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Abstract—We consider an eigenvalue problem for a quasilinear nonautonomous second-order
differential equation with a cubic nonlinearity. The problem is posed on an interval with bound-
ary conditions of the first kind and with an auxiliary (local) condition at one of the endpoints of
the interval. We prove that the problem in question has infinitely many negative and infinitely
many positive eigenvalues. The corresponding linear problem has infinitely many negative and
finitely many (or none) positive eigenvalues. Moreover, the first terms of the asymptotics of the
negative eigenvalues of the nonlinear and linear problems coincide, while the asymptotics of the
positive eigenvalues of the nonlinear problem is expressed in terms of a transcendental function
of the eigenvalue number. The results are derived with the use of a nonclassical approach.
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1. STATEMENT OF THE PROBLEM AND INTRODUCTORY REMARKS

Let I = (0, h) and Ī = [0, h], where h > 0, let R = (−∞,+∞) and R+ = (0,+∞), and let λ ∈ R

and α ∈ R+ be parameters. In addition, let a(x) ∈ C1(̄I) be a given nonnegative function that is not
identically zero and satisfies a′(x) ≥ 0; we set a− = min{a(x) : x ∈ Ī} and a+ = max{a(x) : x ∈ Ī}.

Problem P consists in finding the parameter values λ = λ̂ such that there exist solutions
u ≡ u(x; λ̂, α) ∈ C2(̄I) of the equation

u′′ = −(a(x)− λ)u− αu3 (1)

with the boundary conditions
u|x=0 = 0, u′|x=0 = A �= 0, (2)

u|x=h = 0, (3)

where (x, λ, α) ∈ Ī × R × R+ and A �= 0 is a real constant. It is obvious that, without loss of
generality, we can assume that A > 0.

Definition 1. A number λ = λ̂ such that there exists a function u ≡ u(x; λ̂, α) ∈ C2(̄I)
satisfying Eq. (1) and the boundary conditions (2) and (3) is called an eigenvalue of problem P,
and the corresponding function u is called an eigenfunction of problem P.

Concerning this definition, note that Definition 1 is a nonclassical analog of the well-known
definition of a characteristic number of a linear operator function nonlinearly depending on the
spectral parameter [1, p. 324]. We point out that throughout the following, when speaking of
eigenvalues, we mean eigenvalues in the sense of Definition 1. In other words, the assertions and
theorems given below do not pertain to the notion of eigenvalue in the conventional sense.

The cubic nonlinearity occurring in Eq. (1) is rather simple; this permits one, without obscuring
the exposition with technical details, to isolate some essential points arising in eigenvalue problems
of the type considered in the present paper (see, e.g., [2, 3]). Moreover, last but not least, cubic
nonlinearities arise in problems of nonlinear mathematical physics, and hence equations with such
nonlinearities provide mathematical models of physical processes and are important to study from
the viewpoint of applications (see, e.g., [4, 5]).
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For α = 0, we obtain the (linear) problem P0 of finding the parameter values λ = λ̃ such that
there exist nontrivial solutions v ≡ v(x; λ̃) ∈ C2(̄I) of the equation

v′′ = −(a(x)− λ)v (4)

with the boundary conditions
v|x=0 = 0, v|x=h = 0, (5)

where (x, λ) ∈ Ī× R.
The main method for studying problem P is the integral characteristic equation method devel-

oped in this paper. Note that widely known approaches used in nonlinear analysis like the variational
method [6–8] or methods of solution branching theory [9, 10] do not apply to problem P (see also
the remarks in [2]).

For λ ∈ R+, problem P describes the propagation of a monochromatic electromagnetic TE-wave
in a planar shielded dielectric waveguide with permittivity ε = εy + β|E|2. Here εy ≡ εy(x) is a
real continuous function that characterizes the linear component of the permittivity ε, β > 0 is a
real constant, and E is the electric field vector of the TE-wave (see [2, 3]). In the above notation,
λ = ω2μ0ε0γ

2, where γ ∈ R is the TE-wave propagation constant; a = ω2μ0ε0εy; α = ω2μ0ε0β,
where ω is the frequency of the TE-wave; finally, μ0 is the permeability and ε0 the permittivity of
vacuum.

The present paper is organized as follows. Section 2 states the results and provides additional
remarks and discussion of these results (Sec. 2.1 briefly presents known results on the eigenvalues
of problem P0, and Sec. 2.2 studies problem P); the proofs are presented in Sec. 3. Section 2.2 also
contains auxiliary constructions as well as a discussion of the results.

2. MAIN RESULTS

The positive and negative eigenvalues λ̂ of problem P will be denoted by λ̂−k and λ̂+
k′ , respectively,

and the eigenvalues λ̃ of problem P0 will be denoted by λ̃k, where k and k′ are nonnegative integer
indices. Here we assume that λ̂−k and λ̃k are arranged in descending order and the λ̂+

k′ are arranged
in ascending order.

2.1. Problem P0

Problem P0 has been well studied, with the following assertion holding true [11, p. 277].

Theorem 1. Problem P0 has infinitely many eigenvalues λ̃k; moreover , there exist only finitely
many (or none at all) positive and infinitely many negative eigenvalues , and λ̃k → −∞ as k → +∞.
All eigenvalues are real and simple (i.e., of multiplicity one), and the asymptotics λ̃k = O∗(k2) holds
as k → +∞.

One possible approach to studying problem P is to use problem P0 as an “unperturbed” one.
Using the approach based on perturbation theory, for example, by inverting the linear part of
the differential operator defined by problem P with the use of Green’s function, one can prove
that, for sufficiently small α, some neighborhood of each eigenvalue λ̃k of problem P0 contains an
eigenvalue λ̂k′ of problem P (see, e.g., [12] for λ̂+

k′), with the size of this neighborhood tending to
zero as α→ 0.

This approach has a natural and substantial limitation; namely, it allows finding only those solu-
tions of the nonlinear problem which are close to solutions of the “unperturbed” linear problem. As
will be shown in the sequel, problem P has infinitely many positive eigenvalues with an accumulation
point at infinity (even for a ≡ 0), while problem P0, in the general case, according to Theorem 1,
has only finitely many positive eigenvalues (and does not have them at all if a ≡ 0). However, it is
the positive eigenvalues of problem P that are important in some applications (see Sec. 1). In other
words, the perturbation method essentially fails to provide a possibility for studying problems of
type P for all λ ∈ R+. The above-described situation necessitates developing other techniques for
solving such problems.
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Despite the above-indicated limitation, the approach based on perturbation theory is realized in
the present paper as a simple consequence of the method developed here (see Theorem 4 below).

2.2. Problem P
Let u ≡ u(x;λ, α) be the solution of the Cauchy problem (1), (2). To simplfy the notation,

we will also write u(x) instead of u(x;λ, α). It is obvious that this solution is defined locally
(in a neighborhood of the point x = 0). Assume that it is defined globally, i.e., for all x ∈ Ī.
This assumption, which will be proved below, will enable us to carry out constructions forming an
important part of the approach proposed in the present paper.

It can readily be seen that Eq. (1), with allowance for conditions (2), implies the relations

u′2(x) = A2 − α

2
u4(x) + λu2(x)− a(x)u2(x) +

x∫
0

a′(s)u2(s) ds. (6)

Since the left-hand side of identity (6) is nonnegative, it follows that so is its right-hand side. This
implies the boundedness of both the function u (for a given λ) and the function u′.

Consider the function
θ(x) = u2(x), μ(x) =

u′(x)
u(x)

.

The function θ(x) is defined and continuous for x ∈ Ī, and the function μ(x) is defined and continuous
for those x ∈ Ī at which the function u(x) is nonzero. It follows from the uniqueness theorem for the
solution of the Cauchy problem that the function u �≡ 0 cannot be zero together with its derivative
at any point.

By (1) and (2), the functions θ(x) and μ(x) satisfy the system of equations

θ′ = 2θμ, μ′ = −(μ2 + a(x)− λ+ αθ). (7)

Moreover, in view of (6), the functions θ and μ are related by the formula

1

2
αθ2 + (μ2 − λ+ a(x))θ −

(
A2 +

x∫
0

a′(s)θ(s) ds

)
= 0. (8)

It can readily be verified that μ′ < 0 for all λ ∈ R. Indeed, in view of Eq. (1) and identity (6),
we obtain

μ′ =

(
u′

u

)′
=

u′′u− (u′)2

u2
= −A2

u2
− α

2
u2 − 1

u2

x∫
0

a′(s)u2(s) ds < 0

for u(x) �= 0.
Since μ′ < 0, we make the following conclusion, which is important in the sequel: for each λ ∈ R,

the function μ ≡ μ(x;λ) is monotone in x on each interval I′ ⊂ I that does not contain points
where u(x) is zero.

Let the solution u have n′ zeros x′i ∈ I, where 1 ≤ i ≤ n′. If n′ = 0, then u does not vanish
for x ∈ I. As was noted above, if u �≡ 0, then u′(x′k) �= 0. We assume that x′k < x′k+1, 1 ≤ k ≤ n′−1.

Define the intervals I′i+1 = (x′i, x
′
i+1), i = 0, . . . , n′, where x′0 = 0 and x′n′+1 = h; if n′ = 0,

then I′1 = I.
Relation (8) has been derived from identity (6), which holds for the functions u and u′ on the

entire domain where they are defined regardless of whether u vanishes or not. However, then
relation (8) also holds for all x ∈ I′i+1 for each i = 0, . . . , n′.

The fact that μ′ < 0, together with conditions (2), implies the relations

lim
x→+0

θ(x) = 0, lim
x→+0

μ(x) = +∞, (9)
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lim
x→x′i

θ(x) = 0, lim
x→x′i±0

μ(x) = ±∞, i = 1, . . . , n′. (10)

Thus, the functions θ(x) and μ(x) can be defined on each of the intervals I′i as the solutions of
system (7) with conditions appropriately selected from (9) and (10).

In addition, taking into account condition (3), we obtain

lim
x→h−0

θ(x) = 0, lim
x→h−0

μ(x) = −∞. (11)

It follows from the above reasoning that μ′ < 0 for (x, λ, α) ∈ I′i×R×R+, where i = 1, . . . , n′ + 1.
Consequently, the function μ is monotone decreasing from +∞ to −∞ as x runs through the
interval I′i, where i = 1, . . . , n′ + 1. In other words, for each i = 1, . . . , n′ + 1 the restriction μ|I′i of
the function μ to the interval I′i has an inverse function gi : R → I′i; i.e., gi = (μ|I′i)−1, which is a
continuous bijection of the line R onto the interval I′i. On each of the intervals I′i, this bijection allows
one to consider the (continuous) function θ(x) as a function of the variable μ by setting x ≡ gi(μ)
(see Fig. 1).

Fig. 1. The function μ(x;λ) and the mappings gi.

Now, on each of the intervals I′i, consider the equation

μ′ = −wi(μ;λ), (12)

where
wi(μ;λ) ≡ μ2 + a(x)− λ+ αθ(x) and x ≡ gi(μ). (13)

Using the mappings gi permits one to study Eq. (12) as autonomous on the interval I′i.
Thus, for each point s ∈ R and each number i = 1, . . . , n′ + 1 there exists a unique point x ∈ I′i

determined by the mapping gi (see Fig. 1). This allows one to give a meaning to the relations

T (λ; Ii) =

+∞∫
−∞

ds

wi(s;λ)
, (14)

where wi is defined on each interval I′i, i = 1, . . . , n′ + 1 (see formula (13)).
Integrating Eq. (12) on each of the intervals I′i and using conditions (9) and (10) and formula (14),

we arrive at the following assertion.
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Assertion 1. The solution u ≡ u(x;λ, α) of the Cauchy problem (1), (2) is uniquely determined
for all x ∈ Ī and continuously depends on the point (x, λ, α) ∈ Ī×R×R+. Moreover , the following
formula holds :

n′∑
i=1

T (λ; Ii) +

+∞∫
μ(h)

ds

wn′+1(s;λ)
= h. (15)

If the upper limit in the sum in (15) is less than the lower one, then the sum is zero.
Under condition (11), formula (15) gives an equation for which we have the following assertion.

Theorem 2 (on equivalence). A number λ̂ is a solution of problem P if and only if there exists
an integer n′ = n̂ ≥ 0 such that , for n′ = n̂, λ = λ̂ is a solution of the equation

Φ(λ;n′ + 1) ≡
n′+1∑
i=1

T (λ; Ii) = h; (16)

further , the eigenfunction u ≡ u(x; λ̂, α) has n̂ (simple) zeros x′i ∈ I, where x′i =
∑i

k=1 T (λ; Ik),
i = 1, . . . , n̂.

The notion of characteristic equation [13] is widely used in the (linear) theory of Sturm–Liouville
problems. For example, in the case of problem P0, the characteristic equation occurs when substi-
tuting the solution v ≡ v(x;λ) of the Cauchy problem for Eq. (4) with the initial data v|x=0 = 0
and v′|x=0 = A, where A �= 0 is a constant, into the second condition in (5).

In a similar way, we can also introduce the characteristic equation for a nonlinear eigenvalue
problem. For linear problems, the use of such an equation is completely justified owing to a vast
variety of methods for studying linear differential equations, but with nonlinear equations, even the
question about the global unique solvability of the corresponding Cauchy problem has no definite
answer in the general case. In relation to what has been said above and in view of Theorem 2 on
equivalence, Eq. (16) can be called the integral characteristic equation of problem P in the sense that
it determines the eigenvalues; moreover, Eq. (16) explicitly contains a parameter that is responsible
for the number of zeros of the eigenfunction. Then it is natural to refer to the function Φ(λ;n′+1)−h
as the integral characteristic function of problem P.

Theorem 2 is the key result of the present paper. This theorem introduces a new object, the
integral characteristic equation of problem P, and establishes the (spectral) equivalence between
this equation and the problem under study. Although Eq. (16) actually contains the (unknown!)
solution of the auxiliary Cauchy problem, the solvability of Eq. (16) can still be studied under certain
conditions. One tool enabling such an investigation is the asymptotic analysis of the behavior of
the function Φ(λ, n′) as λ→ ±∞. We provide such an analysis in what follows.

It is also important that we have managed to obtain Eq. (16) for the nonautonomous equa-
tion (1). In the case of eigenvalue problems for some autonomous nonlinear equations, the integral
characteristic equations are rather simple to obtain [2, 3, 14], but it is absolutely unclear whether
these results can be extended to the case of nonautonomous equations. One important fact is that
Eq. (16) has been derived without any restrictions on α; it is only the positivity of this coefficient
that matters.

In view of the preceding, it is natural to introduce the following definition.

Definition 2. We say that an eigenvalue λ̂ of problem P has multiplicty l if λ = λ̂ is a root of
multiplicity l of Eq. (16) for n′ = n̂.

It is the properties of the function T (λ; Ii) of the variable λ that are the key to studying the
solvability of problem P. It is thus convenient to state the following separate assertion.

Assertion 2. The function T (λ; Ii) is defined , continuous , and positive for any i = 1, . . . , n′ + 1
and λ ∈ R. Moreover , if λ < −δ < 0, then

π(δ1 + |λ|)−1/2 < T (λ; Ii) < π|λ|−1/2, (17)
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where δ, δ1 > 0 are fixed positive constants independent of λ, and if λ > 0 is sufficiently large, then

λ−1/2 lnλ+O(λ−1/2) < T (λ; Ii) < 2
√
2λ−1/2 lnλ+O(λ−1/2). (18)

Remark 1. The proof of Assertion 2 contains a stronger result; namely, the inequalities

T (λ; Ii) < π|λ|−1/2 and T (λ; Ii) < 2
√
2λ−1/2 lnλ

hold for all λ < 0 and all λ > 0, respectively.
Taking into account formula (16), we derive the following assertion from Assertion 2.

Corollary 1. The asymptotic formulas

Φ(λ;n′) =

⎧⎨
⎩πn′|λ|−1/2 +O(λ−1) as λ→ −∞,

βn′λ−1/2 lnλ+O(λ−1/2) as λ→ +∞
(19)

hold , where 1 < β < 2
√
2 is some constant.

Based on properties (17)–(19), we can establish the solvability of Eq. (16) and hence of problem P.
Namely, the following assertion holds.

Theorem 3. Problem P has infinitely many negative eigenvalues λ̂−k and infinitely many positive
eigenvalues λ̂+

k′ , k, k′ = 0, 1, . . . Further , for sufficiently large indices k and any Δ > 0 one has the
relations

λ̂−k−1 =
π2

h2
k2 +O(1) and (1−Δ)g

(
h

βk

)
< λ̂+

k−1 < (1 + Δ)g

(
h

βk

)
,

where g(t) is the inverse function of the function λ−1/2 lnλ; moreover , for all sufficiently large λ̂±k
one has the formulas

max
x∈(0,h)

|u(x; λ̂−k )| = O(|λ̂−k |−1/2) and max
x∈(0,h)

|u(x; λ̂+
k )| = O(|λ̂+

k |1/2).

Taking into account Corollary 1 and Theorem 3, we arrive at the following statement.

Corollary 2. The sequences {λ̂−k } and {λ̂+
k′} contain infinite subsequences {λ̂−ki

} and {λ̂+
k′i
},

respectively , such that any element λ̂ of either of these subsequences has a neighborhood U
̂λ,δ =

(λ̂− δ, λ̂+ δ) such that

(Φ(λ̂− δ; n̂+ 1)− h)(Φ(λ̂+ δ; n̂+ 1)− h) < 0; (20)

further , the neighborhood U
̂λ,δ can be selected to contain no other elements of the sequences {λ̂−k }

and {λ̂+
k′}.

The number n̂ is the value of n′ for which λ = λ̂ is a solution of Eq. (16).
One also has the following assertion.

Theorem 4. Let λ̃k be the eigenvalues of problem P0, and let

. . . < λ̃p+p′ < 0 ≤ λ̃p+p′−1 < . . . < λ̃p ≤ a− < λ̃p−1 < . . . < λ̃0,

where p, p′ ≥ 0 are some integers. There exists a constant α′′ > 0 such that for each positive
parameter value α = α′ < α′′ and each k ≥ 0 there exists a number j such that the following
relations hold :

lim
α′→+0

λ̂−j = λ̃k+p+p′ and lim
α′→+0

λ̂+
j′ = λ̃p+p′−1−j′ for j′ = 0, . . . , p+ p′ − 1.
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Remark 2. If p = p′ = 0, then problem P0 does not have positive eigenvalues. If p = 0

and p′ > 0, then problem P0 does not have (positive) eigenvalues λ̃ > a−. If p > 0 and p′ = 0, then
problem P0 does not have (nonnegative) eigenvalues λ̃ ∈ [0, a−].

Let us give some remarks concerning the results stated in Theorems 2–4 and Corollary 2.
An equation similar to (16) can also be derived for the classical (linear) Sturm–Liouville problem

(for the nonautonomous equation). Such an equation permits one to prove the solvability of this
problem, find the eigenvalue asymptotics, and establish comparison theorems for two equations with
different coefficients. Although the Sturm–Liouville problem has been thoroughly studied and these
results are long known, the integral characteristic equation method is likely to be a tool that can
also deliver new results in the linear theory.

Theorem 3 shows the fundamental distinction in the behavior of both eigenvalues and eigenfunc-
tions for large |λ̂|. There arise infinitely many positive eigenvalues λ̂+

k for any positive value of the
coefficient α. In other words, a regular perturbation of the linear differential operator defined by
problem P0 by terms αv3 with arbitrarily small fixed α > 0 leads to an irregular change in the
set of eigenvalues of the problem. Moreover, in the case where the function a is a constant, it can
be proved that all positive eigenvalues λ̂+

k larger than a certain fixed number possess the following
property [15]:

lim
α→+0

λ̂+
k = +∞.

Corollary 2 has been stated to make explicit the presence of infinitely many eigenvalues λ̂−k
and λ̂+

k for which property (20) is satisfied. Property (20) plays a key role when attempting to
construct a “nonlinear” perturbation method for some multiparameter nonlinear eigenvalue prob-
lems arising, in particular, in electrodynamics [16]. Such a method is based on using problems
like P as “unperturbed” problems. Some features of the implementation of this concept follow from
the argument presented in the proof of Theorem 4 but with substantial additional constructions.
Applying the described approach to multiparameter problems of the indicated type allows one to
prove the existence of those (vector) eigenvalues of multiparameter problems which are not related
to solutions of the corresponding linear problems of type P0.

Theorem 4 is of interest because its proof is based on the straightforward use of the integral
characteristic equation (16) without resorting to the classical methods of the theory of boundary
value problems.

3. PROOFS

Proof of Assertion 1. Let

μ−i = μ(x′i − 0) = −∞, i = 1, . . . , n′, and μ+
i = μ(x′i + 0) = +∞, i = 0, . . . , n′.

Since the function wi(μ;λ) in (12) does not vanish, we can integrate (12). Thus, by integrating
Eq. (12) on each interval I′i, we obtain

μ−1∫
μ(x)

ds

w1(s;λ)
= x+ c′1, x ∈ I′1;

−
μ(x)∫

μ+
i−1

ds

wi(s;λ)
= x+ c′i, x ∈ I′i, i = 2, . . . , n′;

−
μ(x)∫
μ+

n′

ds

wn′+1(s;λ)
= x+ c′n′+1, x ∈ I′n′+1.

(21)
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Substituting x = x′0 +0 (= 0+ 0), x = x′i− 0, and x = x′n′+1− 0 (= h− 0) into the first, second,
and third rows, respectively, of relations (21), we obtain

c′1 =

μ−1∫
μ+
0

ds

w1(s;λ)
;

c′i = −
μ−i∫

μ+
i−1

ds

wi(s;λ)
− x′i, i = 2, . . . , n′;

c′n′+1 = −
μ(h)∫
μ+

n′

ds

wn′+1(s;λ)
− h.

Using the resulting values of c′i, we write (21) in the form

μ−1∫
μ(x)

ds

w1(s;λ)
= x+

μ−1∫
μ+
0

ds

w1(s;λ)
, x ∈ I′1;

−
μ(x)∫

μ+
i−1

ds

wi(s;λ)
= x−

μ−i∫
μ+
i−1

ds

wi(s;λ)
− x′i, x ∈ I′i, i = 2, . . . , n′;

−
μ(x)∫
μ+

n′

ds

wn′+1(s;λ)
= x−

μ(h)∫
μ+

n′

ds

wn′+1(s;λ)
− h, x ∈ I′n′+1.

Substituting x = x′1 − 0, x = x′i−1 + 0, and x = x′n′ + 0 into the first, second, and third rows,
respectively, of the preceding system, we obtain

0 = x′1 +

μ−1∫
μ+
0

ds

w1(s;λ)
;

0 = x′i−1 −
μ−i∫

μ+
i−1

ds

wi(s;λ)
− x′i, i = 2, . . . , n′;

0 = x′n′ −
μ(h)∫
μ+

n′

ds

wn′+1(s;λ)
− h.

Replacing μ±i with ±∞ in the preceding formulas, we arrive at the relations

0 < x′1 =

+∞∫
−∞

ds

w1(s;λ)
,

0 < x′i − x′i−1 =

+∞∫
−∞

ds

wi(s;λ)
, i = 2, . . . , n′,
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0 < h− x′n′ =

+∞∫
μ(h)

ds

wn′+1(s;λ)
. (22)

Formulas (22) give the distances between neighboring zeros of the function u. Since the left-hand
sides in (22) are finite, so are the right-hand sides. This implies the convergence of all improper
integrals on the right-hand sides in formulas (22). The convergence of the indicated improper
integrals implies the existence of the function μ ≡ μ(x) on each interval I′. In view of the above
and the fact that the functions u(x) and u′(x) are bounded (see identity (6)), we conclude that
the function u(x), as well as u′(x), is defined for all x ∈ Ī. In other words, we have proved that
the solution u ≡ u(x;λ, α) of the Cauchy problem (1), (2) exists and is defined for all x ∈ Ī. The
uniqueness of this solution and its continuity (and differentiability) with respect to x ∈ Ī, λ ∈ R,
and α ∈ R+ follows from the smoothness of the right-hand side of Eq. (1) with respect to u, λ,
and α [17, 18].

Summing all terms in (22), we obtain

x′1 + x′2 − x′1 + x′3 − x′2 + . . .+ x′n′ − x′n′−1 + h− x′n′ =
n′∑
i=1

+∞∫
−∞

ds

wi(s;λ)
+

+∞∫
μ(h)

ds

wn′+1(s;λ)

and arrive at formula (15). The proof of Assertion 1 is complete.
Proof of Theorem 2. According to condition (3), we have u(h) = 0, while an analysis of the

second equation in system (7), together with relation (8), implies that the function μ is decreasing.
Then, as can readily be seen, lim

x→h−0
μ(x) = −∞. Now Eq. (16) can be derived from formula (15)

under condition (11).
The fact that every solution (eigenvalue) of problem P satisfies Eq. (16) with some n′ = n̂ follows

from the computations in the proof of Assertion 1.
Let us prove that each solution of Eq. (16) is an eigenvalue. Let λ = λ̂ be a solution of Eq. (16)

for n′ = n̂. Consider the Cauchy problem (1), (2) for λ = λ̂. Taking into account Assertion 1, we
conclude that there exists a unique solution u ≡ u(x; λ̂, α) of this Cauchy problem, which is defined
for all x ∈ Ī.

Let us use this solution to construct the functions θ = u2 and μ = u′/u. It is clear that θ(0) = 0

and lim
x→0+0

μ(x) = +∞. At this point, we do not claim that the condition lim
x→h−0

μ(x; λ̂) = −∞ is
satisfied. To be definite, set

μ(h) = u′(h)/u(h) = a > −∞.

Using the resulting functions θ and μ, we construct an expression similar to (16) and obtain

n̂∑
i=1

T (λ; Ii) +

+∞∫
a

ds

wn̂+1(s; λ̂)
= h. (23)

By virtue of the uniqueness of the solution of the Cauchy problem (1), (2), the integrand in (23)
coincides with the similar expression in (16). At the same time, λ = λ̂ satisfies Eq. (16) for n′ = n̂.
Subtracting (16) from (23), we obtain

+∞∫
a

ds

wn̂+1(s; λ̂)
− T (λ̂; In̂+1) = 0. (24)

In view of the obvious estimate

T (λ̂; In̂+1) >

+∞∫
a

ds

wn̂+1(s; λ̂)
> 0,

DIFFERENTIAL EQUATIONS Vol. 56 No. 2 2020



180 VALOVIK

we conclude that relation (24) holds only if a = −∞, but then λ̂ is an eigenvalue.
The formula for the zeros x′i of the eigenfunction u follows from the calculations in the proof of

Assertion 2 (see formula (22)). The proof of Theorem 2 is complete.
Proof of Assertion 2. The existence, continuity, and positivity of the functions T (λ; Ii) follow

from the existence of a solution u ≡ u(x;λ, α) of the Cauchy problem (1), (2), which is continuous
in the arguments (x, λ, α) ∈ Ī × R × R+, and from the positivity of the functions wi(s;λ) (see
formulas (7), (8) and (12)–(14)).

Consider relation (6). It has been said above that (6) implies the boundedness of the functions u
and u′ (for a fixed λ); i.e., max

x∈Ī
u2 = c and max

x∈Ī
u′2 = c′, where the positive constants c and c′

depend on λ. In addition, relation (6) implies the existence of a constant δ > 0 such that the
quantity max

x∈Ī
u2(x) is bounded by one and the same constant c− for all λ < −δ, where c− is

independent of λ. At the same time, it can readily be seen from (6) that the maximum max
x∈Ī

u2

increases with λ > 0.
We can extract more precise results on the behavior of the function u from identity (6). Indeed,

replacing u2 with λū2 for λ ∈ R, we obtain

ū′2(x) = λ

(
A2

λ2
− α

2
ū4(x) + ū2(x)− a(x)

λ
ū2(x) +

x∫
0

a′(s)
λ

ū2(s) ds

)
.

The bracketed expression on the right-hand side in the resulting identity should be nonnegative.
Then for sufficiently large λ we obtain

ū4(x)− 2

α
ū2(x) +O(λ−1) ≤ 0. (25)

By replacing u2 with |λ|−1ū2 for λ < 0, we conclude from (6) that

ū′2(x)
|λ| = A2 − α

2λ2
ū4(x)− ū2(x)− a(x)

|λ| ū
2(x) +

x∫
0

a′(s)
|λ| ū2(s) ds.

The expression on the right-hand side in the resulting formula must be nonnegative. Then for
sufficiently large |λ| we have

A2 +O(|λ|−1)− ū2(x) ≥ 0. (26)

The maximum positive solutions ū2 of inequalities (25) and (26) give the following asymptotics:

max
x∈Ī

u2 =

⎧⎨
⎩A2|λ|−1 +O(λ−2) as λ→ −∞,

2α−1λ+O(1) as λ→ +∞.
(27)

The asymptotic formulas (27) show that the properties of the problem under study are essentially
different for negative and positive values of λ.

Inequalities (17) readily follow from the estimates

μ2 − λ < μ2 + a− λ+ αθ < μ2 + a+ − λ+ αc−,

in which it is assumed that λ < −δ. Since the left inequality in this two-sided inequality holds for
all λ < 0, it follows that the right inequality in (17) is satisfied for all λ < 0 as well.

To derive the estimate (18), we need subtler arguments. Consider relation (8) as a “quadratic”
equation for θ. Since θ = v2 ≥ 0, we find from (8) that

θ = − 1

α
(μ2 + a− λ) +

1

α

(
(μ2 + a− λ)2 + 2αA2 + 2α

x∫
0

a′(s)θ(s) ds

)1/2

. (28)
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Substituting the right-hand side of relation (28) for θ into the right-hand side of Eq. (12), we
obtain

μ′ = −wi(μ;λ),

where

wi(μ;λ) ≡
(
(μ2 + a(x)− λ)2 + 2αA2 + 2α

x∫
0

a′(s)θ(s) ds

)1/2

, (29)

x ≡ gi(μ), and x ∈ Ii, i = 1, . . . , n′ + 1. It readily follows from identity (29) that minμ,λ w(μ;λ) ≥√
2αA > 0. Thus, we have

T (λ; Ii) =

+∞∫
−∞

ds

wi(s;λ)
=

0∫
−∞

ds

wi(s;λ)
+

+∞∫
0

ds

wi(s;λ)
= T

(1)
i (λ) + T

(2)
i (λ), (30)

where the function wi is defined by relation (29).
It follows from formulas (27) that for sufficiently large λ > 0 we have the inequality

0 ≤
x∫

0

a′(s)θ(s) ds ≤ Bλ+O(1) = A′2,

where B > 0 is some constant.
Thus, we obtain

+∞∫
0

ds

w+
i (s;λ)

≤ T
(2)
i (λ) ≤

+∞∫
0

ds

w−i (s;λ)
, (31)

where w+
i (s;λ) = ((s2+a(x)−λ)2+2αA′2)1/2, w−i (s;λ) = ((s2+a(x)−λ)2+2αA2)1/2, and x ≡ gi(s).

The estimates for T (1)
i (λ) can be obtained in a similar manner.

Using the elementary inequalities

1

|a|+ b
≤ 1√

a2 + b2
≤

√
2

|a|+ b
,

where a ∈ R and b ∈ R+, we obtain the following estimates for the left- and right-hand sides of
inequality (31):

+∞∫
0

ds

ŵ+
i (s;λ)

≤
+∞∫
0

ds

w+
i (s;λ)

≤ T
(2)
i (λ) ≤

+∞∫
0

ds

w−i (s;λ)
≤

+∞∫
0

√
2 ds

ŵ−i (s;λ)
, (32)

where ŵ+
i (s;λ) = |s2 + a(x)− λ|+A′

√
2α and ŵ−i (s;λ) = |s2 + a(x)− λ|+A

√
2α.

Then for sufficiently large λ we have

+∞∫
0

ds

ŵ+
i (s;λ)

=

√
λ−a+∫
0

ds

ŵ+
i (s;λ)

+

√
λ−a−∫

√
λ−a+

ds

ŵ+
i (s;λ)

+

+∞∫
√

λ−a−

ds

ŵ+
i (s;λ)

=

√
λ−a+∫
0

ds

λ− a(x) +A′
√
2α− s2

+

√
λ−a−∫

√
λ−a+

ds

ŵ+
i (s;λ)

+

+∞∫
√

λ−a−

ds

s2 − (λ− a(x)−A′
√
2α)
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≥

√
λ−a+∫
0

ds

λ− a− +A′
√
2α− s2

+

√
λ−a−∫

√
λ−a+

ds

a+ − a− +A′
√
2α

+

+∞∫
√

λ−a−

ds

s2 − (λ− a+ −A′
√
2α)

= T ′i,1 + T ′i,2 + T ′i,3.

By successively calculating the resulting integrals on the right-hand side in this inequality, we arrive
at the formulas

T ′i,1 =
lnλ

4
√
λ
+O(λ−1/2), T ′i,2 = O(λ−1), T ′i,3 =

lnλ

4
√
λ
+O(λ−1/2).

In a similar way, for the last integral in inequalities (32) we obtain

+∞∫
0

√
2 ds

ŵ−i (s;λ)
=

√
λ−a+∫
0

√
2 ds

ŵ−i (s;λ)
+

√
λ−a−∫

√
λ−a+

√
2 ds

ŵ−i (s;λ)
+

+∞∫
√

λ−a−

√
2 ds

ŵ−i (s;λ)

=

√
λ−a+∫
0

√
2 ds

λ− a(x) +A
√
2α− s2

+

√
λ−a−∫

√
λ−a+

√
2 ds

ŵ−i (s;λ)
+

+∞∫
√

λ−a−

√
2 ds

s2 − (λ− a(x)−A
√
2α)

≤

√
λ−a+∫
0

√
2 ds

λ− a+ +A
√
2α− s2

+

√
λ−a−∫

√
λ−a+

√
2 ds

A
√
2α

+

+∞∫
√

λ−a−

√
2 ds

s2 − (λ− a− −A
√
2α)

= T ′′i,1 + T ′′i,2 + T ′′i,3.

By successively calculating the resulting integrals on the right-hand side in this inequality for large λ,
we arrive at the formulas

T ′′i,1 =
lnλ√
2λ

+O(λ−1/2), T ′′i,2 = O(λ−1/2), T ′′i,3 =
lnλ√
2λ

+O(λ−1/2).

Taking into account the resulting estimates and the estimates (32), we have the inequalities

lnλ

2
√
λ
+O(λ−1/2) ≤

+∞∫
0

ds

w+
i (s;λ)

≤ T
(2)
i (λ) ≤

+∞∫
0

ds

w−i (s;λ)
≤
√
2 lnλ√
λ

+O(λ−1/2),

which are satisfied for large λ > 0. In view of formula (30) and the last inequality, we obtain the
estimate (18). The proof of Assertion 2 is complete.

Proof of Theorem 3. It follows from Assertion 2 that the function Φ(λ;n′+1) (see formula (16))
is positive. Hence, whatever h > 0, there exists a number n′ = n′0 ≥ 0 such that max

λ∈R
Φ(λ;n′) > h.

It follows from Corollary 1 that
lim

λ→±∞
Φ(λ;n′ + 1) = 0.

Therefore, for each n′ = n′0, n
′
0+1, . . . there exist values λ = λ+

n′ and λ = λ+
n′ such that Φ(λ

±
n′ ;n

′) < h.
Since Φ(λ;n′) is a continuous function of the variable λ (see Assertion 2), it follows that for each
n′ = n′0, n

′
0 + 1 . . . there exists at least one negative value λ = λ̂−n′ and one positive value λ = λ̂+

n′

such that Φ(λ̂±n′ ;n′) = h. By Theorem 2, λ = λ+
n′ and λ = λ+

n′ are eigenvalues of problem P. It is
obvious that there exist infinitely many negative as well as positive eigenvalues. Now it suffices to
shift the numbering so that it starts from zero rather than n′0.
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The asymptotic estimates for the negative and positive eigenvalues follow from formulas (19).
The estimates for the maxima of the eigenfunctions for sufficiently large |λ̂−k | and λ̂+

k have been
derived in the proof of Assertion 2 (see formula (27)). The proof of Theorem 3 is complete.

Proof of Theorem 4. Consider Eq. (16). Using arguments almost identical to the proof of
Theorem 2, one can readily show that Eq. (16) for α = 0 is equivalent to problem P0. Thus, consider
the equation

Φ̃(λ;n′ + 1) ≡
n′+1∑
i=1

T̃ (λ; Ĩi) = h, (33)

where

T̃ (λ; Ĩi) =

+∞∫
−∞

ds

w̃i(s;λ)
,

while the function w̃i(μ;λ) ≡ μ2+a(x)−λ is defined on each interval Ĩ′i, i = 1, . . . , n′ + 1, by means
of the mapping x ≡ g̃i(μ). In the above formulas, the intervals Ĩ′i are defined by analogy with the
intervals I′i, and the functions g̃i(μ), by analogy with the functions gi(μ) introduced in Sec. 2.2 (see
formulas (9)–(14)) for the linear equation (4).

Let λ ∈ (−∞, a−). In this case, even with no allowance for relation (8), it is obvious that the
function w̃i(μ;λ) does not vanish. According to Theorem 1, all eigenvalues λ̃k of problem P0 are
of multiplicity 1. By virtue of the equivalence of Eq. (33) to problem P0, the solutions λ = λ̃ of
Eq. (33) are also simple roots of this equation.

Consider the relation

Φ(λ;n′ + 1)− Φ̃(λ;n′ + 1) = h− Φ̃(λ;n′ + 1). (34)

The zeros of the right-hand side of this relation are the eigenvalues λ̃ of problem P0. Moreover, by
virtue of the above argument, each eigenvalue λ̃ can be included in some neighborhood (interval) U

˜λ,δ

such that the right-hand side of the expression (34) takes opposite signs at the endpoints of the
interval Ū

˜λ,δ.
Consider the left-hand side of the expression (34), which we will write as

Φ(λ;n′ + 1)− Φ̃(λ;n′ + 1) =

n′+1∑
i=1

T (λ; Ii)−
n′+1∑
i=1

T̃ (λ; Ii) =

n′+1∑
i=1

+∞∫
−∞

(
1

wi(s;λ)
− 1

w̃i(s;λ)

)
ds

=

n′+1∑
i=1

+∞∫
−∞

a(g̃i(s))− a(gi(s))− αθ(gi(s;α))

wi(s;λ)w̃i(s;λ)
ds.

(35)

It follows from formula (27) that the functions u are bounded for λ bounded above, and hence
the functions u are bounded for λ ∈ (−∞, a−). It follows that the smaller α (>0), the smaller the
difference between the functions wi(s;λ) and w̃i(s;λ) is for all such λ. Hence, for a sufficiently
small α (>0), the numerators of the above integrals will be small in absolute value; moreover, the
denominators of these integrals are such that the integrals converge. Therefore, each term on the
right-hand side in relation (35) can be made arbitrarily small given a sufficiently small α. Consid-
ering the above reasoning, we conclude that there exists an α (>0) such that the neighborhood U

˜λ,δ

of each eigenvalue λ̃ of problem P0 will contain at least one eigenvalue λ̂ of problem P; more-
over, λ̂ ∈ (−∞, a−).
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Since the denominators of the integrands in (35) increase with |λ|, it follows that there exists a
common α (>0) for all λ < λ0, where λ0 is a given negative number (possibly, sufficiently large in
absolute value).
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