ISSN 0012-2661, Differential Equations, 2020, Vol. 56, No. 3, pp. 354-368. (©) Pleiades Publishing, Ltd., 2020.
Russian Text (© The Author(s), 2020, published in Differentsial’nye Uravneniya, 2020, Vol. 56, No. 3, pp. 366-379.

NUMERICAL METHODS

Locally One-Dimensional Difference Scheme
for a Nonlocal Boundary Value Problem
for a Parabolic Equation in a Multidimensional Domain

Z. V. Beshtokova
Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center,
Russian Academy of Sciences, Nalchik, Kabardino-Balkar Republic, 360000 Russia
e-mail: zarabaeva@yandez.ru
Received January 17, 2019; revised January 17, 2019; accepted September 10, 2019

Abstract—We study a nonlocal boundary value problem for a parabolic equation in the mul-
tidimensional case. A locally one-dimensional difference scheme is constructed to solve this
problem numerically. A priori estimates are derived by the method of energy inequalities in
the differential and difference settings. The uniform convergence of the locally one-dimensional
scheme is proved.
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INTRODUCTION

Boundary value problems with integral conditions are of special interest in the theory of differ-
ential equations. Note that from the physical viewpoint, such conditions are natural and occur in
mathematical modeling of those cases where it is unfeasible to obtain information about the process
developing at the boundary of the domain where it occurs by direct measurement or where only
certain averaged (integral) characteristics of the variable concerned can be measured (see, e.g., [1]).
For example, problems with integral conditions can serve as mathematical models of physical phe-
nomena related, say, to problems encountered in plasma physics. In his survey article [2], Samarskii
pointed out problems of the kind as qualitatively new and arising when solving contemporary prob-
lems in physics and exemplified this type of problems with the statement of the problem with an
integral condition for the heat equation.

For the equation

L,(u) = uy — Upy — VUgyy + c(z, t)u = q(z, 1),

the paper [3| considered the nonlocal boundary value problem with the boundary conditions

u(0,t) = a(t)u(l,t) + / h(t,T)u(l,7)dr, 0<t<T, (0.1)

0

uy(1,t) =0, 0<t<T,
u(z,0) = ug(x), 0<z<l1.

The nonlocal problem considered in the present paper contains the nonlocal boundary condition
of the integral form (0.1).

Various classes of nonlocal problems for partial differential equations were studied in [4-10].

In the present paper, we propose a locally one-dimensional (economical) difference scheme for
numerically solving a nonlocal boundary value problem for a partial differential equation of the
parabolic type in the multidimensional case. The main idea behind the scheme is to reduce the
layer-to-layer transition to the successive solution of a number of one-dimensional problems in each
of the coordinate spatial directions. In this case, for each intermediate problems we construct
an unconditionally stable scheme that is solved with the number of operators proportional to the
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LOCALLY ONE-DIMENSIONAL DIFFERENCE SCHEME 355

number of grid nodes on each time layer. Using the method of energy inequalities, we derive
a priori estimates in the differential and difference settings. The uniform convergence of the locally
one-dimensional scheme is proved.

1. STATEMENT OF THE PROBLEM AND THE A PRIORI ESTIMATE
IN DIFFERENTIAL FORM

In the cylinder Q, = G x [0 < t < T with the base in the form of the p-dimensional rectangular
parallelepiped G = {x = (z1,...,2,) : 0 < x, < lo,a = 1,...,p} with boundary I', consider the
nonlocal problem

?;: = Lu+ f(x,t), (x,t) € Qr, (1.1)

t

ko (0,2 t)u, (0,2 t) = B_o (0,2, t)u(ly, 2, t) + /p(t,T)u(la, ' 1) dr — pu_o (0,2, 1), (1.2)

0
- ka(la7x/7t)uxa (la7xl7t) = /B+a(la7l‘/7t)u(la7 l‘/’t) - ILL+a(l0U m/’t)’ ‘/I"a = la’ t G [O’T]7 (1'3)
w(z,0) = uo(z), =€ G; (1.4)

here Qr =G x [0<t<T],G=G\T,

L 0 ou
Lu = §Lau, Lou= oz, <k(,(x,t)ama> — qu(z, t)u,

0<CO Ska(xyt) Scb ‘Qa(xat”a’/B:Ea(xvtﬂa‘p(t?’r)‘ §C27 OSTSta

where ¢y, ¢;, and ¢, are positive constants and aa = 1,...,p.

In what follows, by M;, i € N, we denote positive constants depending only on the input data of
the problem under consideration.

Assuming that there exists a regular solution of the differential problem (1.1)—(1.4) in the cylin-
der @, we obtain an a priori estimate for this solution using the method of energy inequalities.
Multiplying Eq. (1.1) in the sense of the inner product by u, we derive the energy identity

() = (S (i35 ) ) - (Gt et 09

Let us transform the integrals occurring in identity (1.5) as follows:

ou
(Fu) = 5l (1.6

(S (w0 )on) - £ [ o]

ode/ xt<axa>dx, (1.7)

where G' = {2/ = (x1,%2,.. ., Ta—1,Tag1s---,Tp) 1 0 <z < gy k=1,2,...,a0 —L,a+1,...,p}
and da’ = dxy dxs - - dro_1 dxoqq - - - dzy. Further, to estimate the terms on the right-hand side, we
apply the Cauchy e-inequality

- <; Qa(x,t)u,u> < Qi/uz dz, (1.8)

(FGast)u) < I3+ 5l (19)
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356 BESHTOKOVA

In view of the transformations (1.6), (1.7) and the estimates (1.8), (1.9), we obtain the following
inequality from identity (1.5):

lo
, 1
th \|0+Z/ (z,t < ) d:c<Z/uk: x, t ' dx +M1HuH§+§||f||3. (1.10)

Considering conditions (1.2) and (1.3), we write the first term on the right-hand side in (1.10) as

ou
Z/uk‘ (x,t) 7.

a= lG,

_Z/<M+a aax t) (aax t) ﬁ-&-a( owx t) (lonx t) ﬁ a(ovx/t)u(lmx,’t) (1.11)

a= 1G,

dx’ —Z/ (Lo, @' )u(ly, ' t) — ko (0,2, t)u(0, 2/, 1)) da’

0 a= IG/

t
w(0,2',t) — u(0, 2, t) /p(t, T)u(ly, ', 7)dT — u(O,x',t)M_a(O,x’,t)> dz’.

0
The following assertion holds.

Theorem 1 [11; p. 73]. Let Q be a domain with smooth boundary 0. For elements u(x)

in W), on the domains 11 lying on smooth hypersurfaces and belonging to the domain €, the
traces are defined as elements in Lo(I1), with these traces changing continuously under a continuous
shift of I1. For these traces, one has the inequalities

/[u(:p +ler) — u(x)]® ds = [Ju(z + ley) — u(z)||3 4 < el / wdre, 0<1<59,
I Q(Im)

and
lu(@)|15n < cl6™Hlul@)3,0,am + Ollus(@)13,0,0m);

where ey is the unit vector of the normal to 11 at a point x; Q,(II) is the curvilinear cylinder formed
by segments of these normals of length 1 (§ is the greatest of those lengths | for which Q;(I) C Q);
and ¢ is a constant independent of the function u(x).

For all elements v(z) in Wy (Q) with piecewise smooth boundary 02, one has the estimate
/v2 ds <7¢ /(\v| || +v?) dz < cl/ [Evi + <Zl + 1)1}2] dx = /(51}5 +c.v?)dz, €>0.
c £

o0 Q a - Q

Using the representation (1.11), Theorem 1, and the Cauchy e-inequality, we obtain the estimate

Z/uk a;t

a= 1G,

o
d:z:' < e M ||ug|[§ 4 Ms(e)|ullg

+e/uumuodT+M4 /ruuom Z/u ) d

a= 1G,

which, by virtue of inequality (1.10), implies that

||u||o+Z / ki mt( )dm<sM5||ux||o+M6< Yl
(1.12)
+e/||uwrodT+M7 /||urodr+2/ 122 de |2

a= 1G,
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LOCALLY ONE-DIMENSIONAL DIFFERENCE SCHEME 357

We denote the integration variable 7 in inequality (1.12) by 7; and the variable ¢ by 7, then integrate
the result over 7 between 0 and ¢, and obtain

t t t t T
2 + / |2 dr < &M, / ol dr + Mo () / Jull2 dr + Mg / / a2 dry dr
0 0 0 0 0

t T t
+Mu(@) [ [ el dridr+ i ( / <||f||3 + o, +uia)d$’) i + ||uo<x>||§).
0 0

0 G’

(1.13)

Let us estimate the third and fourth terms on the right-hand side in inequality (1.13) as follows:

t T t
/ / lusl2 dr dr < T / s |2 dr,
0 0 0

. , (1.14)
//Hu]gdﬁ dr < T/Hu”ng
0 0 0
Taking the estimates (1.14) into account in inequality (1.13), we obtain
t t t
Julld+ [ Vel dr < (o) [ ulgdr +er+ 1) [ uliar
0 to 0 (1.15)
cana( (1B + [ i a)ar s JuGR)
0 G
We take ¢ = 1/(27" + 2) in inequality (1.15) and obtain
t t
Jull+ [ ol dr < by [ ol ar
0 0 (1.16)

T My ( / (||f||3 + o, uia)dﬂc’> dr + Huo<a:>||3).
0 G’

Dropping the second terms on the left-hand side in inequality (1.16) and applying Gronwall’s
lemma [11, p. 152; 12| to the resulting inequality, we obtain an upper bound for the integral

t
[ llug||2 dr. Substituting this bound for the integral on the right-hand side in inequality (1.16), we
0

arrive at the desired a priori estimate for the solution,

Tl + a0, < M(2) ( / <HfH§ s [t i) dw') dr + Huo@c)r\%), (1.17)

G/’

t
where ||lu,ll3,, = [llull§dr and the function M(t) depends only on the input data of
0

problem (1.1)—(1.4).

The a priori estimate (1.17) implies the uniqueness of solution to the original problem (1.1)—(1.4),
as well as the continuous, in the norm |ul|? = [Jull§ 4 ||u.]|3,,, dependence of the solution on the
input data on each time layer.
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358 BESHTOKOVA

2. LOCALLY ONE-DIMENSIONAL SCHEME

We select the spatial mesh uniform with respect to each direction Oz, with step h, = l,/N,,
a=1,...,p

= |l@n., @n ={z0) =ishe:in=0,...,N,, a=1,...,p}

hoy  da=1,...,N,—1,
ho/2, iq=0,N,.

On the closed interval [0, 7], we also introduce the uniform mesh @, = {t; = j7:j =0,...,j0}
with step 7 = T'/jo. We partition each of the closed intervals [¢;, ;1] into p parts by introducing the
points tj1a/p =t; +Ta/p, o =1,...,p— 1, and denote the half-interval (¢;4(a—1)/p,tjta/p] by Aa,
where o =1,...,p.

We write Eq. (1.1) in the form

ou
Reu= — —Lu— f=0,
eu BT u— f
or )
10
Z Re,u=0, Re,u= 29U Lou— fo,
prt p Ot
where f,(z,t), a = 1,...,p, are arbitrary functions possessing the same smoothness as the func-
tion f(z,t) and satisfying the normalization condition Y " _ f, = f.
On each half-interval A,, a =1,...,p, we successively solve the problems
109,
Re o ¥q = - a;) — L) — fa=0, z€G, teA, a=1,...,p, (2.1)
p

t

ko(0,2',t)(D(a))z. (0,2",t) = B_a (0,2, £)0 0y (la, 2", 1) + /p(t, T)0(a)(lay @', ) dT — 1o (0, 2", 1)
0
_ka(laal'/7t)(19(oz))za (la,xla t) = BJroz(lmx/at)ﬁ(a)(lmxla t) - /LJra(la,x/»t)a 0<t<T,
while assuming that [13, p. 522]

19(1)('175 0) = Uo(ﬂf), 19(0() (.’L’, tj+(a71)/p) = 19(0171) ('T, thr(afl)/p)a o = 27 <o Dy
Oy (@, 1;) = Vi (2, 1;)-

Let us approximate Eq. (2.1) on the half-interval A, by an implicit two-layer scheme to produce
a chain of p one-dimensional difference equations:

yj""a/p — yj"’(a_l)/p . .
= Ayt fpitelr o =1,
T y + gDa ) « ) 7p7 (22)

Aoy = (et e — day? ™7,

where ale) = Qipt1s @ = kio5(t), t = tjro.5, SOJ;ra/p = fo(?,tj105); da = a-
Equation (2.2) must be equipped with the boundary and initial conditions. We write a difference
analog for the boundary conditions (1.2), (1.3):

J
o). jta/p o S =
al! )yia,o/p = B_ayn., P E :ps,ijaT ~Hea, Ta=0,
s=0
” i+a o |+ —
A = BB s 0= o
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LOCALLY ONE-DIMENSIONAL DIFFERENCE SCHEME 359

Conditions (1.2) and (1.3) have the approximation order O(h,,). Let us increase the approximation
order to O(h2) on the solutions of Eq. (2.1). The following relations hold:

agla)ﬂi:%/p — B—a§j+a/p — fi_o + O(hy),

(),0
o ha h?
0l = kijy = ko + ko " + kg =2t + O(hY),
Iy — 90, h
% = V(@ea0 = Voy + 05 + O(h2),

R
S aally = Ky 0+ (K0 5+ O(h2),

K, = alle )19{;;;/1’0 0.5ha (k*9(,)) + O(h2)
1 J+a/p
— qUa)gite/r h., 9 h2).
(¥)za,0 0.5 <p at t GaV(a) — fa) + O(hy,)
Therefore,

()t

+a/ i+a/
a9 07— 0.5k (903" + dala) — fa)

, J (2.3)
= Ba® W+ D pa iy naT — thoa + O(R2) + O(haT).

s=0

In relation (2.3), we drop quantities of the orders O(h2) and O(h,7) and replace V() with
Yoy = ¥ T/P. Then (2.3) acquires the form

J
all ™yl S = 0.5hayl P = 0.5had 0 ys P 4 Byl T+ pesyn, T — tea — 0.5k fa, T =0,
s=0

or

I+ ]- «@ @ [e%
y% /P _ ()5h< (1o )yiz /p —0.5h, d(o J+ /P ay?\;r /p Zpsij > — T, Xo =0,

o 1 o o _
yiJ]r\/' /p - _O5h (G’EXNQ) j+ /p + B+ayj+ /P) /’L-i-on LTy = lou
where

_ _ . O5had(Na) — — H—a N — _ :u’-‘rcx .
B+a B+ + « ’ ,u/,a 05ha +f .09 lu+a O5h +f Nq

Thus, we arrive at the chain of one-dimensional schemes

yia) Ay + @{:‘a/l’, a=1,...,p, x€w,,,

y(x,0) = uo(x), yr= yre _fﬁ(a_l)/p, 24
where
Aoy = (a0y())a, — day' |
Ry = L Aay™ = = 51h <a§3 Dy 0.5had Oyl — B el ijpwy}svj)’ 0 =0,
s=0
Aty — — yi:a)N + 5+al/(a)’ —
o 0.5h,
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360 BESHTOKOVA

Pay Lo S whau

Qo =97, 2,=0, (2.5)

Ty s Ta=lq.

3. APPROXIMATION ERROR OF THE LOCALLY ONE-DIMENSIONAL SCHEME

The accuracy of the solution by the locally one-dimensional scheme is characterized by the
difference z/+/P = yita/P — i+/P where u/**/P is the solution of the original problem (1.1)—(1.4).
Substituting y/Te/P = zITe/P 4 4i+/P into the difference equation (2.2), we obtain the following
problem for the error z/+e/r:

Zj+a/p — 2j+(o‘71)/p

= Aazj-i-a/p +¢j+a/p (3‘1)
T (e )

wite/p _yita=1)/p

T

where Jte/p = A uite/r 4 pitelr

Denoting

10u\*/?
;)

17204 == (Lau+fa -

and noting that >>_, 1/3a =01if " _| fo = f, we represent the error PI+/P as the sum

uj+a/p — uj+(a71)/p

¢J+06/P = A, uite/r 4 (PJ+01/P . 4 12& _ 1;&
_ _ _ J+a/p _ ite=0/p 1 79\ T2 ,
= (A, J+a/p_La J+1/2 jta/p _ pivi/2y_ (Y = N
(Ao W) 4 (glrelr - f14112) . (5) )+
= w:; + onz'

It is obvious that
. p ) p . p
VE=0(h:+71), P,=0(1), Z¢g+a/pzz¢Q+Z¢;:0(|h|‘2+7), |hP=hi+h3+...+h.
a=1 a=1 a=1
Write the boundary condition z, = 0 as follows:
J
0.5hays " = al )yl " — 0.5had Dy — Boyl T =" posyn. T + 0.5h0 fao + oo

s=0

We substitute y77%/P = z7+/P 4 47+%/P into (3.1). Then we obtain
0.5hazg+a/p = aglu)zij%/p 0.5h,, d(0 J+a/p azﬁa/p Zps JENLT

+ afll(’)uiz%/p — O.SthgO)uéJra/p —B_ auﬁa/p Z PsjUN,T — O.5hau§+a/p + 0.5h0 fa0 + H—a-

s=0
We add and subtract the quantity

13 ]+1/2
p ot

T0=0

ou
0z,

0.5hat)e = 0.5, [ai <ka ) Gttt fa —
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LOCALLY ONE-DIMENSIONAL DIFFERENCE SCHEME 361

to and from the right-hand side of the resulting relation. Then

J
o = 050 (fo — wt/7) 4 alult S = Bl =" py sy 7= 0.5hadoud™ " + i
s=0
B ou 1ou]’™/? .
—05ho | T (ko 22 —qut o — =LY 4 0.5k,
{&ra < (9:1:a> Gatt + J, D 8tLa:0 v
J
= 05ha(fo = "") + 0l 15T = Baul " = pa gk, T = 05hadaouy " + p
s=0

B ou Jj+1/2 _ ' )
— 0.5h, {&E <kaal‘>] — 0.5ha(fa — U%+a/p) + 0~5hada,oué+a/p + 0.5hatb + O(hoﬂ')

J
_ (1 Jjta/p j+a/p s
—a((x‘*)uma,o — Boauly M — g Ps.jUN, T + fl—a
s=0

o ou j+1/2 .

Huitel/p < ou )Ha/p ' J
=k, + 0.5h, [ ky— — B,auﬁ'a/” — PsUN T
0%, 0x, /), Na ; 77 Na
o o j+a/p
—0.5h, [ax <ka8;>] 4 fi—o + O(h2) + O(hyT)

auj+a/p +a/ J ° 9
_ (k:a By =Y pagu ;m) +05hath + O(R2) + O(hat).

s=0 To=0

In view of the boundary conditions (1.2) and (1.3), the bracketed expression is zero. Therefore,
Voo =05hath o+, ¥, =002 +7)+ O(hat).

We have

J
0.5ha 2l § " = a2l 47 — 0.5had® 20" — B2t ®P = " pyjan, T+ 05hatha + 97,

Tay

s=0
or
J *
Zj+a/p _ 1 a(la)zj+a/p — 0.5h d(O)Zj-i-a/P -8 Zj+a/p _ Zp 25+ w + Vi,
t,0 0.5ha «a T ,0 aHo 0 —a~“N, — $,7“Ng —x 0,5ha’
Jita/p _ _G&N"‘)Z;:%f + B+a2?§ta/p I ¢ n Vo
£:Ne 0.5hq T 0.5k,

We thus write the problem for the error z/+%/? in the form

Zéa) = Xaz(o‘) + ¢j+a/P7

z(x,0) =0,
where
Ay, x4 € wp, Vo, Lo € Wh,,
Aa=qAz, 2, =0, Yo =4 1ps, 2, =0,
AL,z =1, 5 e =la,
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VI, _ Via
O.5ha, T/J+a_¢+a+0‘5ha7

Yo = Vo + 05 Va=0(Q1), ¥i=0MR2+7), % a=1 o+

d)ia = O(hfx + T)? szia = O(l)a Zi&a =0

4. STABILITY OF THE LOCALLY ONE-DIMENSIONAL SCHEME
We multiply Eq. (2.4) in the sense of the inner product by y(® = y77/? to obtain

[ytgoc)’ y(a)]a - [Kay(a)a Yy ] [q)(a (o ] ay (41)

where
=> wH, H= Hhm [, 0] Z“U p= Jhede=li Na— 1
TEW 1a=0 }1]@/27 /ia — 07Na.

Let us transform each term in identity (4.1). For the first term, we have

™5 = 5 U so)7 + 5 18l 0

where || - ||, (o) means that the norm is taken with respect to the variable z, for fixed values of the
other variables. Further,

Ay @,y ] = (Aay @,y ) + ALy @y B + ALy @y h

((aaya(ca))zaay(a)) - (day(a)a y(a))a - < (e )ya(ca)o 0'5had<(x0)yg ayN Zps JyN T) =

_( (Mo yan +B+ay )yN7

where a'*) = a; 41, a; = ki_12(t), and t = t;41/5. Then the last expression can be written in the
form .
[Aay(a)a y(a)]a = _(aaayg%;a]a - (day(a)vy(a))
J _ (4.2)
- 0-5had,(10)yg — B-a¥Yn.Yo — Yo Z Ps YN, T — 5+ay12va-

s=0
For the right-hand side of identity (4.1), we have

(@, 5 @], = (0, 4 ) + T Y5 o + Tt B = (01,4 ) + (0 sh, e O) e

Hto «@ o o
+ (0 5+h +fa,Na>y](Va)ha = [,y o + p- yo +)u+ayNa)

Using Lemma 1 in [14], we find the following estimates for the terms occurring on the right-hand
side in relation (4.2):
(d, (4')?) < 2y ML)
— 0.5h0dYys — B_ayn.Yo — Bratn, < Mi(ys +yx) < Mi(ellyz, |7, + YT,

Y gt < Lk + (Zps,yN ) < el o + @l )

s=0
J

+ Mz Y (ellys M) + @Y1 00T

s=0
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[()0( )7y( )]oz < 5”90( )”%Q(Q) + iuy( )H%Q(a)?

2
o ,LL o Mo 1 e o 1 a
oot 4 o) < P e 2 ()] < S0 )l s @)
where ¢ > 0 and ¢(¢) = 1/l, + 1/e.
Substituting the resulting estimates into identity (4.1), after summation over iz #i,, 3=1,...,p,
we find that

H j+a/p”L2(wh) + 7THy ]|L2 wh)

J
< M4T”?/(a)||%2(@h) + MsT Z(EH?/;J’%Z(%)
13=° ) (4.3)
) )T+ 5716 aton + 57 D (142a(t)
igFia
H 1, . .
+ uia(tj))hf + §||y“‘ VP2, @ny-

We sum the inequalities in (4.3) first over « = 1,...,p,
p
Iy 12 e + TZ 12 Mooy < D T 1wy + 19 [ ey +M4TZ 1917, @
a=1 a=1
+MsTZZ<€Hy§aH%2m N o)+ 73 3 (2 (t) + 2 () H/ B
a=1 s=0 a=1lig#ia

and then over j’ from 0 to 7,

J D
| ]+1||L2(wh) + 5 z Z H?/j +a/p |L2(wh) < ETZ |’ +a/p||%2(wh) + H?/OHQLQ(@L)
+M4Z Z\Iy TN e +M5Z ZZ (Ellys )o@ + @Y N7, @)T (4.4)

7'=0 a=1 7’=0 a=1 s=0

- Z Z (12 (t) + 1o (8)) H/ b

J'=0 a=lig#is

By estimating the fourth expression on the right-hand side in (4.4), we obtain

Zj}jzjnmamww+d>muhmg

'=0 a=1 s=0
i 7 P
<e Z Z T Z Y3 117, @™ + <(e) Z Z T Z 19° 11 @)™ (4.5)
j’:O s=0 a=1 J'=0s=0 o=l
J D
< 5TZ Z Hyj +a/p |L2(J.Jh) +c(e)T Z TZ |’Z/j/+a/pH2L2(wh)

7'=0 a=1 7'=0 «a=1
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We take € = ¢y/(47) in inequality (4.5) and find from (4.4) that

J P
19712, ) + M Z Z Y2 +a/p a@m < ZTZ |’ +a/p”%,2(a;h) + 1M 7, @0

J’_O a=1 j’:O a=1
+M7Z ZW +O‘/”lle(w,)JrZ: Z D 2o (t) + 1o (1)) H R
a= = a=1lig#iq
The paper [15] showed that the following inequality holds:
j . .
max [y e <1 D max 19 o) + vaF, (4.6)
P
where
F = 4°l 7@, + Z Z e P13 sy + Z Z D () + o (1) H R
j'=0 a=1 J'=0  a=1lig#iq

Introducing the notation g3 = Dax [y7 T2 (wn): We write inequality (4.6) in the form

J
gi+1 S g Z Tgr + V2Fj7 (4.7)
k=1

where v; and v, are known positive constants.
Using inequality (4.7), based on Lemma 4 in [12]|, we arrive at the a priori estimate

J p
| JHHLQ @n) T Z Z 2. +a/p ‘Lg(wh) < M(t) [ZTZ HSOj/Jra/pH%Z(m) + !!y0\|i2<ah>
+Z S ST ) + ()R,

= a=1ig#iq

where M (t) > 0 is independent of h, and 7.
Thus, the following assertion holds.

Theorem 2. The locally one-dimensional scheme (2.4), (2.5) is stable with respect to the initial
data and the right-hand side, the estimate (4.8) holding true for the solution of problem (2.4), (2.5).
5. UNIFORM CONVERGENCE OF THE LOCALLY ONE-DIMENSIONAL SCHEME

By analogy with [13, p. 528], we represent the solution of problem (3.1) as the sum
2(a) = V(a) + M)y Z(a) = 2T/ where the quantity 7(a) is determined by the conditions
(77(@) _77(05—1))/7—:1[}&7 x ewha +’yh,a7 o = 17"‘7p7 (51)
77('7}7 O) = 0;
here
12(1) Lo S whau
wo‘ = 12—@7 Lo = 07
QL+Q, Lo = la'
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It follows from (5.1) that /™! = N = n + T(wl Fih4 ... +) =1 =...=n° =0 and

Ny = T(@1 + P+ 4 Pa) = =T(Wharr + - + ) = o).
The function v, is determined by the condltlons

(Vi) = V(a—1))/T = Aa¥Va) + Y Yo = Moty + 95, T € wy,, (5.2)
(V@) = V(a-1)/T = D 0@) + Al + 20% o /hay 0 =0, (5.3)
(V(a) = Va-1))/T = Al V) + Ay + 2950 /hay  Ta = la, (5.4)

v(z,0) = 0. (5.5)

If there exist derivatives 8%/83}261:%, a # B, continuous in the closed domain @, then

Aoy = _TAa(izaH +.o.+ QLp) = O(7).
Estimating the solution of problem (5.2)—(5.5) with the use of Theorem 2, we obtain

||uf+1HL2(w,L)+Z Zuzﬂ*“/” fa@n <M [Z ana/pnwh
+Z ZZ 1/12 +¢+a( ) H /e,

= a=1ig#ia

Since 7/ = 0, 1) = O(7) and ||z7]| < |[v7]], we see that the estimate (5.6) implies the following
assertion.

Theorem 3. Let problem (1.1)-(1.4) have a unique solution u(x,t) continuous in Qp, and
assume that there exist derivatives 0*u/0t?, 0*u/0x2,0x%, 0°u/dx20t, and 9°f/0x2, 1 < o, B < p,
continuous in the domain Qp. Then the locally one-dimensional scheme (2.4), (2.5) converges at
the rate O(|h|* + 7), so that

ly7 ™ — Wty < M(JRP+7),  |R>=h3+Rh2+... +h2,

j P 1/2
Eas = (\\z]*lrr;(wh) 27> Hzxam(wh)) -
j’'=0 a=1

6. ALGORITHM FOR THE NUMERICAL SOLUTION OF THE NONLOCAL
BOUNDARY VALUE PROBLEM

Let us write the Robin boundary value problem (1.1)—(1.4) for 0 < z, <l,, @« =2, p = 2. Then
we obtain

ou 0

0 0 0
5 (%(kl(ml’x%t)@xul) + 81:2(k2($1’x2’t)8;> —qi(x1, T2, t)u— @z, T2, t)u+ f(21, 22, 1),

t
ko (0,2 t)u,, (0,2',t) = B_o(0, 2, t)u(ly, 2, t) + /p(t, T)u(le, ', 7)dT — pi_o (0,2, 1),
0
_ka(laa xlvt)ufﬂa (lom xlvt) = ﬁ+a(la,$/,t)U(la,$/,t) - M+a(la7xl>t)7 0 S t S T7
U(ﬂfl,%,o) = UO(I1,$2)-
Consider the mesh z(e) = i h,, a = 1,2, t; = jr, where i, = 0,...,N,, hy = lo/Na,
j=0,...,m, 7 =T/m. We introduce one fractional step t;;1/» = t; + 0.57. Consider the mesh
function yﬂ+2/P = TP = y(i1hy, ishe, ( + 0.50)7), a = 1,2.

11,2
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We write the locally one-dimensional scheme

(W2 =y r =My o, (T =y ) T = Ay (6.1)

oial? = sena(ioha, tiaa o)yt 5 + 31 (inha, s 2)yht 0+ piaa (izha, £ o),

i+1/2 i+1/2 .
y?vl 1/2 = %12(12h2,tj+1/2)y§€,17i2 + ulg(Zth,tj+1/2),

yffé = %21(Zlh1atj+1)yz:11 + 21 (i1, tj+1)yg:11vz + pio1(i1ha, t41),
Yyl = s (inha, )yl n, oy 4 o (inha, ti41), (6.2)
Yo ip = Uo(ir1h, iz, ha), (6.3)
Aayj-i-a/p — (aayii-a/p) _ dayj-&-a/p’ a=1,2,
1

Pa = if(x17m27tj+045a) or p1=0, @y=f(x1,22,tj41).

Let us provide design formulas for the solution of problem (6.1)—(6.3).

At the first stage, we find the solution yf:iz/ ®. To this end, the following problem is solved for
various 25 = 1,..., Ny — 1:
j+1/2 41 +1/2 j+1/2 .
Al(llﬂz yfl 1/22 Cl(ilﬂz yfl 12/ + B1 Zl,lz)yiﬁrl/zz = 7F1](i1,éz)’ 0< 1y < Nl’ (64)
j+1/2

Yot = sy (izha, tia o)yl 5l + 3 (inha, i)yt L2+ p (inha, tiia ),

yivflf = %12(i2h2,tj+1/2)le 1ip T ,LLlQ(ZQhQ, j+1/2)
where (@) (a)
aq )i, 4 a1 )iy +1,i
Aiiy i) = =2, By = —55—,
1,12 h% 1,2 h%

1 1 i11/2 1 .
Cl(ilﬂé) = Al(ilﬂé) + Bl(ilv@) + ; T ];(dl)il’iz’ Flj(il,éz) - ;ygm'z + (901)2'1,1'27

: Sha\ 7
s (ioha, tj1)2) = (@)1 <(“ Diis | g 5hdl % + 05 1> ,
h/l h/l T

o . 0.5h1\ "
%11('Lgh2,tj+1/2) /3 1,i2 <( h)l +O 5hd]1t21/2 + - 1) )
1

. 1) Ny s [ (@1) Ny s i+1/2  0.5h !
s12(ioho, tjv1y2) = ( %N <( 1l)1N Jfﬁilm 1) )
1 1 T

1

, o 0.5h1 | a) Ny —=i+12 05h\
Mlz(lzhz,tﬁl/z):<H+1(12h2atj+1/2)+ leih) <(1])1N 51112 Tl> .

J -1
. _ . ; s Jig 0.5h
pai(iohe, tj11)2) = <,u_1(22h2, tiv1/2)+ ! v+ Z pSvij1,¢27'><( h)l +0. 5hd]1+121/2 . 1) ,
s=0

At the second stage, we find the solution yfﬁz To this end, by analogy with the first stage, for
various ¢; = 1,..., N; — 1 we solve the problem
Az(i17i2)yg14,_i12—1 - CZ(i17i2)yg:i12 + Bz(ilviz)yg:ilﬁ-l - Fjjllzz)’ 0 <ip < Ny, (65)
Yo" = s (inha, e )ylt) + sta1(inha, ty 1 )yl T, + pioa(inha, i),
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J+1 ; j+1 .
Yir Ny = 22 (iha, ti) Y Ny 1+ pa2(inha, tyia),

2 )iy ,i ao )i
Aot :(2}2;12’ B2i1,i2):(2);;§’w+1’

1 1
C2(il,iz) A2(1177/2) + B2(’¢1712) + + - (d2)11,i27 F]+1/2 = 7y111,i2 + (gol)ih’iz?

2(i1,02)

; ; 0.5hs\
s1(i1ha, tjp) = (a2h)2bl <(ajz)11’1 +0. 5hd31+21 T 2> ’

N i 0.5hy\ "
%21(i1h17tj+1) = /Bil,—Q (( h) Ll + O 5hdzl+21 - 2) s
1

‘ A 1 0.5k, \ 7!
%22(21h17tj+1) = ( 2; . <( 22 & +5Z:+2+ 2) )
2 2 T

. _ . 0.5h; j ! s (az)“ 1 J+l 0-5h2 -
po1(irhy, 1) = | fia(inha, tj) + Yo + z Ps,iYiy No T he 0.5hd; "5 + )
s=0 2 T

. . 0.5k, as)i, Ny =i+l 0.5hy\
/.LQQ(Zlhl,tj+1) = <M+2(Zlh1;tj+1)+ . 2y3v2> (( 2;1 N —|—le+)+2+ . 2)
2

The bordering method [16, p. 187| is used to solve problems (6.4) and (6.5). With this method,
solving each problem reduces to solving two systems of linear algebraic equations with a tridiagonal
coefficient matrix. This is easy to do by the Thomas method.
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