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Abstract—We prove the existence and the Lyapunov asymptotic stability of a stationary
boundary layer solution of the initial–boundary value problem for a two-dimensional singularly
perturbed reaction—diffusion—advection equation. We construct an asymptotic approximation
to this solution using the boundary function method. The proofs are based on the applicability
of the asymptotic method of differential inequalities.
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INTRODUCTION

We study issues related to the existence and asymptotic Lyapunov stability of a stationary
solution with a large gradient in a neighborhood of the boundary (solution with a boundary layer) of
the two-dimensional initial–boundary value problem for a singularly perturbed reaction—diffusion—
advection equation. An analysis of boundary layer type solutions is an important part of research
into reaction—diffusion—advection problems with solutions in the form of front (internal transition
layer), playing an important role in mathematical physics when modeling transfer or combustion
processes, as well as nonlinear waves [1, 2]. In many such processes important for applications, the
higher derivatives in a natural manner contain a small parameter multiplying them, whose presence
enables the usage of asymptotic research methods.
In the present paper, an asymptotic approximation to the solution of the problem is constructed

using Vasil’eva’s boundary function method (see, e.g., [3, pp. 36–43; 4]). The existence of a solution,
as well as its local existence and asymptotic stability as a stationary solution of the corresponding
initial–boundary value problem, is proved using a modification of the asymptotic method of differ-
ential inequalities for problems with boundary and internal transition layers [5–7]. (Note that for
problems incorporating an advection term one uses theorems from the method of upper and lower
solutions, which can be found in, e.g., [8–11].)
Asymptotic methods and the method of differential inequalities have been used previously

in [12–14] for justifying the existence of solutions with internal transition or boundary layers in
multidimensional problems of the reaction—diffusion—advection type. These papers considered the
case where the advection term is small compared with the reaction term. What distinguishes this
paper is that the advection and reaction terms are comparable (“large” advection). In the pa-
pers [15–18], we have considered solutions in the form of a front for one-dimensional problems in
the case of “large” advection, while in the paper [19], an asymptotic approximation was constructed
for a solution in the form of a front of the two-dimensional reaction—diffusion—advection problem
with a linear “large” advection term. The periodic spatially one-dimensional problem in the case of
“large” advection was considered in [20].

1. STATEMENT OF THE PROBLEM

Consider the following initial–boundary value problem in the domain (x, y, t) ∈ R × [0, a] × R
+

with periodic conditions with respect to the variable x:
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200 LEVASHOVA et al.

εΔv − ∂v

∂t
= (A(v, x, y),∇)v +B(v, x, y), x ∈ R, y ∈ (0, a), t > 0,

v(x, 0, t, ε) = u0(x), v(x, a, t, ε) = ua(x), x ∈ R, t > 0,

v(x, y, t, ε) = v(x+ L, y, t, ε), x ∈ R, y ∈ [0, a], t > 0,

v(x, y, 0, ε) = vinit(x, y, ε), x ∈ R, y ∈ [0, a].

(1)

Here ε ∈ (0, ε0] is a small parameter, L is a positive number, A(v, x, y) = {A1(v, x, y), A2(v, x, y)};
the functions Ai(v, x, y), i = 1, 2, and B(v, x, y) are L-periodic in variable x and sufficiently smooth
in the domain (v, x, y, t) = I×D×R

+, where I is the possible interval of variation of the variable v,
D = {(x, y) : R × [0, a]}, and the functions u0(x), ua(x) and vinit(x, y, ε) are continuous and L-
periodic in variable x. The initial and boundary conditions are assumed to be continuity consistent.
The aim of the present paper is to study the existence and asymptotic stability of a stationary

solution of problem (1), i.e., a solution uε(x, y) of the boundary value problem

εΔu = (A(u, x, y),∇)u+B(u, x, y), x ∈ R, y ∈ (0, a),

u(x, 0, ε) = u0(x), u(x, a, ε) = ua(x), x ∈ R,

u(x, y, ε) = u(x+ L, y, ε), x ∈ R, y ∈ [0, a].

(2)

Assume that the following conditions are satisfied.

Condition A1. The partial differential equation

(A(u, x, y),∇)u+B(u, x, y) = 0

with the additional condition u(x, 0) = u0(x) has a solution u = ϕ(x, y), where the function ϕ(x, y)
is sufficiently smooth in D and L-periodic in variable x.

Condition A2. The inequality A2(ϕ(x, y), x, y) > 0 holds everywhere in D.

Remark. It is obvious that if the functions Ai(v, x, y), i = 1, 2, belong to the space C1(D),
then the function F (x, y) := A1(ϕ(x, y), x, y)/A2(ϕ(x, y), x, y) satisfies the Lipschitz condition in
the variable x in the domain D.

1.1. Associated Equation

The function ϕ(x, y) satisfies the boundary condition for y = 0. To describe the solution behavior
in a neighborhood of the boundary y = a, let us introduce the stretched variable

ξ =
y − a
ε

. (3)

Consider the so-called associated equation for problem (2),

∂2ũ

∂ξ2
= A2(ũ, x, a)

∂ũ

∂ξ
, ξ ≤ 0, (4)

considering the variable x as a parameter. This equation is equivalent to the system of two equations
of the first order (associated system)

∂ũ

∂ξ
= Φ,

∂Φ

∂ξ
= A2(ũ, x, a)Φ. (5)

Let us switch from the associated system to an equation for the function Φ(ũ, x),

∂Φ

∂ũ
= A2(ũ, x, a),

which determines the trajectories on the phase plane (ũ,Φ).
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EXISTENCE AND ASYMPTOTIC STABILITY 201

The point (ϕ(x, a), 0) on the phase plane is an equilibrium point of system (5). Since the
function A2(ũ, x, a) is continuous, there exists a phase trajectory entering this equilibrium point
as ξ → −∞. This phase trajectory is determined by the expression

Φ(ũ, x) =

ũ∫
ϕ(x,a)

A2(u, x, a) du.

Condition A3. For all x ∈ R, one of the following inequalities is satisfied:
ũ∫

ϕ(x,a)

A2(u, x, a) du > 0 if ϕ(x, a) < ũ ≤ ua

or
ũ∫

ϕ(x,a)

A2(u, x, a) du < 0 if ua ≤ ũ < ϕ(x, a).

It follows from Condition A3 that, for each x ∈ R, Eq. (4) with the additional conditions
ũ(x, a) = ua(x) and ũ(x,∞) = ϕ(x, a) has a solution. (In this case, one says that the boundary
value ua(x) belongs to the influence domain of the solution ϕ(x, y) of the reduced equation mentioned
in Condition A1.)

2. ASYMPTOTIC APPROXIMATION TO THE SOLUTION

Let us construct an asymptotic approximation U(x, y, ε) to the solution of problem (2) in the
form of a sum of two terms

U(x, y, ε) = ū(x, y, ε) + Π(ξ, x, ε). (6)

Here ū(x, y, ε) is the regular part of the asymptotic representation, Π(ξ, x, ε) is the boundary layer
function describing the solution in a neighborhood of the line y = a, and the variable ξ is defined
by the expression (3). Each term in the sum (6) can be represented as an expansion in powers of
the small parameter ε,

ū(x, y, ε) = ū0(x, y) + εū1(x, y) + . . . , Π(ξ, x, ε) = Π0(ξ, x) + εΠ1(ξ, x) + . . . (7)

2.1. Regular Part
Substituting the sum (7) for ū into the equality

ε

(
∂2ū

∂x2
+
∂2ū

∂y2

)
= A1(ū, x, y)

∂ū

∂x
+A2(ū, x, y)

∂ū

∂y
+B(ū, x, y),

expanding the functions on the right-hand side in the resulting relation by the Taylor formula in
powers of the small parameter, and matching the coefficients of like powers of ε, we arrive at first-
order partial differential equations for the functions ūi(x, y), i = 0, 1, . . .. We will seek solutions
L-periodic in x of these equations in the domain D. The additional conditions for ūi(x, y) at y = 0
will be determined from the respective boundary condition of problem (2).
For the functions in the regular part of the zero order, we obtain the problem

A1(ū0, x, y)
∂ū0

∂x
+A2(ū0, x, y)

∂ū0

∂y
+B(ū0, x, y) = 0, (x, y) ∈ D,

ū0(x, y) = ū0(x+ L, y), (x, y) ∈ D, ū0(x, 0) = u0(x), x ∈ R.

According to Condition A1, the function ϕ(x, y) is a solution L-periodic in x of this problem.
Thus, ū0 = ϕ(x, y).
Here and throughout the following, for brevity we use the notation

Āi(x, y) := Ai(ϕ(x, y), x, y), i = 1, 2, B̄(x, y) := B(ϕ(x, y), x, y) (8)

and similar notation for the derivatives of the functions Ai(ϕ(x, y), x, y) and B(ϕ(x, y), x, y).
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The functions ūi(x, y), i = 1, 2, . . ., will be defined as the solutions of the problems

Ā1(x, y)
∂ūi

∂x
+ Ā2(x, y)

∂ūi

∂y
+Wūi = f̄i(x, y), (x, y) ∈ D,

ūi(x, y) = ūi(x+ L, y), (x, y) ∈ D, ūi(x, 0) = 0, x ∈ R,

(9)

where

W (x, y) =
∂Ā1

∂u
(x, y)

∂ϕ

∂x
(x, y) +

∂Ā2

∂u
(x, y)

∂ϕ

∂y
(x, y) +

∂B̄

∂u
(x, y) (10)

and the f̄i(x, y) are known functions, in particular, f̄1(x, y) =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
.

Equations (9) are first-order partial differential equations. Let us write the equations of charac-
teristics for these equations,

Ā2(x, y) dx = Ā1(x, y) dy, (f̄i(x, y)−W (x, y)ūi)dy = Ā2(x, y) dūi. (11)

By virtue of the continuity of functions Āi(x, y) (see the Remark), there exists a first integral

Ψ(x, y) = C1 (12)

of the first equation in (11), and the function x = X(y, C1) can be found on the interval y ∈ [0, a].
Solving the equations

dūi

dy
=
f̄i(X(y, C1), y)−W (X(y, C1), y)ūi

Ā2(X(y, C1), y)

with the additional conditions ūi(x, 0) = 0, we derive equations for ūi

ūi(X(y, C1), y) =

y∫
0

exp

(
−

y∫
y1

W (X(y2, C1), y2)

Ā2(X(y2, C1), y2)
dy2

)
f̄i(X(y1, C1), y1)

Ā2(X(y1, C1), y1)
dy1.

Having replaced C1 with Ψ(x, y) in these equations, we arrive at the solutions ūi(x, y) of prob-
lems (9).

2.2. Boundary Layer Functions

Equations for the boundary layer functions Πi(ξ, x), i = 0, 1, . . ., ξ ≤ 0, x ∈ R, can be derived
from the equality

ε
∂2Π

∂x2
+

1

ε

∂2Π

∂ξ2
= A1(ξ, x, ε)

∂Π

∂x
+

1

ε
A2(ξ, x, ε)

∂Π

∂ξ
+ΠA1(ξ, x, ε)

∂ū

∂x
(x, a+ εξ)

+ ΠA2(ξ, x, ε)
∂ū

∂y
(x, a+ εξ) + ΠB(ξ, x, ε),

(13)

where

Ai(ξ, x, ε) = Ai(ū(x, a+ εξ) + Π(ξ, x, ε), x, a+ εξ), i = 1, 2,

ΠAi(ξ, x, ε) = Ai(ξ, x, ε)−Ai(ū(x, a+ εξ), x, a+ εξ),

ΠB(ξ, x, ε) = B(ū(x, a+ εξ) + Π(ξ, x, ε), x, a+ εξ)−B(ū(x, a+ εξ), x, a+ εξ).

(14)

By substituting the sums (7) into Eq. (13), expanding the functions on the right-hand side in the
resulting relation in Taylor series in powers of the small parameter, and matching the coefficients
of like powers of ε, we arrive at equations for the functions Πi(ξ, x), i = 0, 1, . . ., ξ ≤ 0, x ∈ R.
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As an additional condition, we will require that the boundary layer functions decay at infinity,

Πi(−∞, x) = 0. (15)

The condition at ξ = 0 for the functions Πi(ξ, x) follows from the boundary condition at y = a for
problem (2),

ū0(x, a) + εū1(x, a) + . . .+Π0(0, x) + εΠ1(0, x) + . . . = ua(x). (16)

2.2.1. Boundary layer function of the zero order. By matching the coefficients of ε−1 in
relation (13) and of ε0 in relation (16), with allowance for condition (15), we obtain the following
problem for the function Π0(ξ, x):

∂2Π0

∂ξ2
= A2(ϕ(x, a) + Π0(ξ, x), x, a)

∂Π0

∂ξ
, ξ < 0,

ϕ(x, a) + Π0(0, x) = ua(x), Π0(−∞, x) = 0,

which is solvable by Condition A3. Moreover, we have the following standard estimate for the
function Π0(ξ, x):

|Π0(ξ, x)| < Ce−κ|ξ|, (17)

where C and κ are some positive constants.
2.2.2. Boundary layer function of the first order. By matching the coefficients of ε0 in

Eq. (13) and by using the boundary conditions (16) and the condition of decay at infinity, we arrive
at the following problem for the function Π1(ξ, x):

∂2Π1

∂ξ2
− Ã2(ξ, x)

∂Π1

∂ξ
− ∂Ã2

∂u
(ξ, x)Φ(ξ, x)Π1 = f1(ξ, x), ξ < 0,

Π1(0, x) + ū1(x, a) = 0, Π1(−∞, x) = 0,

(18)

where ũ(ξ, x) = ϕ(x, a) + Π0(ξ, x), Ãi(ξ, x) := Ai(ũ(ξ, x), x, a), i = 1, 2, B̃(ξ, x) := B(ũ(ξ, x), x, a),
Φ(ξ, x) = ∂ũ/∂ξ (similar notation will be used for the derivatives of the functions Ai(ũ(ξ, x), x, a)
and B(ũ(ξ, x), x, a)), and

f1(ξ, x) =

(
∂Ã2

∂u
(ξ, x)

(
ū1(x, a) +

∂ϕ

∂y
(x, a)ξ

)
+
∂Ã2

∂y
(ξ, x)ξ

)
Φ(ξ, x)

+ Ã1(ξ, x)
∂Π0

∂x
+Π0A1(ξ, x, 0)

∂ϕ

∂x
(x, a) + Π0A2(ξ, x, 0)

∂ϕ

∂y
(x, a) + Π0B(ξ, x, 0).

Here the functions Π0Ai, i = 1, 2, and Π0B are the zero approximations to the Taylor series
expansions in powers of ε for the functions ΠAi and ΠB defined by the expressions (14).
The solution of problem (18) has the form

Π1(ξ, x) = −ū1(x, a)
Φ(ξ, x)

Φ(0, x)
− Φ(ξ, 0)

ξ∫
0

ds

Φ(s, x)

s∫
−∞

f1(η, x) dη.

An exponential estimate similar to the estimate (17) holds for the function Π1(ξ, x).
2.2.3. Boundary layer functions of higher orders. Boundary layer functions of order

k = 2, 3, . . . are defined as the solutions of the equations

∂2Πk

∂ξ2
− Ã2(ξ, x)

∂Πk

∂ξ
− ∂Ã2

∂u
(ξ, x)Φ(ξ, x)Πk = fk(ξ, x), ξ < 0,

Πk(0, x) + ūk(x, a) = 0, Πk(−∞, x) = 0,

(19)

where the functions fk(ξ, x) are known (determined from the representation (13)). Exponential
estimates similar to those in (17) hold for the functions Πk(ξ, x).
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2.2.4. Asymptotic approximation to the solution. Having determined all terms up to
order k inclusive in (7), we compose the sum

Uk(x, y, ε) =

k∑
i=0

εi(ūi(x, y) + Πi(ξ, x)), (x, y) ∈ D, ξ ≤ 0. (20)

The function Uk(x, y, ε) thus constructed satisfies Eq. (2) up to O(εk) and exactly satisfies the
boundary condition at y = a of problem (2). Moreover, this function satisfies the boundary condition
at y = 0 up to exponentially small terms. The standard procedure of multiplying the boundary
layer terms by a cutoff function makes it possible to satisfy the boundary condition at y = 0 exactly.

3. EXISTENCE OF THE STATIONARY SOLUTION

To prove the existence of a boundary layer solution of problem (2) and estimate the error of its
asymptotic approximation, we use the method of upper and lower solutions [8, pp. 67–87; 9; 10].

Definition 1. Two functions β(x, y, ε), α(x, y, ε) ∈ C(D) ∩ C2(D) L-periodic in x are called
the upper and lower solutions , respectively, of problem (2) if for sufficiently small ε they satisfy the
following conditions:
1. The order of the upper and lower solutions,

α(x, y, ε) ≤ β(x, y, ε), (x, y) ∈ D.
2. The differential inequalities,

Lε[β] := εΔβ − (A(β, x, y),∇)β −B(β, x, y) ≤ 0 ≤ Lε[α], (x, y) ∈ D.
3. The inequalities at the boundary,

α(x, 0, ε) ≤ u0(x) ≤ β(x, 0, ε), α(x, a, ε) ≤ ua(x) ≤ β(x, a, ε), x ∈ R.

It is well known (see [8, pp. 67–87; 9; 10]) that if there exist upper and lower solutions of prob-
lem (2), then this problem has a solution uε(x, y) confined between the upper and lower solutions,

α(x, y, ε) ≤ uε(x, y) ≤ β(x, y, ε), (x, y) ∈ D.

3.1. Constructing Upper and Lower Solutions

We will construct upper and lower solutions of problem (2) according to the asymptotic method
of differential inequalities [5–7] as a modification of the asymptotic approximation (20) for k = n+1,

βn+1(x, y, ε) = Un+1(x, y, ε) + εn+1(μ(x, y) + π0(ξ, x) + επ1(ξ, x)),

αn+1(x, y, ε) = Un+1(x, y, ε)− εn+1(μ(x, y) + π0(ξ, x) + επ1(ξ, x)), (x, y) ∈ D, ξ ≤ 0.
(21)

The functions μ(x, y) and πi(ξ, x), i = 0, 1, are defined so that inequalities 1–3 in Definition 1
hold.
The function μ(x, y) is defined as the solution of the problem

Ā1(x, y)
∂μ

∂x
+ Ā2(x, y)

∂μ

∂y
+Wμ = R, (x, y) ∈ D,

μ(x, y) = μ(x+ L, y), (x, y) ∈ D, μ(x, 0) = R0, x ∈ R.

(22)

Here R and R0 are sufficiently large positive constants; the functions Āi(x, y), i = 1, 2, and W (x, y)
are defined by the expressions (8) and (10), respectively.
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Earlier, in Sec. 2.1, we have considered a similar problem for the functions ūi(x, y). By repro-
ducing the argument therein, we write the solution of problem (22) in closed form as

μ(x, y) = R0 exp

(
−

y∫
0

W (X(y1, C1), y1)

Ā2(X(y1, C1), y1)
dy1

)

+

y∫
0

exp

(
−

y∫
y1

W (X(y2, C1), y2)

Ā2(X(y2, C1), y2)
dy2

)
R

Ā2(X(y1, C1), y1)
dy1,

where C1 is the left-hand side of the first integral (12).
Since R and R0 are positive constants, and, by Condition A2, the inequality Ā2(x, y) > 0 holds

for all (x, y) ∈ D, it follows that the function μ(x, y) assumes positive values in D.
Let us define the function π0(ξ, x) as the solution of the problem

∂2π0

∂ξ2
− Ã2(ξ, x)

∂π0

∂ξ
− ∂Ã2

∂u
(ξ, x)Φ(ξ, x)π0 =

∂Ã2

∂u
(ξ, x)Φ(ξ, x)μ(x, a)− νeγξ, ξ < 0,

π0(0, x) = 0, π0(−∞, x) = 0,

(23)

where ν and γ are positive constants chosen so that the function π0(ξ, x) takes positive values for
all ξ < 0 and x ∈ R. The solution of problem (23) can be written in closed form as

π0(ξ, x) = −Φ(ξ, x)
ξ∫

0

ds

Φ(s, x)

s∫
−∞

(
∂Ã2

∂u
(η, x)Φ(η, x)μ(x, a)− νeγη

)
dη.

Choose the constants ν and γ such that the inequality

∂Ã2

∂u
(ξ, x)Φ(ξ, x)μ(x, a)− νeγξ < 0

is satisfied for ξ ≤ 0 and x ∈ R. (Since the function Φ(ξ, x) decays exponentially, it follows that
the last inequality is satisfied provided that ν is sufficiently large and γ is sufficiently small.) We
thereby find that the function π0(ξ, x) is nonnegative.
Let us define the function π1(ξ, x) as the solution of the problem

∂2π1

∂ξ2
− Ã2(ξ, x)

∂π1

∂ξ
− ∂Ã2

∂u
(ξ, x)Φ(ξ, x)π1 = π1f(ξ, x), ξ < 0,

π1(0,x) = 0, π1(−∞, x) = 0,

where the expression π1f(ξ, x) comprises the terms of the order of εn+1 that emerge due to adding the
functions μ(x, y) and π0(ξ, x) in the expression Lε[β] as well as the terms Πn+1 and ūn+1 occurring
in the asymptotic approximation Un+1. It can readily be noted that the same terms (but with the
opposite sign) occur in the expression Lε[α].
Just as all boundary layer functions, π0(ξ, x) and π1(ξ, x) exponentially decay as ξ → −∞.
Lemma 1. The functions βn+1(x, y, ε), αn+1(x, y, ε) satisfy inequalities 1–3 in Definition 1.

Proof. 1. To establish the order of the functions βn+1(x, y, ε) and αn+1(x, y, ε), consider their
difference

βn+1(x, y, ε)− αn+1(x, y, ε) = 2εn+1(μ(x, y) + π0(ξ, x)) +O(εn+2). (24)

The function μ(x, y) assumes positive values for all (x, y) ∈ D, and π0(ξ, x) ≥ 0 for all ξ ≤ 0
and x ∈ R; therefore, the right-hand side of the last expression is positive.

DIFFERENTIAL EQUATIONS Vol. 56 No. 2 2020



206 LEVASHOVA et al.

2. It follows from the definition of the functions μ(x, y), π0(ξ, x), and π1(ξ, x) that

Lε[βn+1] = −εndeγξ − εn+1R+O(εn+2), Lε[αn+1] = εndeγξ + εn+1R+O(εn+2), (25)

where R > 0 is the constant on the right-hand side in Eq. (22). Consequently, the differential
inequalities 2 in Definition 1 are satisfied for sufficiently small ε.
Inequality 3 in Definition 1 holds by virtue of the boundary conditions of problem (22) and the

positivity of the function μ(x, y). The proof of the lemma is complete.
The result of this subsection can be stated as the following theorem.

Theorem 1. Assume that conditions A1–A3 are satisfied. Then for sufficiently small ε there
exists a solution uε(x, y) of problem (2) for which the function Un(x, y, ε) is a uniform asymptotic
approximation in D up to O(εn+1); i.e., the inequality

|uε(x, y)− Un(x, y, ε)| < Cεn+1 (26)

holds in D , where C is a positive constant.
According to [8, pp. 67–87; 9; 10], the existence of upper and lower solutions implies the existence

of a solution uε(x, y) of problem (2) for which the inequalities

αn+1(x, y, ε) ≤ uε(x, y) ≤ βn+1(x, y, ε) (27)

hold. It follows from this expression, as well as the fact that βn+1(x, y, ε)− αn+1(x, y, ε) = O(εn+1)
(see (24)) that the estimate (26) holds.

4. LOCAL UNIQUENESS AND ASYMPTOTIC STABILITY
OF THE STATIONARY SOLUTION

The proof of the local uniqueness and asymptotic stability of the stationary solution of prob-
lem (1), whose existence was proved in the preceding section, is based on the method of upper and
lower solutions. Let us recall their definition.

Definition 2. Two functions α̂(x, y, t, ε), β̂(x, y, t, ε) ∈ C(D × R
+) ∩ C2,1(D × R

+) that are
L-periodic in the variable x are called an upper and a lower solution of problem (1), respectively, if
the following conditions are satisfied:
1◦. α̂(x, y, t, ε) ≤ β̂(x, t, y, ε), (x, y) ∈ D, t > 0.

2◦. Lt[β̂] := εΔβ̂ − ∂β̂

∂t
− (A(β̂, x, y),∇)β̂ −B(β̂, x, y) ≤ 0 ≤ Lt[α̂], (x, y) ∈ D, t > 0.

3◦. α̂(x, 0, t, ε) ≤ u0 ≤ β̂(x, 0, t, ε) and α̂(x, a, t, ε) ≤ ua ≤ β̂(x, a, t, ε), x ∈ R, t > 0.
4◦. α̂(x, y, 0, ε) ≤ vinit(x, y, ε) ≤ β̂(x, y, 0, ε), (x, y) ∈ D.
It is known (see, e.g., [11]) that if there exists an upper and a lower solution of problem (1),

then this problem has a unique solution vε(x, y, t) confined between the upper and lower solutions,

α̂(x, y, t, ε) ≤ vε(x, y, t) ≤ β̂(x, y, t, ε). (28)

The upper and lower solutions of problem (1) will be constructed by analogy with [6, 7, pp. 12–14]
in the following form:

β̂(x, y, t, ε) = uε(x, y) + (βn+1(x, y, ε)− uε(x, y))e
−λt,

α̂(x, y, t, ε) = uε(x, y) + (αn+1(x, y, ε)− uε(x, y))e
−λt,

(29)

where uε(x, y) is a solution of problem (2), which exists according to Theorem 1, the functions
βn+1(x, y, ε) and αn+1(x, y, ε) are defined by the expressions (21), and λ is a positive constant.
Note that these functions satisfy conditions 1◦ and 3◦ in Definition 2, because conditions 1 and 3

in Definition 1 are satisfied for the functions αn+1 and βn+1. Condition 4◦ is satisfied provided that

α̂(x, y, 0, ε) = αn+1(x, y, ε) ≤ vinit(x, y, ε) ≤ β̂(x, y, 0, ε) = βn+1(x, y, ε).

We will need the following assertion to prove that inequality 2◦ in Definition 2 holds.
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Lemma 2. If αn+1(x, y, ε) and βn+1(x, y, ε) are the lower and upper solutions of problem (2)
defined by the expressions (21) and uε(x, y) is a solution of problem (2), which exists according
to Theorem 1, then the following estimates hold everywhere in the domain D :∣∣∣∣∂(βn+1(x, y, ε)− uε(x, y))

∂x

∣∣∣∣ = O(εn),

∣∣∣∣∂(βn+1(x, y, ε)− uε(x, y))

∂y

∣∣∣∣ = O(εn),

∣∣∣∣∂(αn+1(x, y, ε)− uε(x, y))

∂x

∣∣∣∣ = O(εn),

∣∣∣∣∂(αn+1(x, y, ε)− uε(x, y))

∂y

∣∣∣∣ = O(εn).

(30)

Proof. The proof of the lemma will be conducted using the relations

∂(βn+1(x, y, ε)− uε(x, y))

∂x
=
∂(Un+1(x, y, ε)− uε(x, y))

∂x
+O(εn+1),

∂(βn+1(x, y, ε)− uε(x, y))

∂y
=
∂(Un+1(x, y, ε)− uε(x, y))

∂y
+O(εn+1),

(31)

which can derived by analogy with how it was done in [21], and the corresponding relations for the
lower solution.
Let us derive the estimates∣∣∣∣∂(Un+1(x, y, ε)− uε(x, y))

∂x

∣∣∣∣ ≤ Cεn,

∣∣∣∣∂(Un+1(x, y, ε)− uε(x, y))

∂y

∣∣∣∣ ≤ Cεn. (32)

We introduce the notation zn+1(x, y, ε) = Un+1(x, y, ε) − uε(x, y). By construction, the func-
tion Un+1(x, y, ε) satisfies the equation in problem (2) up to O(εn+1) and exactly satisfies the
boundary conditions at y = 0 and y = a. Therefore, the function zn+1 can be represented as a
solution of the problem

εΔzn+1 −
(
A1(Un+1, x, y)

∂Un+1

∂x
+A2(Un+1, x, y)

∂Un+1

∂y
−A1(u, x, y)

∂u

∂x
−A2(u, x, y)

∂u

∂y

)

−(B(Un+1, x, y)−B(u, x, y)) = εn+1ψ(x, y), (x, y) ∈ D,
zn+1(x, 0, ε) = zn+1(x, a, ε) = 0, x ∈ R,

zn+1(x, y, ε) = zn+1(x+ L, y, ε), (x, y) ∈ D,

(33)

where |ψ(x, y)| < c and c is a positive constant.
Using the relations

A1(Un+1, x, y)
∂Un+1

∂x
−A1(u, x, y)

∂u

∂x
=

∂

∂x

Un+1∫
u

A1(s, x, y) ds−
Un+1∫
u

∂

∂x
A1(s, x, y) ds,

A2(Un+1, x, y)
∂Un+1

∂y
−A2(u, x, y)

∂u

∂y
=

∂

∂y

Un+1∫
u

A2(s, x, y) ds−
Un+1∫
u

∂

∂y
A2(s, x, y) ds,

we bring Eq. (33) to the form

Δzn+1 =
1

ε

∂

∂x

Un+1∫
u

A1(s, x, y) ds+
1

ε

∂

∂y

Un+1∫
u

A2(s, x, y) ds+ p(x, y, ε),

where

p(x, y, ε) = −1

ε

Un+1∫
u

∂

∂x
A1(s, x, y) ds− 1

ε

Un+1∫
u

∂

∂y
A2(s, x, y) ds

+
1

ε
(B(Un+1, x, y)−B(u, x, y)) + εnψ(x, y).
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Inequality (26) implies the estimate

|p(x, y, ε)| ≤ Cεn, C > 0. (34)

Using the representation of the solution of problem (33) via Green’s function (see, e.g., [22,
p. 26 of the Russian translation]), we derive the relation

zn+1(x, y)=

L∫
0

a∫
0

G(x, y; ξ, η)p(ξ, η, ε) dξ dη +
1

ε

L∫
0

a∫
0

G(x, y; ξ, η)

(
∂

∂ξ

Un+1(ξ,η,ε)∫
u(ξ,η,ε)

A1(s, ξ, η) ds

)
dξ dη

+
1

ε

L∫
0

a∫
0

G(x, y; ξ, η)

(
∂

∂η

Un+1(ξ,η,ε)∫
u(ξ,η,ε)

A2(s, ξ, η) ds

)
dξ dη.

Integrating by parts and taking into account the boundary conditions for Green’s function of prob-
lem (33), we make the transformation

L∫
0

a∫
0

G(x, y, ξ, η)

(
∂

∂ξ

Un+1(ξ,η,ε)∫
u(ξ,η,ε)

A1(s, ξ, η) ds+
∂

∂η

Un+1(ξ,η,ε)∫
u(ξ,η,ε)

A2(s, ξ, η) ds

)
dξ dη

= −
L∫

0

a∫
0

[
Gξ(x, y; ξ, η)

Un+1(ξ,η,ε)∫
u(ξ,η,ε)

A1(s, ξ, η) ds

]
dξ dη

−
L∫

0

a∫
0

[
Gη(x, y; ξ, η)

Un+1(ξ,η,ε)∫
u(ξ,η,ε)

A2(s, ξ, η) ds

]
dξ dη.

(35)

In view of the estimate (26) and the smoothness of the functions Ai(u, x, y), i = 1, 2, the following
relations hold: ∣∣∣∣

Un+1(ξ,η,ε)∫
u(ξ,η,ε)

Ai(s, ξ, η) ds

∣∣∣∣ = ci(ξ, η, ε), i = 1, 2, (36)

where the ci(ξ, η, ε) ≤ cεn+2, i = 1, 2, are smooth functions.
Considering relations (36) and transformations (35) as well as the estimate (34), we derive the

following estimates for the derivatives ∂zn+1/∂x and ∂zn+1/∂y:

∣∣∣∣∂zn+1

∂x
(x, y)

∣∣∣∣ ≤ Cεn
∣∣∣∣

L∫
0

a∫
0

Gx(x, y; ξ, η) dξ dη

∣∣∣∣+
(∣∣∣∣

L∫
0

a∫
0

Gxξ(x, y; ξ, η)c1(ξ, η, ε) dξ dη

∣∣∣∣

+

∣∣∣∣
L∫

0

a∫
0

Gxη(x, y; ξ, η)c2(ξ, η, ε) dξ dη

∣∣∣∣
)
,

∣∣∣∣∂zn+1

∂y
(x, y)

∣∣∣∣ ≤ Cεn
∣∣∣∣

L∫
0

a∫
0

Gy(x, y; ξ, η) dξ dη

∣∣∣∣+
(∣∣∣∣

L∫
0

a∫
0

Gyξ(x, y; ξ, η)c1(ξ, η, ε) dξ dη

∣∣∣∣

+

∣∣∣∣
L∫

0

a∫
0

Gyη(x, y; ξ, η, ε)c2(ξ, η, ε) dξ dη

∣∣∣∣
)
.

(37)

DIFFERENTIAL EQUATIONS Vol. 56 No. 2 2020



EXISTENCE AND ASYMPTOTIC STABILITY 209

Using the estimates for the derivatives of Green’s function (see [23]), we arrive at the following
estimates of the integrals:

∣∣∣∣
L∫

0

a∫
0

Gx(x, y; ξ, η) dξ dη

∣∣∣∣ < c,

∣∣∣∣
L∫

0

a∫
0

Gy(x, y; ξ, η) dξ dη

∣∣∣∣ < c,

where c is a constant.
It is well known that the Green’s function of the Laplace operator can be represented as the sum

of two terms [24, pp. 423–426], G(x, y; ξ, η) = E(r) + g(x, y; ξ, η), where E(r) is the fundamental
solution of the Laplace equation, r = ((x− ξ)2+(y−η)2)1/2, and g(x, y; ξ, η) is a harmonic function
of the variables (x, y) and (ξ, η). Using this representation, we make the transformation

L∫
0

a∫
0

Gxξ(x, y; ξ, η)c1(ξ, η, ε) dξ dη=

L∫
0

a∫
0

Exξ(r)c1(ξ, η, ε) dξ dη +
L∫

0

a∫
0

gxξ(x, y; ξ, η)c1(ξ, η, ε) dξ dη.

The second term on the right-hand side in the last expression is a double integral of a smooth
function bounded in absolute value. The first term is transformed as follows:

L∫
0

a∫
0

Exξ(r)c1(ξ, η, ε) dξ dη = − ∂2

∂x2

L∫
0

a∫
0

E(r)c1(ξ, η, ε) dξ dη.

The right-hand side of the last relation is the second derivative of Newton’s potential and is con-
tinuous in the rectangle {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ a} [25, p. 171]. The following estimate thus
holds: ∣∣∣∣

L∫
0

a∫
0

Gxξ(x, y; ξ, η)c1(ξ, η, ε) dξ dη

∣∣∣∣ < cεn+2.

In a similar manner, we prove the estimate of all the other double integrals on the right-hand sides
in inequalities (37) containing the second derivatives of the Green’s function.
The estimates for the derivatives ∂zn+1/∂x and ∂zn+1/∂y imply that inequalities (32) hold, and

hence, in view of relations (31), the assertion of the lemma is true.
Let us proceed to proving the main result of this section of the present paper. Acting by the

operator Lt on the function β̂, we arrive at the relation

Lt[β̂] = εΔβ̂ − (A(β̂, x, y),∇)β̂ −B(β̂, x, y) + λ(βn+1 − uε)e
−λt.

(We omit the arguments of the functions β̂ and uε for brevity.)
We add the following terms to the right-hand side of the last relation:

(A(uε, x, y),∇)uε, e−λt(A(βn+1, x, y),∇)βn+1, e−λt(A(uε, x, y),∇)uε, e−λt(A(uε, x, y),∇)βn+1,

(A(uε, x, y),∇)βn+1, (A(β̂, x, y),∇)βn+1, B(uε, x, y), B(uε, x, y)e
−λt, B(βn+1, x, y)e

−λt,

and then we subtract them so that the relation still holds. After some transformations, we obtain
the relation

Lt[β̂] = Lε[uε] + e−λt(Lε[βn+1]− Lε[uε]) + λe−λt(βn+1 − uε)

+ (e−λt − 1)(A(uε, x, y)−A(β̂, x, y),∇)(βn+1 − uε)

+ e−λt(A(βn+1, x, y)−A(uε, x, y),∇)βn+1 + (A(uε, x, y)−A(β̂, x, y),∇)βn+1

+ e−λt(B(βn+1, x, y)−B(uε, x, y)) + (B(uε, x, y)−B(β̂, x, y)),

where the operator Lε has been defined in condition 2 of Definition 1.
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Let us take into account the relation Lε[uε] = 0, which holds by virtue of Eq. (2), the first relation
in (25), and some corollaries of the Lagrange formula. Then the expression for Lt[β̂] acquires the
form

Lt[β̂] = e−λt(−εndeγξ − εn+1R+ λ(βn+1 − uε)

− (e−λt − 1)(βn+1 − uε)(A∗
u,∇)(βn+1 − uε) + (βn+1 − uε)

2(θ1 − θ2e−λt)(A∗
uu,∇)βn+1)

+ e−λt((βn+1 − uε)
2(θ4 − θ5e−λt)B∗uu +O(εn+2)),

(38)

where

A∗
u = Au(uε + θ0(βn+1 − uε)e

−λt),

A∗
uu = Auu(uε + θ1(βn+1 − uε) + θ3(βn+1 − uε)(θ1 − θ2e−λt)),

B∗uu = Buu(uε + θ4(βn+1 − uε) + θ6(βn+1 − uε)(θ4 − θ5e−λt)), 0 < θi < 1, i = 0, . . . , 6.

By inequalities (27) and (26), for all (x, y) ∈ D we have the estimate
βn+1(x, y, ε)− uε(x, y) = O(εn+1).

Moreover, it follows from the estimates (30) that (A∗
u,∇)(βn+1(x, y, ε)−uε(x, y)) = O(εn), (x, y) ∈

D, and therefore, for n ≥ 1 and sufficiently small ε the expression on the right-hand side in
relation (38) assumes negative values given a sufficiently large positive R, and hence condition 2◦

is satisfied for the function β̂. Thus, the function β̂(x, y, t, ε) is an upper solution of problem (1).
In a similar way, we can prove that the function α̂(x, y, t, ε) is a lower solution of problem (1).
The form (29) for the upper and lower solutions of problem (1) for n = 1, as well as inequali-

ties (28), implies that the following limit relation holds for any initial function vinit(x, y) of prob-
lem (1) for which we have the inequalities α2(x, y, ε) ≤ vinit(x, y) ≤ β2(x, y, ε) for all (x, y) ∈ D:

lim
t→+∞

|vε(x, y, t)− uε(x, y)| = 0, (39)

where vε(x, y, t) is a solution of problem (1). The fact that this limit relation holds implies the
(Lyapunov) asymptotic stability of the solution uε(x, y) of problem (2) as a time-invariant solution
of problem (1). Moreover, the uniqueness of the solution vε(x, y, t) of problem (1) and relation (39)
imply the uniqueness of the stationary solution uε(x, y) on the interval [α2(x, y, ε), β2(x, y, ε)]. Thus,
the following assertion holds.

Theorem 2. Let conditions A1–A3 be satisfied. Then, given sufficiently small ε, the solu-
tion uε(x, y) of problem (2) for which the function Un(x, y, ε) is an asymptotic approximation is
locally unique and asymptotically Lyapunov stable as the stationary solution of problem (1), with
the stability domain being at least [α2, β2].

CONCLUSIONS

In the present paper, we have studied the boundary layer solution of a two-dimensional boundary
value problem of the reaction—diffusion—advection type in the case where the advection term is
comparable in the order of magnitude with the reaction one. The existence and stability of the
solution have been proved, and its asymptotic approximation has been constructed. The results
obtained can be used for further research into the solutions of the advancing front type in prob-
lems arising in various applications, for example, when modeling combustion or nonlinear acoustic
processes.
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