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Abstract—We consider an optimal distributed control problem in a convex planar domain with
a quadratic performance functional and a small parameter multiplying the higher derivatives.
Further, the characteristics of the limit equation of the problem are parallel to the y-axis. Using
the method of matching asymptotic expansions in conjunction with the auxiliary parameter
method, we derive a complete asymptotic expansion (up to any power of the small parameter)
of the optimal state of the controlled system and the optimal control.
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1. STATEMENT OF THE PROBLEM AND AUXILIARY ASSERTIONS

This paper deals with studying the asymptotics of the solution of a bisingular [1] optimal dis-
tributed control [2] problem in a planar convex domain Ω with smooth boundary Γ and with a small
parameter ε > 0 multiplying the higher derivatives in the elliptic operator Lε. The optimality con-
ditions of the problem under study are stated in terms of a system of singularly perturbed equations
depending on an additional parameter and an additional condition imposed on this parameter.

A feature of the differential operator Lε in the problem is the fact that the degenerate operator L0
has characteristics tangent to the boundaries of the domain Ω. Even for boundary value problems
with such an operator, the ordinary perturbation theory series has singularities in a neighborhood
of the point of tangency, and one has to apply the method of matching asymptotic expansions [1]
(or its analogs) (see, e.g., [3, 4]) for constructing the complete asymptotic expansion. It is even
more so in distributed control problems (see, e.g., [5–8]). The asymptotics of the distributed control
for an operator with a small parameter multiplying the highest derivative, though in an essentially
different domain, was considered in [9]. A similar problem was considered in [10], where the authors
studied the case where the control constraints degenerate. (The precise statement of this condition
can be found in Sec. 2 of the present paper.)

In what follows, H1 and H2 are Sobolev spaces (see, e.g., [2, Ch. 1, Secs. 3.1–3.3]). Let us
proceed to the rigorous statement of the problem under study. Let Ω ⊂ R

2 be a bounded domain
with smooth boundary Γ := ∂Ω (Ω is a smooth manifold with boundary). Consider the following
distributed control problem [2, Ch. 2, Sec. 2, relations (2.8), (2.9)]:

Lεzε := −ε2Δzε + b(x)
∂zε
∂y

+ a(x, y)zε = f(x, y) + uε(x, y), (x, y) ∈ Ω, zε ∈ H1
0 (Ω), (1.1)

J(u) := ‖zε − zd‖2 + β−1‖u‖2 −→ inf, u ∈ U , (1.2)

U = U(1), where U(r) := {u ∈ L2(Ω) : ‖u‖ ≤ r}. (1.3)

Here β > 0, H1
0 (Ω) is the Sobolev space of functions vanishing on the boundary Γ, ‖ · ‖ is the norm

on the space L2(Ω), and the given functions f , zd, a, and b satisfy the conditions

f, zd, a ∈ C∞(Ω), a(x, y) ≥ A > 0 for (x, y) ∈ Ω,
b ∈ C∞(Ω), b(x) ≥ B > 0 for (x, y) ∈ Ω. (1.4)
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In this case, the existence of an optimal control uε(·) and the corresponding solution zε(·) is
equivalent to the existence of a function pε ∈ H1

0 (Ω) such that (see [2, Sec. 2.2, relations (2.10); 10,
relations (1.13), (1.14)])

Lεzε = f(x, y) + uε, L∗εpε − zε = −zd(x, y), (x, y) ∈ Ω, zε, pε ∈ H1(Ω),

zε = 0, pε = 0, (x, y) ∈ Γ,
(p+ β−1uopt, (ṽ − uopt)) ≥ 0 for all ṽ ∈ U .

(1.5)

Here
L∗εp := −ε2Δp− b(x)

∂p

∂y
+ a(x, y)p.

As was shown in [11, Lemma 1], in this case condition (1.5) amounts to the following system of
conditions:

uε = −λεpε, λε ∈ (0, β], λε‖pε‖ ≤ 1 and (β − λε)(1− λε‖pε‖) = 0. (1.6)

The original problem has thus been reduced to the system of equations

Lεzε + λεpε = f(x, y), L∗εpε − zε = −zd(x, y), (x, y) ∈ Ω, zε, pε ∈ H1(Ω),

zε = 0, pε = 0, (x, y) ∈ Γ, (1.7)

depending on a scalar parameter λε with the additional condition (1.6).
The aim of the present paper is to study the behavior of zε, pε, and λε as ε→ 0 and determine

the complete asymptotic expansions of the indicated variables as ε→ 0.
In the sequel, we will often denote positive constants depending only on the domain Ω and the

functions b(x) and a(x, y) by the same letter K (possibly, with indices).
Along with system (1.7), we will also consider a system of the more general form

Lεz + λp = f1(x, y), L∗εp− z = f2(x, y), (x, y) ∈ Ω,
z = g1, p = g2, (x, y) ∈ Γ. (1.8)

Theorem 1. Problem (1.8) is uniquely solvable for any fi ∈ L2(Ω), gi ∈ H3/2(Γ) (i = 1, 2),
and ε > 0. Its solution (z, p) belongs to the class H2(Ω)×H2(Ω), and if fi ∈ C∞(Ω) and gi ∈ C∞(Γ),
then the solution belongs to the class C∞(Ω)× C∞(Ω).

Proof. By the trace theorems [12, Ch. 1, Theorem 8.3], the mapping H2(Ω) � w 	→ w|Γ is a
surjection. Therefore, there exist g̃j ∈ H2(Ω) such that g̃j|Γ = gj . Passing to the new unknown
functions z − g̃1 and p − g̃2, we arrive at a function with the zero boundary condition. After this,
the proof of the above theorem almost verbatim reproduces that of Theorem 1 in [8]. The proof of
the theorem is complete.

Note that if g1 = g2 = 0 and (z, p) is a solution of system (1.8), then for any v, w ∈ H1
0 (Ω) we

have the relations

ε2(∇z,∇v) +
(
b(x)

∂

∂y
z, v

)
+ (a(x, y)z, v) + λ(p, v) = (f1, v),

ε2(∇p,∇w)−
(
b(x)

∂

∂y
p, w

)
+ (a(x, y)p, w)− (z, w) = (f2, w),(

b(x)
∂

∂y
z, z

)
=

(
b(x)

∂

∂y
p, p

)
= 0.

(1.9)

Therefore, assuming that v = p and w = z in the first two relations in (1.9) and then subtracting
the second from the first, we obtain

‖z‖2 + λ‖p‖2 = (f1, p)− (f2, z). (1.10)
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It was shown in [10] that if (zε, pε, λε) is a solution of system (1.7), (1.6), then the following
properties hold:

‖zε‖C = O(1), ‖pε‖C = O(1) as ε→ 0, λε ≥ λ∗ > 0 for some λ∗ > 0 (1.11)

(Assertion 2), and the a priori estimates were derived for the solution to system (1.8) (Theorem 2):
if fi ∈ C∞(Ω), gi ∈ C∞(Γ), i = 1, 2, and λ ∈ [λ∗, λ∗], λ∗ > 0, then for the solutions (z, p) of
problem (1.8) we have the following estimates uniform in λ:

max{ε3‖z‖C , ε3‖p‖C} ≤ K(‖f1‖C + ‖f2‖C + ‖g1‖C + ‖g2‖C). (1.12)

Here ‖ · ‖C is the norm on the space C(Ω).

2. APPROXIMATION THEOREMS

To justify the asymptotic expansions of solutions of problem (1.7), (1.6), we will need theo-
rems on the estimate of the deviation of the exact solution (zε, pε, λε) to this problem from the
solutions (Zm, Pm,Λm) to the approximation problem

LεZm + ΛmPm = f(x) + f1,m(x), x ∈ Ω,
L∗εPm − Zm = −zd + f2,m(x), x ∈ Ω,
Zm = g1,m(x), Pm = g2,m(x), x ∈ Γ,

(2.1)

in the case where, as ε→ 0, the relations

fi,m ∈ C∞(Ω), gi,m ∈ C∞(Γ), ‖fi,m‖C = O(εm), ‖gi,m‖C = O(εm), i = 1, 2, (2.2)

hold, and additionally, we will need an approximation to condition (1.6).
The paper [10] treats the case where the control constraints degenerate, i.e., λε‖pε‖ < 1 for all

sufficiently small ε > 0. In this case, condition (1.6) transforms into the relation λε = β for all
sufficiently small ε > 0.

In the present paper, we will assume that for all sufficiently small ε > 0 we have the inequal-
ity 0 < λε < β. In this case, condition (1.6) becomes the relation

λε‖pε‖ = 1. (2.3)

Subject to condition (2.3), the approximation to condition (1.6) has the form

Λm‖Pm‖ = 1 +O(εm), (2.4)

and, to obtain an approximation theorem, we will need an auxiliary assertion on the dependence of
the optimal solution uε,r of problem (1.1)–(1.3) on r under the condition ‖uε,r‖ = r.

Assertion 1. Let conditions (1.4) be satisfied, and let uε,r be a solution of problem (1.1), (1.2)
with U = U(r) and ‖uε,r‖ = r for all r ∈ [r∗, r∗]. Then, for some K > 0 the following estimate
holds for all r, r′ ∈ [r∗, r∗]:

‖ur − ur′‖ ≤ K|r − r′|.
Proof. Let zε,0 be a solution of problem (1.1) with u = 0, and assume that the operator [4]

A : L2(Ω) → L2(Ω) takes the function uε to the solution of problem (1.1) with f = 0. Then
zε = zε,0+Auε and the performance functional acquires the form J(uε) = ‖Auε+ v0‖2+ β−1‖uε‖2,
where v0 := zε,0 − zd.

By Theorem 3 in [13] , we have the inequality ‖ur − ur′‖ ≤ K|r − r′| ‖A‖2(‖A‖+ ‖v0‖)4. Ac-
cording to the definition of the norm ‖A‖, by virtue of (1.11), we obtain ‖A‖ ≤ K1, but then also
‖v0‖ ≤ ‖zε,0‖+ ‖zd‖ ≤ K2. The proof of the assertion is complete.

Theorem 2. Let conditions (1.4), (2.2), (2.3), and (2.4) be satisfied. If (zε, pε, λε) is a solution
of problem (1.7), (1.6) and (Zm, Pm,Λm) is a solution of problem (2.1), then as ε→ 0 and for m ≥ 3
one has the relation

max{‖zε − Zm‖, ‖pε − Pm‖, |λε − Λm|} = O(εm−3).
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Proof. The proof of this theorem is conducted by the scheme of proof of Theorem 4 in [13] with
allowance for the estimate (1.12) and Assertion 1.

In what follows, we assume that the domain Ω is strictly convex .
Then there exist points Mi = (xi, yi) ∈ Γ, i = 1, 2, at which the equation of the tangent to Γ

has the form x = xi. The points Mi split the domain Γ into two parts Γj , the lower (j = 1) and
the upper (j = 2) one, and the part Γj is the graph of the function ϕj(x), x ∈ [x1, x2], j = 1, 2. In
this case,

ϕj(x) ∈ C([x1, x2])
⋂
C∞((x1, x2)), ϕj(xi) = yi, ϕ′j(xi − (−1)i0) =∞. (2.5)

Moreover, in neighborhoods of the points Mi there exists one more parametrization of the bound-
ary Γ : x = ψi(y). Note that ψ1 is a convex function (ψ′′1 ≥ 0), ψ2 is a concave function (ψ′′1 ≤ 0),
and ψ′i(yi) = 0.

To simplify the technicalities (condition (2.6) stated below affects only the form of the asymptotic
expansions of the solution to the problem under consideration but not the method of producing these
expansions), we will assume that

x1 = y1 = 0, ψ′′1 (y1) > 0, ψ′′2 (y2) < 0. (2.6)

Note that the vertical lines x = const are the characteristics of the operators L0 and L∗0 obtained,
respectively, from Lε and L∗ε if we set ε = 0 in their definition.

Finding an asymptotic expansion of the solution to the boundary value problem with the oper-
ator Lε in a domain with condition (2.6) is considered in detail in [1, Ch. IV, Sec. 3].

3. OUTER ASYMPTOTIC EXPANSION

By analogy with [9], the outer asymptotic expansion for the functions zε and pε has exponentially
decaying boundary layers for each of them in neighborhoods of both curves Γ1 and Γ2.

We seek the outer expansion for zε and pε in the form

out

z :=

∞∑
k=0

ε2k(z2k(x, y) +
1

z2k(x, η1) +
2

z2k(x, η2)),

out

p :=

∞∑
k=0

ε2k(p2k(x, y) +
1

p2k(x, η1) +
2

p2k(x, η2)),

(3.1)

where ηj = (−1)j(ϕj(x)− y)/ε2, and the expansion for λε in the form

λε :=

∞∑
k=0

ε2kλ2k. (3.2)

Let us substitute the series (3.1) and (3.2) into system (1.7) and match the terms of the same
form and of the same order of smallness. In this case, to find the coefficients of the functions

j

z2k and
j

p2k from the boundary layers, we should expand the function a(x, y) into Taylor series with respect
to the second variable in neighborhoods of the points ϕj(x) and replace (y−ϕj(x)) with (−1)j+1ε2ηj .
As a result, for determining the functions z2k, p2k,

j

z2k,
j

p2k, and λ2k we obtain the equations

L0z0 + λ0p0 = f(x, y), L∗0p0 − z0 = −zd(x, y),

L0z2k + λ0p2k = −λ2kp0 +Δz2k−2 −
k−1∑
s=1

λ2sp2k−2s, k ≥ 1,

L∗0p2k − z2k = Δp2k−2, k ≥ 1,

(3.3)

j

M1

j

z0 = 0,
j

M2

j

p0 = 0, j = 1, 2,
j

M1

j

z2k =
j,1

F2k(x, ηj;
j

z2k−2,
j

p j2k−2),
j

M2

j

p j2k =
j,2

F2k(x, ηj;
j

z j2k−2,
j

p j2k−2), k ≥ 1,
(3.4)
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where
j

Mm := −γj(x) ∂
2

∂η2j
+ (−1)j+mb(x)

∂

∂ηj
, γj(x) := ϕ′j(x)

2 + 1, j,m = 1, 2, (3.5)

j

zs := (
j

z0,
j

z1, . . . ,
j

zs),
j

ps := (
j

p0,
j

p1, . . . ,
j

ps),

j,1

F2k(x, ηj;
j

z2k−2,
j

p2k−2) := (−1)j
(
2ϕ′j(x)

∂2

∂ηj∂x

j

z2k−2 + ϕ′′j (x)
∂

∂ηj

j

z2k−2

)

+
∂2

∂x2
j

z2k−4 −
∑
s=0

j

as(x)η
s
j

j

z2k−2−2s,

j,2

F2k(x, ηj;
j

z2k−2,
j

p2k−2) := (−1)j
(
2ϕ′j(x)

∂2

∂ηj∂x

j

p2k−2 + ϕ′′j (x)
∂

∂ηj

j

p2k−2

)

+
∂2

∂x2
j

p2k−4 +
j

z2k−2 −
∑
s=0

j

as(x)η
s
j

j

p2k−2−2s,
(3.6)

while the
j

as(x) are known smooth functions that are the coefficients of the expansion of the func-
tion a(x, y) in a neighborhood of the boundaries Γj ,

a(x, ϕj(x)− (−1)jε2ηj) =
∞∑
s=0

j

as(x)ε
2sηsj .

In this case, it is assumed that if one of the indices of a function is negative, then the function is
identically zero.

Performing a similar procedure with the boundary conditions in (1.7), we obtain the relations

z2k(x, ϕj(x)) +
j

z2k(x, 0) = 0, p2k(x, ϕj(x)) +
j

p2k(x, 0) = 0, j = 1, 2. (3.7)

Since both characteristic numbers of the operator
1

M1 are nonnegative (see (3.5)), the equa-
tion

1

M1

1

z = e−η2b(x)/γ1(x)Rs(η1;x), where Rs(η1;x) is a polynomial in η1 of degree s with coefficients
smoothly depending on x, has a unique solution of the similar form

1

z = e−η2b(x)/γ1(x)R̃s(η1;x) with
the polynomial R̃s(η1;x) in η1 of the same degree s.

At the same time, the equation
1

M2

1

p = e−η1b(x)/γ1(x)Rs(η1;x) has a general solution of the form
1

p = e−η1b(x)/γ1(x)(C(x) + η1R̃s(η1;x)),

where R̃s(η1;x) is a known similar polynomial in η1 of degree s and the function C(x) (a polynomial
of the zero degree) is to be determined. A similar situation also takes place on Γ2 (with the replace-
ment of

2

z with
2

p and vice versa). Allowing for the form (3.6) of the functions
j,m

F 2k (j,m = 1, 2), we
find that the functions

j

z2k and
j

p2k have the following structure:
1

z2k = e−η1b(x)/γ1(x)
1

P 2k−2(η1;x),
1

p2k = e−η1b(x)/γ1(x)
1

Q2k(η1;x),

2

z2k = e−η2b(x)/γ2(x)
2

P 2k(η2;x),
2

p2k = e−η2b(x)/γ2(x)
2

Q2k−2(η2;x).
(3.8)

Here, by analogy with the preceding,
1

Q2k(η1;x) and
2

P 2k(η2;x) (
1

P 2k−2(η1;x) and
2

Q2k−2(η2;x)) are
polynomials in ηj of degree 2k (degree 2k − 2) with coefficients that smoothly depend on x.

Note that
1

z2k and
2

p2k are uniquely determined by the previous members of the series in (3.1),
while

2

z2k and
1

p2k have the form
2

z2k = e−η2b(x)/γ2(x)D2k(x) + e−η2b(x)/γ2(x)η2P̃2k−1(η2;x),
1

p2k = e−η1b(x)/γ1(x)C2k(x) + e−η1b(x)/γ1(x)η1Q̃2k−1(η1;x),
(3.9)
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where P̃2k−1(η2;x) and Q̃2k−1(η1;x) are uniquely determined by the previous members of the series
in (3.1).

Thus, for system (3.3), (3.4), (3.7) to be solvable, it is necessary to consider a system of the form

L0z + λ0p = f1(x, y), L∗0p− z = f2(x, y),

z(x, ϕ1(x)) = g1(x), p(x, ϕ2(x)) = g2(x).
(3.10)

The paper [10, Lemma 2] proved that if fi(x, y) ∈ C(Ω\{M1,M2}) and gi(x) ∈ C((x1, x2)), then
system (3.10) is uniquely solvable for each λ0 > 0. Further, if [4] fi(x, y) ∈ C∞(Ω \ {M1,M2})
and gi(x) ∈ C∞((x1, x2)), then also z(x, y), p(x, y) ∈ C∞(Ω \ {M1,M2}).

This, together with (3.7)–(3.9), implies the following assertion.

Theorem 3. Let conditions (1.4) and (2.5) be satisfied. Then problem (3.3), (3.4), (3.7) is
uniquely solvable for whichever collection {λ2k} (λ0 > 0), and all of its solutions are infinitely
differentiable in Ω \ {M1,M2}.

Note that the algorithm for constructing solutions of the above-indicated systems is as follows:

(1) Find
1

z2k and
2

p2k.
(2) Set

z2k(x, ϕ1(x)) = − 1

z2k(x, 0), p2k(x, ϕ2(x)) = −
2

p2k(x, 0). (3.11)

(3) Solve problem (3.3) with conditions (3.11).

(4) Find
2

z2k and
1

p2k from the conditions
2

z2k(x, 0) = −z2k(x, ϕ2(x)),
1

p2k(x, 0) = −p2k(x, ϕ1(x)).
The outer expansion for a given collection {λ2k} has thus been constructed. By construction, it

is a formal asymptotic solution of problem (1.7) in those subdomains of the domain Ω where the
series (3.1) do not lose their asymptotic property. Note that this expansion also fails to approximate
relation (2.3).

It turns out that these series lose their asymptotic nature in some small neighborhoods of the
points M1 and M2. By virtue of complete similarity in considering the neighborhoods of these
points, we consider in detail only the neighborhood of point M1 = (0, 0). Denote c :=

√
2ψ′′1 (0);

then the functions ϕj , by virtue of (2.6), have, as x→ +0, the asymptotic expansions

ϕj(x) = (−1)jcx1/2 +
∞∑
s=2

csx
s/2, x→ +0. (3.12)

By σ(x) (possibly, with indices) we will denote functions that are smooth in a neighborhood of
the point x=+0 and have an asymptotic expansion as x→ +0 of the form

∑∞
s=0 qsx

s/2, which can
be differentiated term-by-term infinitely many times.

By σ(x, y) (possibly, with indices) we will denote functions that are smooth in a neighborhood
of the point (+0, 0) and have an asymptotic expansion uniform in y as x → +0 of the form∑∞

s=0 x
s/2qs(y/

√
x), where qs(θ) ∈ C∞((−1 − γ2, 1 + γ2)) and γ2 is a sufficiently small positive

constant that can be differentiated term-by term infinitely many times.

Assertion 2. For each collection {λ2k} (λ0 > 0), the coefficients of the outer expansion in (3.1)
have the following asymptotic expansions as x→ xi − (−1)i0:

z2k(x, y) = |x− xi|(1−3k)/2σ(|x− xi|, y), p2k(x, y) = |x− xi|(1−3k)/2σ(|x− xi|, y),
1

z2k(x, y) = |x− xi|(2−3k)/2e−η1|x−xi|σ(|x−xi|)
2k−2∑
s=0

(|x− xi|η1)sσs(|x− xi|), k ≥ 1,

2

z2k(x, y) = |x− xi|(1−3k)/2e−η2|x−xi|σ(|x−xi|)
2k∑
s=0

(|x− xi|η2)sσs(|x− xi|),
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1

p2k(x, y) = |x− xi|(1−3k)/2e−η1|x−xi|σ(|x−xi|)
2k∑
s=0

(|x− xi|η1)sσs(|x− xi|),

2

p2k(x, y) = |x− xi|(2−3k)/2e−η2|x−xi|σ(|x−xi|)
2k−2∑
s=0

(|x− xi|η2)sσs(|x− xi|), k ≥ 1.

(3.13)

Proof. By virtue of (3.5) and (3.12), we have

ϕj(x) = (−1)jcx1/2 + xσ(x), γj(x) =
c2

4x
+ x−1/2σ(x) = x−1σ(x),

b(x)

γj(x)
=
4b(0)x

c2
+ x3/2σ(x) = xσ(x).

(3.14)

Since we can term-by-term differentiate and integrate the series in the definition of the func-
tion σ(x, y), and also allowing for the relation x−3/2y = x−1(y/

√
x) and relations (3.14), we obtain

∂

∂x
σ(x, y) = x−1σ(x, y),

∂

∂y
σ(x, y) = x−1/2σ(x, y),

y∫
ϕ1(x)

σ(x, η)dη = x1/2σ(x, y) + x1/2σ(x).
(3.15)

Note that it follows from these formulas and formulas (3.13) and (3.14) in [10] that for the zλ and pλ,
which are solutions of the problem
L0z + λp = f1(x, y), L∗0p− z = f1(x, y), z(x, ϕ1(x)) = g1(x), pλ(x, ϕ2(x)) = g2(x), (3.16)

where λ > 0, the following property holds:

if fi = xασ(x, y), gi = xασ(x), then zλ, pλ = xα+1/2σ(x, y). (3.17)

The proof is conducted further by induction with respect to k using formulas (3.3), (3.6), (3.15),
and (3.17), as well as formulas (3.13) and (3.14) in [10]. The proof of the assertion is complete.

Note that, as follows from the expansions (3.13), for k > 0 the coefficients of the outer expansion
do not belong to the space L2(Ω), while the series in (3.1) stop being asymptotic for |x− xi| 
 ε.

It can readily be verified by a straightforward computation that the coefficients of the outer
expansion in (3.1) belong to L2(Ω) at k = 0.

4. INNER ASYMPTOTIC EXPANSION

In the previous section, for a given collection {λ2k} we constructed a formal asymptotic solution
(FAS) of problem (1.7) in those subdomains of the domain Ω where the series in (3.1) do not lose
their asymptotic property.

Since the outer expansion is unsuitable in a small neighborhood of the points Mi, we must
consider a new, “inner,” expansion in terms of stretched variables in neighborhoods of these points.

To avoid writing fractional powers of ε, in this part of the paper we introduce the new small
parameter μ := ε1/3. Also, we consider in detail only a neighborhood of the point M1 = (0, 0),
because the inner expansion of the problem under consideration in a neighborhood of the point M2

is similar.
In a neighborhood of the point M1, we introduce new stretched variables, similar to how it was

done in [1, Ch. IV, Sec. 3, (3.13)]: x = μ4ξ, y = μ2τ .
In terms of these variables, the functions Vε(ξ, τ) := zε(μ

4ξ, μ2τ) and Wε(ξ, τ) := pε(μ
4ξ, μ2τ)

will satisfy the system

− ∂2

∂ξ2
Vε + b(μ4ξ)

∂

∂τ
Vε + μ2a(μ4ξ, μ2τ)Vε + μ2λεWε + μ4

∂2

∂τ 2
Vε = μ2f(μ4ξ, μ2τ),

− ∂2

∂ξ2
Wε − b(μ4ξ) ∂

∂τ
Wε + μ2a(μ4ξ, μ2τ)Wε − μ2Vε + μ4

∂2

∂τ 2
Wε = −μ2zd(μ4ξ, μ2τ)

(4.1)
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in the domain μ4ξ ≥ ψ1(μ
2τ), ξ < μα̃ for some α̃ > 0 and the boundary conditions

Vε(ψ1(μ
2τ), μ2τ) = 0 =Wε(ψ1(μ

2τ), μ2τ). (4.2)

We seek the inner expansion for zε and pε in the form

in,1

z :=

∞∑
l=1

μ2l
1

v2l (ξ, τ),
in,1

p :=

∞∑
l=1

μ2l
1

w2l (ξ, τ). (4.3)

In a standard manner, we obtain the following system for the functions
1

v2l and
1

w2l:

∂2

∂ξ2
1

v2l −b(0) ∂
∂τ

1

v2l =
1

G2k(ξ, τ ; 1

v2k−2,
1

w2l−2),

∂2

∂ξ2
1

w2l +b(0)
∂

∂τ

1

w2l =
2

G2l(ξ, τ ; 1

v2k−2,
1

w2k−2),
(4.4)

where
1

vs := (
1

v2,
1

v4, . . . ,
1

vs),
1

ws := (
1

w2,
1

w4, . . . ,
1

ws),

1

G2(ξ, τ) = −f(0, 0),
2

G2(ξ, τ) = zd(0, 0),
1

G4(ξ, τ) = −f2(ξ, τ) + a(0, 0)
1

v2 +λ0
1

w2,
2

G4(ξ, τ) = zd,2(ξ, τ) + a(0, 0)
1

w2 − 1

v2,

1

G2k(ξ, τ ; 1

v2l−2,
1

w2k−2) = −f2l−2(ξ, τ)− ∂2

∂τ 2
1

v2l−4

+
∑
s=0

λ2s
1

w2l−4 +
∑
s=1

bsξ
s ∂

∂τ

1

v2k−4s +
l−1∑
s=0

d2l,2s(ξ, τ)
1

v2k−2−2s,

2

G2k(ξ, τ ; 1

v2l−2,
1

w2k−2) = zd,2l−2(ξ, τ)− ∂2

∂τ 2
1

w2l−4

−
∑
s=1

bsξ
s ∂

∂τ

1

w2k−4s +
l−1∑
s=0

d̃2l,2s(ξ, τ)
1

w2k−2−2s,

(4.5)

and f2s(ξ, τ), zd,2s(ξ, τ), d2l,2s(ξ, τ), and d̃2l,2s(ξ, τ) are known (homogeneous of 2s-parabolic degree,
i.e., when the degree of the monomial ξnτm is taken to be equal to 2n +m) polynomials obtained
from the expansions of the functions f , zd, a, and b in a neighborhood of the point M1 = (0, 0).

In this case, each of systems (4.4), by virtue of (3.12), is considered in the unbounded domain
D = {(ξ, t) : ξ ≥ τ 2, τ ∈ R} with the boundary conditions

1

v2 (τ
2, τ) = 0 =

1

w2 (τ
2, τ),

1

v2l (τ
2, τ) = gv,2l(τ),

1

w2l (τ
2, τ) = gw,2l(τ) (4.6)

defined by the preceding
1

v2s and
1

w2s by virtue of (4.2).
The solutions of systems (4.4), (4.5) are unbounded in the domain concerned and thereby

nonunique. However, we are only interested in solutions that are consistent with the outer ex-
pansion.

As was shown in [10], for ξ ∈ (εα; εα̃), 4/3 > α > α̃ > 1, the series in (3.1) can be re-expanded
in ξ and τ . Having performed such a procedure, we will find that

∞∑
k=0

ε2k(z2k(x, y) +
1

z2k(x, η1) +
2

z2k(x, η2)) =

∞∑
l=1

μ2l(
z

H0,2l(ξ, τ) +
z

H1,2l(ξ, τ) +
z

H2,2l(ξ, τ)),

∞∑
k=0

ε2k(p2k(x, y) +
1

p2k(x, η1) +
2

p2k(x, η2)) =

∞∑
l=1

μ2l(
p

H0,2l(ξ, τ) +
p

H1,2l(ξ, τ) +
p

H2,2l(ξ, τ)),
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where

z

H0,2l = ξl/2
∞∑
s=0

ξ−3s/2q̃l,s(τ/
√
ξ),

z

H1,2 = 0,
z

H1,2l = e−(4b(0)ξ(c
√

ξ+τ)/c2)ξ2l−9/2
∞∑
s=0

ξ−3s/2
2s−2∑
s1=0

F1(ξ, τ)
s1 σ̃l,1,s1(ξ),

z

H2,2l = e−(4b(0)ξ(c
√

ξ−τ)/c2)ξ2l−3/2
∞∑
s=0

ξ−3s/2
2s∑

s1=0

F2(ξ, τ)
s1 σ̃l,2,s1(ξ),

(4.7)

p

H0,2l = ξl/2
∞∑
s=0

ξ−3s/2q̃l,s(τ/
√
ξ),

p

H1,2l = e−(4b(0)ξ(c
√

ξ+τ)/c2)ξ2l−3/2
∞∑
s=0

ξ−3s/2
2s∑

s1=0

F1(ξ, τ)
s1 σ̃l,1,s1(ξ),

p

H2,2 = 0,
p

H2,2l = e−(4b(0)ξ(c
√

ξ−τ)/c2)ξ2l−9/2
∞∑
s=0

ξ−3s/2
2s−2∑
s1=0

F2(ξ, τ)
s1 σ̃l,1,s1(ξ),

(4.8)

the Fj(ξ, τ) = ξ(c
√
ξ−(−1)jτ), q̃l,s are similar to the functions qs, while σ̃(ξ) are linear combinations

of degrees ξ−s̃/2, s̃ = 0, 1, . . . Here the resulting series are a formal asymptotic solution of system (4.1)
as ξ → +∞.

Theorem 4. There exist functions
1

v2l (ξ, τ) and
1

w2l (ξ, τ) such that they are solutions of
system (4.4), (4.6) and have the asymptotic expansions

z

H0,2l(ξ, τ) +
z

H1,2l(ξ, τ) +
z

H2,2l(ξ, τ) and
p

H0,2l(ξ, τ) +
p

H1,2l(ξ, τ) +
p

H2,2l(ξ, τ), respectively, as ξ→+∞.

Proof. Since for each l the system in question splits into two independent equations, and, in this
case, because of the form of the domain, the second equation is transformed by the change τ1 := −τ
into an equation of the first form in the same domain, by following the proof of Theorem 3.1
in [1, Ch. IV, Sec. 3], we arrive at the existence of the desired solution. The proof of the theorem
is complete.

By construction, the outer expansion in (3.1) is consistent in a neighborhood of the point
M1 = (0, 0) with the inner expansion in (4.3) (see [1, formula (0.9)]); i.e., for N1 ≥ 1 and N2 ≥ 1
we have

AN2,ξ,τ (AN1,x,y,η1,η2

out

z ) = AN1,x,y,η1,η2
(AN2,ξ,τ

in,1

z ),

AN2,ξ,τ (AN1,x,y,η1,η2

out

p ) = AN1,x,y,η1,η2
(AN2,ξ,τ

in,1

p ),
(4.9)

where AN,(·) is the operator of taking the Nth partial sum of the respective series. (Here both parts
of relations (4.9) must be reduced to the same variables.)

In a neighborhood of the point M2, in a similar way, we construct the second inner expansion

in,2

z :=

∞∑
l=1

μ2l
2

v2l (ξ2, τ2),
in,2

p :=

∞∑
l=1

μ2l
2

w2l (ξ2, τ2), x2 − x := μ4ξ2, y2 − y := μ2τ2,

consistent with the expansion (3.1) in a neighborhood of the pointM2. In view of the consistency of
the series under consideration, in a standard manner (see, e.g., the proof of Theorem 1.4 in [1, Ch. IV,
Sec. 1]), it can be shown that, in the domain Ω, we have the estimates

|LεZ2N + ΛNP2N − f(x, y)| < K2Nε
N1 , |L∗εP2N − Z2N + zd(x, y)| < K2Nε

N1 ,

and, on the boundary Γ, the estimates

|Z2N | < KεN1 , |P2N | < KεN1 ,
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where N1 → +∞ as N → +∞. Here Λ2N :=
∑N

l=0 λ2l, while

Z2N := A2N,x,y,η1,η2

out

z +A2N,ξ,τ

in,1

z +A2N,ξ2,τ2

in,2

z

−A2N,ξ,τ (A2N,x,y,η1,η2

out

z )−A2N,ξ2,τ2(A2N,x,y,η1,η2

out

z ),

P2N := A2N,x,y,η1,η2

out

p +A2N,ξ,τ

in,1

p +A2N,ξ2,τ2

in,2

p

−A2N,ξ,τ (A2N,x,y,η1,η2

out

p )−A2N,ξ2,τ2(A2N,x,y,η1,η2

out

p ).

(4.10)

5. COMPLETE ASYMPTOTICS OF THE SOLUTION OF THE PROBLEM

Thus, for a fixed collection {λn} we have constructed consistent outer and inner formal asymp-
totic solutions of system (1.7). The compound asymptotic expansions ZN and PN produced from
these series approximate system (1.7) uniformly in the domain Ω. However, they do not satisfy the
approximation condition.

First, we find the zeroth approximation to the original problem. Consider a system of the
form (3.16)

L0zλ + λpλ = f1(x, y) := f(x, y), L∗0pλ − zλ = f1(x, y) := −zd(x, y),
zλ(x, ϕ1(x)) = 0, pλ(x, ϕ2(x)) = 0,

(5.1)

depending on a parameter λ ∈ (0, β].
Since f, zd = σ(x, y), it follows from property (3.17) that zλ, pλ = x1/2σ(x, y) and zλ, pλ ∈ L2(Ω).
Lemma 1. Let conditions (1.4) and (2.5), as well as the conditions

zd is not a solution to the problem L0z = f(x, y), z(x, ϕ1(x)) = 0, (5.2)

β‖pβ‖ > 1 (5.3)

be satisfied. Then there exists a unique λ0 such that the relation λ0‖pλ0
‖ = 1 holds for the solution

of problem (5.1) with λ = λ0.
Proof. Let us introduce the notation p̃λ := λpλ. Then (zλ, p̃λ) is a solution of the system

L0zλ + p̃λ = f(x, y), L∗0p̃λ − λzλ = −λzd(x, y),
zλ(x, ϕ1(x)) = 0, p̃λ(x, ϕ2(x)) = 0.

(5.4)

According to the theorem on the differentiability of solutions of ordinary differential equations with
respect to a parameter, the function ‖p̃λ‖2 is differentiable with respect to λ, with d‖p̃λ‖2/dλ =

2‖p̃λ‖(p̃λ, P̃λ), where P̃λ(x, y) := ∂p̃λ(x, y)/∂λ. Let Zλ(x, y) := ∂zλ(x, y)/∂λ. Then (Zλ, P̃λ) is a
solution of the system

L0Zλ + P̃λ = 0, L∗0P̃λ − λZλ = zλ − λzd, Zλ(x, ϕ1(x)) = 0, P̃λ(x, ϕ2(x)) = 0. (5.5)

Here, since zλ − λzd = σ(x, y), the relations Zλ, P̃λ = x1/2σ(x, y) hold in view of property (3.17).
Thereby Zλ, P̃λ ∈ L2(Ω).

Therefore, by virtue of systems (5.4) and (5.5), we have

(p̃λ, P̃λ) = −(p̃λ,L0Zλ) = −(L∗0p̃λ, Zλ) = −λ(Zλ, zλ − zd)
and

‖P̃λ‖2 = −(L0Zλ, P̃λ) = −λ‖Zλ‖ − (Zλ, zλ − zd),
and hence d‖p̃λ‖2/dλ ≥ 0.
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If (p̃λ, P̃λ) = 0 for some λ > 0, then P̃λ = 0 and Zλ = 0, and therefore, zλ− zd = 0. Then p̃λ = 0
and L0zd = f(x, y). Consequently,

d

dλ
‖p̃λ‖2 > 0; (5.6)

therefore, the function ‖p̃λ‖2 strictly increases and, in particular, is bounded. In this case, ‖p̃β‖2 > 1.
Since zλ is a solution of the problem L0zλ = f(x, y)− p̃λ, we have, according to the well-known

a priori estimates (see, e.g., [14, Ch. 3, formula (1.5)]), ‖zλ‖ ≤ K‖f(x, y)− p̃λ‖ ≤ K1. Consequently,
λ‖zλ‖ → 0 as λ→ 0.

Since L∗0p̃λ = λzλ − λzd(x, y), we have ‖p̃λ‖ ≤ K3λ‖zλ − zd‖ → 0 as λ → 0. The proof of the
lemma is complete.

Lemma 2. Assume that conditions (1.4) and (2.5), as well as the condition λεn → λ̃ for some
εn → 0, are satisfied. Then ‖zεn − z̃n‖ → 0 and ‖pεn − p̃n‖ → 0, where (z̃n, p̃n) is the solution of
the system

Lεn z̃n + λ̃p̃n = f(x, y), L∗εn p̃n − z̃n = −zd(x, y), (x, y) ∈ Ω,
z̃n = 0, p̃n = 0, (x, y) ∈ Γ.

Proof. Denoting ẑn := zεn−z̃n, p̂n := pεn−p̃n, and λ̂n := λ̃−λεn , we obtain Lεn ẑn+λ̃p̃n = λ̂npεn
and L∗εn p̃n− ẑn = 0. By virtue of (1.10), the relation ‖ẑn‖2+ λ̃‖p̃n‖2 = λ̂n(pεn , p̃n) holds. It follows
from this relation that λ̃‖p̃n‖2 ≤ λ̂n‖pεn‖‖p̃n‖. However, according to (1.11), the sequence {‖pεn‖}
is bounded and λ̃ ≥ λ∗ > 0, and therefore, ‖p̃n‖ → 0 and hence ‖z̃n‖ → 0. The proof of the lemma
is complete.

Theorem 5. Let conditions (1.4), (2.5), and (5.3) be satisfied. Then λε → λ0 , ‖zε − z0‖ → 0,
and ‖pε − p0‖ → 0 as ε → +0, where the number λ0 has been defined in Lemma 1, z0 := zλ0

,
p0 := pλ0

, and for all sufficiently small ε > 0 relation (2.3) holds.

Proof. Let us show that λ0 is the only limit point of the set {λε}.
Let λεn → λ̃ for some εn → 0. Then by Lemma 2 we have ‖zεn − z̃n‖ → 0 and ‖pεn − p̃n‖ → 0.

However, according to Theorem 5 in [10], we have ‖z̃n − ẑ
˜λ‖ → 0 and ‖p̃n − p̂

˜λ‖ → 0. Therefore,
λεn‖pεn‖ → λ̃‖p̂

˜λ‖. By virtue of inequality (5.3) from Lemma 1 we find that λ̃ < β. Consequently,
we also have λεn < β for all sufficiently large n. Then, by virtue of (1.6), 1 = λεn‖pεn‖ → λ̃‖p̂

˜λ‖,
i.e., λ̃ = λ0. The remaining assertions in the theorem follow from Lemma 2 and [10, Theorem 5].
The proof of the theorem is complete.

Let us proceed to constructing a complete asymptotic expansion of the solution of the problem
in (1.7), (2.3). By Theorem 2, we must find a sequence {λ2k} such that the asymptotic expan-
sions P2N constructed on its basis satisfy the approximation condition (2.4).

To determine {λ2k} from this condition, by analogy with [7, Sec. 4] and [9], we use the method
of auxiliary parameter (see [15, Sec. 30; 16, Lemma 2.1]).

Let us introduce a positive parameter δ and split the domain Ω into the following three
domains: Ω0,δ := {(x, y) ∈ Ω : δ < x < x2 − δ}, Ω1,δ := {(x, y) ∈ Ω : 0 < x < δ}, and [4]
Ω2,δ := {(x, y) ∈ Ω : x2 − δ < x < x2}. Then, in Ω0,δ, the asymptotic expansion P2N will coincide
with the 2Nth partial sum of the outer asymptotic expansion

out

p , while in the domains Ωj,δ, with
in,j

p .
Using the asymptotics of the coefficients of these expansions (see (3.13), (4.7), and (4.8)), we derive
asymptotic (in terms of even powers of ε) representations for the variable ‖P2N‖2.

If all {λ2k} for k < N have already been constructed, then the relation that equates to zero
at ε2N the expression λ22N‖P2N‖2 in the asymptotic representation contains, of the so far unknown
variables, λ2N and the terms generated by the function p2N . Since by (3.3) the functions z2N , p2N
can be expanded into the sum z2N = z1,2N + λ2N ẑ, p2N = p1,2N + λ2N p̂, where

L0z1,2N + λ0p1,2N = Δz2N−2 −
N−1∑
s=1

λ2sp2N−2s, L∗0p1,2N − z1,2N = Δp2N−2
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with the boundary conditions defined according to (3.11), and

L0ẑ + λ0p̂ = −p0, L∗0p̂− ẑ = 0,
1

w ẑ(x, ϕ1(x)) = 0, p̂(x, ϕ2(x)) = 0, (5.7)

the p2N is completely determined by the variable λ2N and by the functions that have been un-
ambiguously determined by the current moment. Since, as follows from the expansions (3.13), the
asymptotics as x→ xi−(−1)i0 has the form p0 = |x−xi|1/2σ(|x−xi|, y), in view of property (3.17),
for the solution (ẑ, p̂) of problem (5.7) we have the representation

ẑ = |x− xi|σ(|x− xi|, y), p̂ = |x− xi|σ(|x− xi|, y); (5.8)

in particular, p̂ ∈ L2(Ω). Consequently, the equation for finding λ2N acquires the form

λ2N(‖p0‖2 + λ0(p0, p̂)) = c2N , (5.9)

in which c2N is known and defined by previously determined members of outer and inner expansions.

Lemma 3. Under the conditions in Lemma 1, the inequality ‖p0‖2 + λ0(p0, p̂) �= 0 holds, and
Eq. (5.9) is thereby uniquely solvable.

Proof. Since p̂ = ∂pλ/∂λ|λ=λ0
, taking inequality (5.6) into account, we have

0 <
∂

∂λ
(λ2‖pλ‖2)λ=λ0

= 2λ0(‖p0‖2 + λ0(p0, p̂)).

The proof of the lemma is complete.
Finally, note that replacing the old value of λ2N with a new one, by virtue of (5.8), will not alter

the first 1 + 3k terms in the asymptotics of the functions z2k and p2k for k ≥ N . Thus, for l < N

the functions
j

v2l and
j

w2l participating in the definition of λ2N will not change either.
Acting this way, we will construct all λ2k and the corresponding compound asymptotic expan-

sions, which will be, according to Theorem 2, asymptotic expansions of the functions zε and pε
uniform in the domain Ω. We have thus proved the following assertion, central to the present
paper.

Theorem 6. Let conditions (1.4), (2.5), (2.6), (5.2), and (5.3) be satisfied. Then there ex-
ists a sequence {λ2k} and the corresponding solutions of problems (3.3)–(3.6), (4.2)–(4.4) such that∑∞

k=0 ε
2kλ2k is an asymptotic expansion of λε , while the compound asymptotic expansions con-

structed from the outer and inner expansions by formulas (4.10) are asymptotic expansions of the
functions zε and zε uniform in Ω.

In this case, the series
out

z and
out

p are uniform asymptotic expansions of the functions zε and pε in
the domain εα̃ < x < x2− εα̃, ϕ1(x) < y < ϕ2(x), 0 < α̃ < 4/3, respectively, while the series

in,1

z ,
in,1

p

(
in,2

z ,
in,2

p ) are uniform asymptotic expansions of the functions zε and pε in the domain 0 < x < εα̃ ,
(x2 − εα̃ < x < x2), α̃ > 1, ϕ1(x) < y < ϕ2(x), respectively.
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