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Abstract—We consider an initial–boundary value problem for the beam vibration equation,
which is a fourth-order nonlinear equation with two independent variables. It is shown that
under certain conditions on the initial data this problem can be reduced to the Cauchy problem
for a countable system of quasilinear ordinary differential equations. Using the method of energy
inequalities, we prove that this Cauchy problem has a solution. Based on this, we establish the
existence of a local solution of the original initial–boundary value problem and construct it in
closed form. A theorem on the uniqueness of a global solution is proved.
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INTRODUCTION

Many problems concerning rod, beams, and plate vibrations have important applications in
structural engineering, stability theory of rotating shafts, and vibration theory of ships and pipelines
and lead to differential equations of orders higher than the second [1, pp. 264–326 of the Russian
translation; 2; 3, pp. 322–430 of the Russian translation]. Consider a uniform beam of length π (for
definiteness) pinned on two supports. The flexural rotational-transverse vibrations of the beam are
described by the nonlinear fourth-order equation

wtt + (C0 + C1w
2
xxx)wxxxx − C2wxxtt = 0, Ci = const > 0, i = 0, 1, 2. (1)

Note that the last term in Eq. (1) allows for the beam rotation inertia. This equation was
considered in the books indicated above and in [4–6] for the linear case, i.e., for C1 = C2 = 0. The
paper [7] was one of the first publications to lay foundation for the applications of the method of
energy inequalities to studying nonlinear equations that model various physical processes, including
rotational phenomena. In that paper, the method was used to prove the existence of a regular
solution of the problem considered there. The paper [8] studied a nonlinear string vibration equation
supplemented with a longitudinal string displacement term in the form of a mixed third derivative.
In that paper, the method of energy inequalities was used to prove the existence of a regular
solution, and its estimates were derived in terms of initial functions. A semilinear equation of the
form (1) describing the vibrations of a beam with movable endpoints was considered in [9], where
the existence of a generalized solution of this equation was proved. Similar results for nonlinear
differential equations of the hyperbolic type were obtained in [10] and [11]. In [12–14], existence
and uniqueness theorems were proved for the solutions of initial–boundary value problems for a
nonlinear equation describing the vibrations of a beam in the case of its possible rotation and
sufficient conditions for the oscillation of the solution were established.
In the present paper, we study nonlinear rotational-transverse vibrations of a beam with pinned

endpoints. To this end, we consider Eq. (1) in the domain D = {(x, t) : 0 < x < π, 0 < t < T}, and
pose the following problem.

Initial–boundary value problem. Find a solution w(x, t) of Eq. (1) defined in the domain D
and satisfying the conditions

w(x, t) ∈ C4,2
x,t (D), (2)

w(x, 0) = ϕ(x), wt(x, 0) = ψ(x), 0 ≤ x ≤ π, (3)
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w(0, t) = w(π, t) = wxx(0, t) = wxx(π, t) = 0, 0 ≤ t ≤ T, (4)

where ϕ(x) and ψ(x) are given sufficiently smooth functions.
In the present paper, we prove the uniqueness of the solution of problem (1)–(4) for each T > 0

and establish the existence of a solution in the class of regular solutions, i.e., those satisfying
conditions (1) and (2), for small T . The solution is constructed in the form of a series in an
orthogonal sine system whose coefficients are determined as the solutions of the Cauchy problem
for a countable nonlinear system of second-order ordinary differential equations. The uniqueness of
the solution of this problem is proved based on integral identities and inequalities.

1. SOLVABILITY OF THE INITIAL VALUE PROBLEM FOR AN INFINITE SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS

In what follows, we assume that the functions specifying the initial conditions admit the series
expansions

ϕ(x) =

∞∑
j=1

αjsin(jx), ψ(x) =

∞∑
j=1

βjsin(jx),

αj =
2

π

π∫
0

ϕ(x) sin(jx) dx, βj =
2

π

π∫
0

ψ(x) sin(jx) dx.

(5)

To prove the existence of a regular solution of Eq. (1) with conditions (2)–(4), it suffices to
establish the existence of a solution of the infinite system of ordinary differential equations

T̈j(t)(1 + C2j
2) + C0j

4Tj(t)

+ C1j

π∫
0

( ∞∑
i=1

i3Ti(t) cos(ix)

)3

cos(jx) dx = 0, j = 1, 2, . . . , 0 < t < T,
(6)

where Ci > 0, i = 0, 1, 2, with the initial conditions

Tj(0) = αj, Ṫj(0) = βj, j ∈ N, (7)

and the additional condition ∞∑
j=1

j10T 2
j (t) <∞, 0 ≤ t < T. (8)

To this end, it suffices to note that if Eq. (1) has a solution w(x, t) belonging to the class (2)
and satisfying the boundary conditions (4), then this solution can be represented in the form of the
series

w(x, t) =

∞∑
j=1

Tj(t) sin(jx), (9)

where the Tj(t), j ∈ N, are twice continuously differentiable functions. Then system (6) can be
obtained by formally substituting the series (9) into Eq. (1), multiplying the resulting relation
by sin(jx), and integrating it over x from 0 to π. In this case, instead of the factor C1 multiplying
the integral in Eq. (6), we obtain C1/3; we denote it again by C1.
To prove the existence of a solution of system (6), it is convenient to start from considering the

corresponding finite systems of equations. Define functions Tj,N(t) as the solutions of the system

T̈j,N(t)(1 + C2j
2) + C0j

4Tj,N(t)

+ C1j

π∫
0

( N∑
i=1

i3Ti,N(t) cos(ix)

)3

cos(jx) dx = 0, j = 1, . . . , N,
(10)
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INITIAL–BOUNDARY VALUE PROBLEM FOR A NONLINEAR BEAM VIBRATION EQUATION 623

with the initial conditions

Tj,N(0) = αj, Ṫj,N(0) = βj, j = 1, . . . , N. (11)

In what follows, for uniformity, we assume that Tj,N(t) ≡ 0 for j > N .
If we set Yj,N = Ṫj,N in the system of second-order equations (10), then problem (10), (11) is

reduced to the Cauchy problem for the system of first-order differential equations

ṪN = Y N , Ẏ N = FN , (12)

TN(0) = (α1, . . . , αN), YN(0) = (β1, . . . , βN), (13)

where

TN = (T1,N , T2,N , . . . , TN,N), Y N = (Y1,N , Y2,N , . . . , YN,N), FN = (F1,N , F2,N , . . . , FN,N),

Fj,N = − 1

1 + C2j2

[
C0j

4Tj,N + C1j

π∫
0

( N∑
i=1

i3Ti,N cos(ix)

)3

cos(jx) dx

]
.

(14)

The existence of a solution of system (12) follows from the Picard theorem, because the right-
hand sides of Eqs. (14) have continuous partial derivatives with respect to the variables Tj,N , Yj,N ,
j = 1, . . . , N . Therefore, the Cauchy problem (13) for system (12) is locally solvable, and its solution
is unique, while its extendability to all t ≥ 0 follows from the fact that the solutions of this system
satisfy the energy identity

N∑
j=1

Ṫ 2
j,N(j

2 + C2j
4) + C0

N∑
j=1

j6T 2
j,N +

C1

2

π∫
0

( N∑
j=1

j3Tj,N cos(jx)

)4

dx = hN , (15)

where we have denoted

hN =

N∑
j=1

β2
j (j

2 + C2j
4) + C0

N∑
j=1

j6α2
j +

C1

2

π∫
0

( N∑
i=1

i3αi cos(ix)

)4

dx, N ∈ N. (16)

Identity (15), with allowance for (16), is obtained by multiplying the jth equation in system (10)
by j2Ṫj,N , integration over the interval [0, t], and subsequent summation over j = 1, . . . , N with
allowance for the relations(( N∑

j=1

j3Tj,N cos(jx)

)4
)′

= 4

( N∑
j=1

j3Tj,N cos(jx)

)3( N∑
j=1

j3Ṫj,N cos(jx)

)
,

(Ṫ 2
j,N)

′ = 2Ṫj,N T̈j,N , (T 2
j,N)

′ = 2Ṫj,NTj,N .

Thus, we must show that the solutions of the finite systems (10) converge to the solution of the
infinite system (6) as N → ∞. It follows from identity (15) that for each N ∈ N the quan-
tities |Tj,N(t)|, j = 1, . . . , N , are uniformly bounded with respect to t, and hence for each N the
solution of system (10) (or, equivalently, system (12)) is infinitely extendable, because its right-hand
side is continuously differentiable.
If the sequence hN defined by the relation (6) is convergent as N → ∞, i.e., if there exists a

finite limit lim
N→∞

hN = h < ∞, then identity (15) implies that the sequences |Tj,N(t)|, N ∈ N,

and |Ṫj,N(t)|, N ∈ N, are uniformly bounded on any interval of the real line. Then, according
to the Arzelà–Ascoli lemma, for each interval [0, t∗] (t∗ > 0 is arbitrary) and any j ∈ N the
sequence {Tj,N(t)} contains a subsequence that uniformly converges on the interval [0, t∗] to a
function that is continuous on this interval. Moreover, by a standard diagonal argument one can
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624 SABITOV, AKIMOV

readily show that there exists a sequence Ni, i ∈ N, of positive integers such that for each j ∈ N the
subsequence {Tj,Ni

(t)} of the sequence {Tj,N(t)} converges uniformly on the interval [0, t∗] to some
function Tj(t) that is continuous on this interval. To prove that the functions Tj(t) thus-defined
are solutions of (6), one has to derive more accurate estimates for the functions Tj,N than the ones
that readily follow from the energy identities (15).
The desired estimates can be obtained by multiplying the jth equation in system (10) by j6Ṫj,N

and by summing over all j = 1, . . . , N . The resulting expression can be written in the form

1

2

d

dt

( N∑
j=1

Ṫ 2
j,N

(
j6 + C2j

8
)
+ C0

∞∑
j=1

j10T 2
j,N

)
+ C1

π∫
0

(
w(N)

xxx

)3
w

(N)
xxxxxxxt dx = 0, (17)

where we have denoted

w(N)(t, x) =

N∑
j=1

Tj,N(t)sin(jx). (18)

Twice integrating by parts in the last term in relation (17) with allowance for the fact that the
even derivatives of the function w(N) with respect to x vanish at the points 0 and π, we obtain

π∫
0

(
w(N)

xxx

)3
w

(N)
xxxxxxxt dx =

(
w(N)

xxx

)3
w

(N)
xxxxxxt

∣∣∣∣
π

0

− 3

π∫
0

w(N)
xxxx

(
w(N)

xxx

)2
w

(N)
xxxxxxt dx

= −3w(N)
xxxx

(
w(N)

xxx

)2
w

(N)
xxxxxxt

∣∣∣∣
π

0

+ 3

π∫
0

w(N)
xxxxx

(
w(N)

xxx

)2
w

(N)
xxxxxt dx+ 6

π∫
0

w(N)
xxx

(
w(N)

xxxx

)2
w

(N)
xxxxxt dx

= 3

π∫
0

w(N)
xxxxx

(
w(N)

xxx

)2
w

(N)
xxxxxt dx+ 6

π∫
0

w(N)
xxx

(
w(N)

xxxx

)2
w

(N)
xxxxxt dx,

or
π∫

0

(
w(N)

xxx

)3
w

(N)
xxxxxxxt dx =

3

2

d

dt

π∫
0

(
w(N)

xxx

)2(
w(N)

xxxxx

)2
dx

− 3

π∫
0

w(N)
xxxxx

(
w(N)

xxxxx

)2
w

(N)
xxxt dx+ 6

π∫
0

w(N)
xxx

(
w(N)

xxxx

)2
w

(N)
xxxxxt dx.

(19)

Relation (18) implies the identities

π∫
0

(
w

(N)
xxxt

)2
dx =

π

2

N∑
j=1

j6Ṫ 2
j,N ,

π∫
0

(
w

(N)
xxxxt

)2
dx =

π

2

N∑
j=1

j8Ṫ 2
j,N ,

π∫
0

(
w(N)

xxxxx

)2
dx =

π

2

N∑
j=1

j10T 2
j,N ,

π∫
0

(
w(N)

xxx

)2(
w(N)

xxxxx

)2
dx =

π∫
0

( N∑
j=1

j3Tj,N cos(jx)

)2( N∑
j=1

j5Tj,N cos(jx)

)2

dx.

Then relations (17) and (19) can be written as

d

dt
EN(t) = 6C1

π∫
0

w(N)
xxxw

(N)
xxxt

(
w(N)

xxxxx

)2
dx− 12C1

π∫
0

w(N)
xxx

(
w(N)

xxxx

)2
w

(N)
xxxxxt dx, (20)

DIFFERENTIAL EQUATIONS Vol. 56 No. 5 2020



INITIAL–BOUNDARY VALUE PROBLEM FOR A NONLINEAR BEAM VIBRATION EQUATION 625

where

EN(t) =

N∑
j=1

(
j6 + C2j

8
)
Ṫ 2
j,N + C0

N∑
j=1

j10T 2
j,N

+ 3C1

π∫
0

( N∑
j=1

j3Tj,N cos(jx)

)2( N∑
j=1

j5Tj,N cos(jx)

)2

dx

=
2C2

π

π∫
0

(
w

(N)
xxxxt

)2
dx+

2

π

π∫
0

(
w

(N)
xxxt

)2
dx

+
2C0

π

π∫
0

(
w(N)

xxxxx

)2
dx+ 3C1

π∫
0

(
w(N)

xxx

)2(
w(N)

xxxxx

)2
dx.

(21)

In what follows, we estimate the right-hand side of relation (20) via the energy integral EN .
Since

w(N)(0, t) = w(N)(π, t) = w(N)
xx (0, t) = w(N)

xx (π, t) = 0,

it follows from the Rolle theorem that there exist points ζ = ζ(t) and η = η(t) such that
w(N)

x (ζ, t) = 0 and w(N)
xxx(η, t) = 0. Then

|w(N)
xxx| ≤

∣∣∣∣
x∫

η

w(N)
xxxx dx

∣∣∣∣ ≤
π∫

0

|w(N)
xxxx| dx ≤

(
π

π∫
0

(w(N)
xxxx)

2 dx

)1/2

. (22)

Moreover, as follows from (18), we have w(N)
xx (0, t) = 0 and w(N)

xxxx(0, t) = 0, and therefore,

∣∣w(N)
xxxx

∣∣ = ∣∣∣∣
x∫

0

w(N)
xxxxx dx

∣∣∣∣ ≤
π∫

0

∣∣w(N)
xxxxx

∣∣ dx ≤ (π
π∫

0

(
w(N)

xxxxx

)2
dx

)1/2

. (23)

In a similar way, one can show that

∣∣w(N)
xxxt

∣∣ = ∣∣∣∣
x∫

0

w
(N)
xxxxt dx

∣∣∣∣ ≤
π∫

0

∣∣w(N)
xxxxt

∣∣ dx ≤ (π
π∫

0

(
w

(N)
xxxxt

)2
dx

)1/2

. (24)

Inequalities (22)–(24) imply an estimate for the derivatives w(N)
xxx, w(N)

xxxx and w
(N)
xxxt via the energy

integral EN given by formula (21). Thus, we have∣∣w(N)
xxxx

∣∣ ≤ (π/√2C0

)
E

1/2
N ,

∣∣w(N)
xxx

∣∣ ≤ (π
π∫

0

(
w(N)

xxxx

)2
dx

)1/2

≤
(
π2/
√

2C0

)
E

1/2
N ,

(25)

∣∣w(N)
xxxt

∣∣ ≤ (π/√2C2

)
E

1/2
N . (26)

Using inequalities (25) and (26), we estimate the first term on the right-hand side in rela-
tion (20) as ∣∣∣∣

π∫
0

w(N)
xxxw

(N)
xxxt

(
w(N)

xxxxx

)2
dx

∣∣∣∣ ≤
π∫

0

∣∣∣w(N)
xxxw

(N)
xxxt

(
w(N)

xxxxx

)2∣∣∣ dx

≤ π3

2
√
C0C2

EN

π∫
0

(
w(N)

xxxxx

)2
dx ≤ π4

4
√
C3

0C2

E2
N .

(27)
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After integration by parts, for the second term on the right-hand side in relation (20) we obtain
the estimate

∣∣∣∣
π∫

0

w(N)
xxx

(
w(N)

xxxx

)2
w

(N)
xxxxxt dx

∣∣∣∣
≤
∣∣∣∣

π∫
0

(
w(N)

xxxx

)3
w

(N)
xxxxt dx

∣∣∣∣+ 2

∣∣∣∣
π∫

0

w(N)
xxxw

(N)
xxxxw

(N)
xxxxxw

(N)
xxxxt dx

∣∣∣∣
≤

π∫
0

∣∣∣(w(N)
xxxx

)3
w

(N)
xxxxt

∣∣∣ dx+ 2

π∫
0

∣∣∣w(N)
xxxw

(N)
xxxxw

(N)
xxxxxw

(N)
xxxxt

∣∣∣ dx

≤ π3

2
√

2C3
0

E
3/2
N

( π∫
0

(
w

(N)
xxxxt

)2
dx

)1/2

+
π3

2C0

EN

( π∫
0

(
w(N)

xxxxx

)2
dx

π∫
0

(
w

(N)
xxxxt

)2
dx

)1/2

≤ π4

4
√
C3

0C2

E2
N +

π4

4
√
C3

0C2

E2
N =

π4

2
√
C3

0C2

E2
N .

(28)

By virtue of the estimates (27) and (28), relation (20) implies the inequality

dEN

dt
≤ 15π4C1

2
√
C3

0C2

E2
N , (29)

which gives the desired estimate for the function EN(t).

Lemma 1. Assume that there exists a finite limit

lim
N→∞

EN(0) = E0 =

∞∑
j=1

(
j6 + C2j

8
)
β2
j + C0

∞∑
j=1

j10α2
j

+ 3C1

π∫
0

( ∞∑
j=1

j3αj cos(jx)

)2( ∞∑
j=1

j5αj cos(jx)

)2

dx <∞;

(30)

i.e., the sequence EN(0) converges as N → ∞. Then the function sequence EN(t), N ∈ N, is
uniformly bounded on any interval 0 ≤ t ≤ t∗ < tc , where

tc =
2
√
C3

0C2

15π4C1E0

.

Proof. From inequality (29), we obtain the estimate

EN(t) ≤ 2
√
C3

0C2EN(0)

2
√
C3

0C2 − 15π4C1EN(0)t
(31)

for

0 ≤ t < tN =
2
√
C3

0C2

15π4C1EN(0)
.

Then tc = lim
N→∞

tN .

Let tn1
, . . . , tnk

be all of the tN , N ∈ N, that are not greater than t∗. As shown above, the
functions Tj,N(t) and Ṫj,N(t) are defined and continuous on any interval and, in particular, on the

DIFFERENTIAL EQUATIONS Vol. 56 No. 5 2020



INITIAL–BOUNDARY VALUE PROBLEM FOR A NONLINEAR BEAM VIBRATION EQUATION 627

interval [0, t∗]. Consequently, the Eni
(t), i = 1, . . . , k, are bounded on the interval [0, t∗] by some

constant. For the remaining tN , i.e., for N 	∈ {n1, . . . , nk}, one has the inequality tN > t∗, and
therefore, by virtue of the estimate (31), for such N we have

EN(t) ≤ 2
√
C3

0C2EN(0)

2
√
C3

0C2 − 15π2C1EN(0)t∗
≤ 2

√
C3

0C2m

2
√
C3

0C2 − 15π2C1mt∗
, t ∈ [0, t∗],

where m = max{EN(0) : N ∈ N \ {n1, . . . , nk}}. The proof of the lemma is complete.
The uniform boundedness of the sequence EN(t), N ∈ N, is instrumental in proving that the

functions Tj(t), i.e., the limits of the subsequence Tj,Ni
(t), are solutions of system (6). This result

is a consequence of the following two lemmas.

Lemma 2. If E0 < ∞ (see (30)), then the series
∑∞

j=1 j
10T 2

j (t) is convergent on any inter-
val [0, t∗], where t∗ < tc.

Proof. The sequence of functions

Sn(t) =

n∑
j=1

j10T 2
j (t) (32)

is nondecreasing, because Sn+1(t) ≥ Sn(t). Consequently, to prove that the sequence (32) converges,
it suffices to prove that it is uniformly bounded.
Since Tj,Ni

(t) ⇒ Tj(t) on [0, t∗] as i → ∞, it follows that for each n ∈ N there exists a
number Ni(n) ≥ n such that the inequality |T 2

j (t) − T 2
j,Ni(n)

(t)| ≤ n−12 holds for all j = 1, . . . , n

and t ∈ [0, t∗]. Then

Sn ≤
n∑

j=1

j10
∣∣∣T 2

j (t)− T 2
j,Ni(n)

(t)
∣∣∣+ n∑

j=1

j10T 2
j,Ni(n)

(t) ≤
n∑

j=1

j10n−12 +
1

C0

ENi(n)
(t) ≤ 1

n
+

1

C0

ENi(n)
(t).

Since the sequence EN(t) is uniformly bounded on the interval [0, t∗] by Lemma 1, we see that this
estimate implies the uniform boundedness of the sequence Sn, n ∈ N, on that interval. The proof
of the lemma is complete.

Lemma 3. If E0 < ∞, then the functions w(Ni) and w(Ni)
xxx uniformly converge to w and wxxx ,

respectively, as Ni →∞ on each interval [0, t∗], where t∗ < tc.

Proof. To prove that w(Ni) ⇒ w and w(Ni)
xxx ⇒ wxxx as i → ∞, note that Lemma 1 implies

the following estimates: T 2
j ≤ M/j10 and T 2

j,Ni
≤ M/j10, where M is a constant bounding the

sequence EN(t) on the interval 0 ≤ t ≤ t∗.
Fix an ε > 0 and choose an n ∈ N such that (1 + 2

√
M)n−1 ≤ ε. Let us estimate the modulus

of the difference w(Ni)
xxx − wxxx as follows (for Ni ≥ n):

∣∣w(Ni)
xxx (t, x)− wxxx(t, x)

∣∣ ≤ ∣∣∣∣
n∑

j=1

j3(Tj(t)− Tj,Ni
(t)) cos(jx)

∣∣∣∣
+

∞∑
j=n+1

j3|Tj(t)|+
Ni∑

j=n+1

j3|Tj,Ni
(t)|

≤
n∑

j=1

j3|Tj(t)− Tj,Ni
(t)|+ 2

√
M

∞∑
j=n+1

j−2

=

n∑
j=1

j3|Tj(t)− Tj,Ni
(t)|+ 2

√
Mn−1.

(33)
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Since Tj,Ni
(t) ⇒ Tj(t) on [0, t∗] as i→∞, it follows that for each n ∈ N there exists a number k(n)

such that the inequality |Tj(t)− Tj,Ni
(t)| ≤ n−5 holds for all i ≥ k(n), t ∈ [0, t∗], and j = 1, . . . , n.

Then, assuming that i ≥ k(n) in inequality (33), we obtain∣∣w(Ni)
xxx (t, x)− wxxx(t, x)

∣∣ ≤ (1 + 2
√
M)n−1 ≤ ε for all t ∈ [0, t∗] and i ≥ k(n).

The proof of the convergence w(Ni) ⇒ w can be carried out in a similar way. The proof of
the lemma is complete.

Theorem 1. If E0 < ∞, then the functions Tj(t) are solutions of system (6) and satisfy the
initial conditions (7) and condition (8) in the interval 0 < t < t∗.

Proof. The functions Tj,Ni
(t) satisfy the Volterra integral equation

Tj,Ni
(t) = α̃j + β̃jt−

t∫
0

(t− τ)
{
C0,jTj,Ni

(τ) + C1,j

π∫
0

(
w(Ni)

xxx (τ, x)
)3

cos(jx) dx

}
dτ

= α̃j + β̃jt−Gj

(
w

(Ni)
xxx , Tj,Ni

)
, j = 1, . . . , Ni,

where
α̃j =

αj

1 + C2j2
, β̃j =

βj

1 + C2j2
, C0,j =

j4C0

1 + C2j2
, C1,j =

jC1

1 + C2j2
,

Gj(w(t, x), T (t)) =

t∫
0

(t− τ)
{
C0,jT (τ) + C1,j

π∫
0

w3(τ, x) cos(jx) dx

}
dτ.

Let us show that the functions Tj(t) satisfy a similar equation. The following estimate holds:∣∣∣Tj − α̃j − β̃jt+Gjwxxx

∣∣∣ = ∣∣∣Tj − Tj,Ni
−Gjw

(Ni)
xxx +Gjwxxx

∣∣∣
≤ ‖Tj − Tj,Ni

‖C + C0,jt
∗‖Tj − Tj,Ni

‖C + C1,jt
∗
∥∥∥∥

π∫
0

((
w(Ni)

xxx

)3 − w3
xxx

)
cos(jx) dx

∥∥∥∥
C

,
(34)

where ‖f‖C = max
0≤t≤t∗

|f(t)|. Since Tj,Ni
⇒ Tj and, as shown in Lemma 3, wNi

xxx ⇒ wxxx on the

interval [0, t∗] as i→∞, it follows that the right-hand side of inequality (34) tends to zero as i→∞.
Therefore, the function Tj(t) can be represented in the form

Tj(t) = α̃j + β̃jt−Gjwxxx. (35)

Since the right-hand side of identity (35) is differentiable with respect to t, it follows that so is
its left-hand side. By differentiating this identity with respect to t, we obtain

Ṫj(t) = β̃j −
t∫

0

{
C0,jTj(τ) + C1,j

π∫
0

w3
xxx(τ, x) cos(jx) dx

}
dτ. (36)

By the same pattern, the right-hand side of identity (36) is differentiable with respect to t, and
hence so is its left-hand side. By differentiating identity (36) with respect to t, we arrive at the
desired assertion. The proof of the theorem is complete.

2. UNIQUENESS OF THE SOLUTION OF PROBLEM (1)–(4)

Let us prove that the solution of problem (1)–(4) is unique.
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Lemma 4. If there exists a solution of problem (1)–(4), then one has the relation

‖wxt‖2L2[0,π]
+ C0‖wxx‖2L2[0,π]

+
C1

6
‖w2

xxx‖2L2[0,π]
+ C2‖wxxt‖2L2[0,π]

= ‖ψ′(x)‖2L2[0,π]
+ C0‖ϕ′′′(x)‖2L2[0,π]

+
C1

6
‖(ϕ′′′(x))2‖2L2[0,π]

+ C2‖ψ′′(x)‖2L2[0,π]

and the estimate
‖wxxt‖2L2[0,π]

+ C0‖wxxxx‖2L2[0,π]
+ C1‖wxxxxwxxx‖2L2[0,π]

+ C2‖wxxxt‖2L2[0,π]

≤ C(‖ψ′′(x)‖2L2[0,π]
+ C0‖ϕ′′′′(x)‖2L2[0,π]

+ C1‖ϕ′′′(x)ϕ′′′′(x)‖2L2[0,π]
+ C2‖ψ′′′(x)‖2L2[0,π]

),

where C is a positive constant.
Proof. First, we prove the equality. To this end, we multiply Eq. (1) by wxxt and integrate the

resulting relation with respect to x over the interval [0, π]. Then we obtain
π∫

0

wttwxxt dx+

π∫
0

C0wxxxxwxxt dx+

π∫
0

C1w
2
xxxwxxxxwxxt dx−

π∫
0

C2wxxttwxxt dx = 0. (37)

Let us calculate by parts the integrals in relation (37) while considering the boundary condi-
tions (4). Taking into account the obvious relations

π∫
0

wttwxxt dx = wttwxt

∣∣∣∣
π

0

−
π∫

0

wxtwxtt dx = −1

2

d

dt

π∫
0

w2
xt dx,

π∫
0

wxxxxwxxt dx = wxxxwxxt

∣∣∣∣
π

0

−
π∫

0

wxxxwxxxt dx = −1

2

d

dt

π∫
0

w2
xxx dx,

π∫
0

w2
xxxwxxxxwxxt dx =

1

3
w3

xxxwxxt

∣∣∣∣
π

0

− 1

3

π∫
0

w3
xxxwxxxt dx = − 1

12

d

dt

π∫
0

w4
xxx dx,

π∫
0

wxxttwxxt dx =
1

2

d

dt

π∫
0

w2
xxt dx,

we obtain
1

2

d

dt

( π∫
0

w2
xt dx+ C0

π∫
0

w2
xxx dx+

C1

6

π∫
0

w4
xxx dx+ C2

π∫
0

w2
xxt dx

)
= 0.

Integrating the last relation over variable t on the interval [0, t], we arrive at the assertion in the
lemma,

π∫
0

w2
xt dx+ C0

π∫
0

w2
xxx dx+

C1

6

π∫
0

w4
xxx dx+ C2

π∫
0

w2
xxt dx

=

π∫
0

(ψ′(x))2 dx+ C0

π∫
0

(ϕ′′′(x))2 dx+
C1

6

π∫
0

(ϕ′′′(x))4 dx+ C2

π∫
0

(ψ′′(x))2 dx.

Let us proceed to proving the estimate. We multiply Eq. (1) by wxxxxt. Integrating the resulting
relation with respect to x over the interval [0, π], we obtain

π∫
0

wttwxxxxt dx+

π∫
0

C0wxxxxwxxxxt dx+

π∫
0

C1w
2
xxxwxxxxwxxxxt dx−

π∫
0

C2wxxttwxxxxt dx = 0. (38)
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Let us calculate by parts the integrals in relation (38) with allowance for the boundary condi-
tions (4). Taking into account the obvious relations

π∫
0

wttwxxxxt dx = wttwxxxt

∣∣∣∣
π

0

−
π∫

0

wxttwxxxt dx

= −wxxttwxxt

∣∣∣∣
π

0

+

π∫
0

wxxttwxxt dx =
1

2

d

dt

π∫
0

w2
xxt dx,

π∫
0

wxxxxwxxxxt dx =
1

2

d

dt

π∫
0

w2
xxxx dx,

π∫
0

w2
xxxwxxxxwxxxxt dx =

1

2

d

dt

π∫
0

w2
xxxw

2
xxxx dx−

π∫
0

wxxxwxxxtw
2
xxxx dx,

π∫
0

wxxttwxxxxt dx = wxxttwxxxt

∣∣∣∣
π

0

−
π∫

0

wxxxwxxxt dx = −1

2

d

dt

π∫
0

w2
xxxt dx,

we obtain
1

2

dE

dt
− C1

π∫
0

wxxxwxxxtw
2
xxxx dx = 0, (39)

where we have denoted

E =

π∫
0

w2
xxt dx+ C0

π∫
0

w2
xxxx dx+ C1

π∫
0

w2
xxxw

2
xxxx dx+ C2

π∫
0

w2
xxxt dx.

Let us estimate the second term in relation (39),

∣∣∣∣
π∫

0

wxxxwxxxtw
2
xxxx dx

∣∣∣∣ ≤
π∫

0

|wxxx||wxxxt|w2
xxxx dx

≤ 1

2

π∫
0

(
w2

xxx + w2
xxxt

)
w2

xxxx dx ≤
1

2

π∫
0

w2
xxxw

2
xxxx dx+

π∫
0

w2
xxxtw

2
xxxx dx

≤ 1

2

π∫
0

w2
xxxw

2
xxxx dx+K

π∫
0

w2
xxxx dx ≤

1

2
ME,

where a positive constant K is an upper bound for the continuous function w2
xxxt and M = 1 + 2K

is constant. Taking the last estimate into account in relation (39), we arrive at the inequality

dE

dt
≤ C1ME,

which, after the integration with respect to the variable t over the interval [0, T ], gives

‖wxxt‖2L2[0,π]
+ C0‖wxxxx‖2L2[0,π]

+ C1‖wxxxxwxxx‖2L2[0,π]
+ C2‖wxxxt‖2L2[0,π]

≤ C(‖ψ′′(x)‖2L2[0,π]
+ C0‖ϕ′′′′(x)‖2L2[0,π]

+ C1‖ϕ′′′(x)ϕ′′′′(x)‖2L2[0,π]
+ C2‖ψ′′′(x)‖2L2[0,π]

).

The proof of the lemma is complete.
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Theorem 2. If there exists a solution of problem (1)–(4), then it is unique.
Proof. Assume that there exist two solutions w1 and w2 of problem (1)–(4). Then the func-

tion w = w1 − w2 satisfies the initial conditions (3) with ϕ(x) = ψ(x) = 0, the boundary condi-
tions (4), and the equation

wtt + C0wxxxx + C1

(
w2

1xxxw1xxxx − w2
2xxxw2xxxx

)− C2wxxtt = 0, Ci > 0, i = 0, 1, 2. (40)

Let us multiply Eq. (40) by
wxxt = w1xxt − w2xxt.

By integrating the resulting relation with respect to x over the interval [0, π], we obtain
π∫

0

wttwxxt dx+ C0

π∫
0

wxxxxwxxt dx

+ C1

π∫
0

(
w2

1xxxw1xxxx − w2
2xxxw2xxxx

)
(w1xxt − w2xxt) dx− C2

π∫
0

wxxttwxxt dx = 0.

(41)

We integrate by parts in relation (41) with allowance for the boundary conditions (4) to obtain

dE

dt
− C1

3

π∫
0

w2
xxx(2w1xxxw1xxxt + w1xxxtw2xxx + w1xxxw2xxxt + 2w2xxxw2xxxt) dx = 0, (42)

where

E =

π∫
0

w2
xt dx+ C0

π∫
0

w2
xxx dx+

C1

3

π∫
0

w2
xxx(w

2
1xxx + w1xxxw2xxx + w2

2xxx) dx+ C2

π∫
0

w2
xxt dx.

Let us estimate the second term in Eq. (42),

I =

∣∣∣∣
π∫

0

w2
xxx(2w1xxxw1xxxt + w1xxxtw2xxx + w1xxxw2xxxt + 2w2xxxw2xxxt) dx

∣∣∣∣
≤ 2

π∫
0

w2
xxx(w

2
1xxx + w2

1xxxt + w2
2xxx + w2

2xxxt) dx.

Then, since the functions w2
ixxx and w2

ixxxt, i = 1, 2, are bounded, one has the estimate

I ≤M

π∫
0

w2
xxx dx ≤ME,

where M is a positive constant. Consequently, one has the inequality

dE

dt
≤ME,

from which, taking into account the homogeneous boundary and initial conditions, we conclude
that w(x, t) ≡ 0. The proof of the theorem is complete.

3. SOLVABILITY OF PROBLEM (1)–(4) FOR SMALL T

Based on the results in Sec. 1 and Sec. 2, we arrive at the following main result.
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Theorem 3. Under the conditions

ϕ(x) ∈ C6[0, π], ϕ(0) = ϕ(π) = ϕ′′(0) = ϕ′′(π) = ϕ(4)(0) = ϕ(4)(π) = 0,

ψ(x) ∈ C4[0, π], ψ(0) = ψ(π) = ψ′′(0) = ψ′′(π) = 0,

there exists a unique solution of problem (1)–(4) on the interval 0 ≤ t ≤ t∗.

Proof. By formally differentiating the series (9) term by term, we compose the series

wtt =

∞∑
j=1

T̈j sin(jx), wttxx = −
∞∑
j=1

j2T̈j sin(jx), (43)

wxxx = −
∞∑
j=1

j3Tj cos(jx), wxxxx =

∞∑
j=1

j4Tj sin(jx). (44)

Let us establish estimates for each of these series.
According to Lemma 1, the sequence EN(t), N ∈ N, is uniformly bounded on the interval [0, t∗]

provided that the quantity E0 defined by relation (30) is finite.
To prove the finiteness of E0, consider the coefficients in (5). For these coefficients, taking into

account the assumptions of the theorem, one has the representations

αi = − 2

i6π

π∫
0

ϕ(6)(s) sin(iπs) ds = −qi
i6
, βi =

2

i4π

π∫
0

ψ(4)(s) sin(iπs) ds =
pi
i4
.

Then, in view of these representations, we obtain

E0 =

∞∑
j=1

(j6 + C2j
8)β2

j + C0

∞∑
j=1

j10α2
j + 3C1

π∫
0

( ∞∑
j=1

j3αj cos(jx)

)2( ∞∑
j=1

j5αj cos(jx)

)2

dx

<

∞∑
j=1

(
1

j2
+ C2

)
p2j + C0

∞∑
j=1

1

j2
q2j + 3πC1

( ∞∑
j=1

q2j

)2 ∞∑
j=1

1

j6

∞∑
j=1

1

j2
.

The right-hand side of this inequality is a sum of convergent series by virtue of the estimates

∞∑
j=1

p2j ≤
2

π

π∫
0

[ϕ(6)(s)]2 ds and
∞∑
j=1

q2j ≤
2

π

π∫
0

[ψ(4)(s)]2 ds.

Since E0 < ∞, it follows that the sequence EN(t), N ∈ N, is uniformly bounded on the inter-
val [0, t∗], but then the first relation in (21) implies the uniform convergence of the series

∞∑
j=1

j8Ṫ 2
j ,

∞∑
j=1

j10T 2
j ,

( ∞∑
j=1

j3Tj cos(jx)

)2( ∞∑
j=1

j5Tj cos(jx)

)2

on the interval [0, t∗]. Based on this, we arrive at the following estimates:

|wxxxx| =
∞∑
j=1

j4|Tj sin(jx)| ≤
∞∑
j=1

j10T 2
j +

∞∑
j=1

1

j2
,

|wxxx| =
∞∑
j=1

j3|Tj cos(jx)| ≤
∞∑
j=1

j10T 2
j +

∞∑
j=1

1

j4
.
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For further estimates, consider relation (6), having preliminarily integrated by parts twice in the
integral appearing in this relation,

T̈j(t)(1 + C2j
2) + C0j

4Tj(t) +
6C1

j

π∫
0

( ∞∑
i=1

i3Ti(t) cos(ix)

)( ∞∑
i=1

i4Ti(t) sin(ix)

)2

cos(jx) dx

+
6C1

j

π∫
0

( ∞∑
i=1

i3Ti(t) cos(ix)

)2( ∞∑
i=1

i5Ti(t) cos(ix)

)
cos(jx) dx = 0.

We find T̈j(t) from this relation, substitute it into the second series in (43), and obtain

wttxx = C0

∞∑
j=1

j6Tj(t)

1 + C2j2

+ 6C1

∞∑
j=1

j

1 + C2j2

π∫
0

( ∞∑
i=1

i3Ti(t) cos(ix)

)( ∞∑
i=1

i4Ti(t) sin(ix)

)2

cos(jx) dx

+ 6C1

∞∑
j=1

j

1 + C2j2

π∫
0

( ∞∑
i=1

i3Ti(t) cos(ix)

)2( ∞∑
i=1

i5Ti(t) cos(ix)

)
cos(jx) dx ≡ I1 + I2 + I3.

Let us estimate the terms I1, I2, and I3. We have

|I1| = C0

∞∑
j=1

j6

1 + C2j2
|Tj(t)| ≤ C0

∞∑
j=1

j2

(1 + C2j2)2
+ C0

∞∑
j=1

j10T 2
j (t),

|I2| = 6C1

∞∑
j=1

j

1 + C2j2

∣∣∣∣
π∫

0

( ∞∑
i=1

i3Ti(t) cos(ix)

)( ∞∑
i=1

i4Ti(t) sin(ix)

)2

cos(jx) dx

∣∣∣∣
≤ 6C1

∞∑
j=1

j2

(1 + C2j2)2
+ 6C1

∞∑
j=1

[ π∫
0

( ∞∑
i=1

i3|Ti(t) cos(ix)|
)

×
( ∞∑

i=1

i4Ti(t) sin(ix)

)2

cos(jx) dx

]2
,

|I3| = 6C1

∞∑
j=1

j

1 + C2j2
+

∣∣∣∣
π∫

0

( ∞∑
i=1

i3|Ti(t) cos(ix)|
)2( ∞∑

i=1

i5Ti(t) cos(ix)

)
cos(jx) dx

∣∣∣∣
≤ 6C1

∞∑
j=1

j2

(1 + C2j2)2
+ 6C1

∞∑
j=1

[ π∫
0

( ∞∑
i=1

i3Ti(t) cos(ix)

)2

×
( ∞∑

i=1

i5Ti(t) cos(ix)

)
cos(jx) dx

]2
.

The finiteness of the terms I2 and I3 follows from the Parseval inequality and the estimates
π∫

0

( ∞∑
i=1

i3Ti(t) cos(ix)

)2( ∞∑
i=1

i4Ti(t) sin(ix)

)4

dx ≤ 8π

( ∞∑
i=1

i10T 2
i (t)

)2

<∞,

π∫
0

( ∞∑
i=1

i3Ti(t) cos(ix)

)4( ∞∑
i=1

i5Ti(t) cos(ix)

)2

dx ≤ 8π

( ∞∑
i=1

i10T 2
i (t)

)2

<∞.
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The estimates for the function wtt readily follow from the estimate for the function wxxtt. Then
the series (43), (44) converge uniformly on the strip 0 ≤ t ≤ t∗; consequently, the sum of the
series (9) satisfies conditions (1)–(4). The proof of the theorem is complete.
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