig. 2).

Fig. 1. Evolution of total energy when modeling spinodal decomposition.
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Fig. 2. Evolution of kinetic energy when modeling spinodal decomposition.

Such a behavior is explained by the “merger” of two regions of one component composition
(“droplets”): four subdomains with ρ1 ≈ 0.09 are observed on the graph of the density distribution ρ1
at the moment t = 26500 (Fig. 3), while at t = 26800 (Fig. 4) two of them have already virtually
“merged.” Figures 5 and 6 show ρ1 and ρ2 at the moment t = 49 · 103, when the “merger” has
already completed. The number of interphase subdomains (“boundaries”) where (∂xρα)(∂xρβ)  0
has decreased, and this has led to an abrupt decrease in the total energy.

Fig. 3. Distribution of ρ1 immediately prior to “merger,” t = 26500.

Fig. 4. Distribution of ρ1 in the course of “merger,” t = 26800.

Note that the distributions of ρ1 and ρ2 shown in Figs. 5 and 6 are qualitatively very similar
while being significantly different quantitatively; namely, ρ1 ∈ (0.011, 0.092) and ρ2 ∈ (0.49, 1.41).
The minimum and maximum values of ρ1 and ρ2 agree well with the results in the paper [11].
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Fig. 5. Distribution of ρ1, t = 4.9 · 104.

Fig. 6. Distribution of ρ2, t = 4.9 · 104.

It has been checked that the total-mass conservation laws (43) are observed in the computations.
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