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Abstract—We give a complete description of the Lebesgue sets of upper Izobov σ-exponents
of linear differential systems continuously depending on a parameter varying in a metric space.
We prove the simultaneous attainability of the upper Izobov σ-exponents by the Lyapunov
exponents and their upper semicontinuity as functions of the perturbation exponent −σ.
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

For a given positive integer n ≥ 2, by M̃n we denote the space of linear systems

ẋ = A(t)x, x ∈ R
n, t ∈ R+ ≡ [0,+∞), (1)

with piecewise continuous matrix-valued functions A equipped with the operations of addition and
multiplication by a real number, natural for functions. ByMn we denote the subspace of systems
with coefficients bounded on the half-line R+. We endow the space M̃n with uniform and compact-
open topologies, defined, respectively, by the metrics

ρU(A,B) = sup
t∈R+

min{|A(t)−B(t)|, 1}, ρC(A,B) = sup
t∈R+

min{|A(t)−B(t)|, e−t}, A,B ∈ M̃n,

where we have denoted |Y | = sup
|x|=1

|Y x|, |x| = √
x2
1 + . . .+ x2

n, and x = (x1, . . . , xn)
т. We agree to

denote the resulting topological spaces by M̃n
U and M̃n

C , similar notation being also used for their
subspaces. Note that the uniform topology is also defined onMn by the norm

‖A‖ = sup
t∈R+

|A(t)|, A ∈Mn.

In what follows, we identify system (1) and the matrix-valued function defining it and hence write
A ∈ M̃n or A ∈Mn.

Definition 1. The characteristic exponent of a function f : R+ → R
m (m ∈ N) is the quantity

(we take ln 0 = −∞)
λ[f ] = lim

t→+∞
ln |f(t)|1/t.

Definition 2. The Lyapunov exponents of a system A ∈ M̃n are the quantities [1]

λi(A) = inf
L∈Gi(S(A))

sup
x∈L

λ[x], i = 1, . . . , n,

where S(A) is the solution space of the system A and Gi(V ) is the set of i-dimensional subspaces
of the vector space V .
In our notation, the Lyapunov exponents are numbered, unlike [1], in nondescending order.

39



40 BYKOV

Perron [2] (see also [3, Sec. 1.4]) constructed an example of a system A ∈ Mn whose Lyapunov
exponents are not invariant with respect to exponentially decaying perturbations of its coefficients.
On the other hand, the Lyapunov exponents of any system inMn remain invariant with respect to
perturbations decaying more rapidly than some exponential (depending on the system) [4, 5]. Nat-
urally, this gives rise to problems of deriving estimates and calculating precise mobility boundaries
for the Lyapunov exponents under exponentially decaying perturbations, as well as describing the
properties of such boundaries. There are quite a few papers dealing with these problems (see, e.g.,
[4–16]). It is the study of this class of perturbations that seems to be especially important owing
to its close relation to the Lyapunov problem of stability by the first approximation [12].
The present paper investigates the mobility boundaries of Lyapunov exponents under exponen-

tially decaying perturbations from the viewpoint of descriptive function theory, with no requirements
imposed, unlike the above-cited publications, on the coefficients of the systems under consideration
to be bounded on the half-line.

2. STATEMENT OF RESULTS

Definition 3. For i = 1, . . . , n and each σ > 0 we define the upper Izobov σ-exponents [11] of a
system A ∈ M̃n by the relation

∇σ,i(A) = sup
Q∈Êσ

λi(A+Q), i = 1, . . . , n, (2)

where Êσ = {Q ∈Mn : λ[Q] ≤ −σ}.
Since we do not assume the coefficients of the systems under consideration to be bounded on

the half-line, it follows that the values of the above-defined quantities belong to the extended real
line R ≡ R
{−∞,+∞}, which we take to be equipped with the standard order and the associated
order topology. Notice that the resulting topological space is homeomorphic to the interval [−1, 1].
The higher upper Izobov σ-exponent ∇σ,n can be used to study stability by the first approxima-

tion, as shown by the following assertion.

Theorem 1. Assume that the condition

∇σ,n(A) < −σ/(m− 1)

is satisfied for a system A ∈ M̃n and numbers m > 1 and σ > 0 and a continuous func-
tion Ψ: R+ → R+ has a nonpositive characteristic exponent : λ[Ψ] ≤ 0. Then for each number
α > ∇σ,n(A) there exist positive constants δ = δ(A,m, σ,Ψ, α) and C = C(A,m, σ,Ψ, α) such that,
for any domain U ⊂ R

n containing the origin and any continuous function f : R+ × U → R
n

satisfying the condition
|f(t, x)| ≤ Ψ(t)|x|m, (t, x) ∈ R+ × U,

every solution of the system

ẋ = A(t)x+ f(t, x), x ∈ U, t ∈ R+, (3)

with the initial condition |x(0)| < δ satisfies the estimate

|x(t)| ≤ C|x(0)|eαt, t ∈ R+. (4)

In particular, the zero solution of system (3) is exponentially stable.
Izobov [11] established the following formula for the exponent ∇σ,n in the case where all coeffi-

cients of system (1) are bounded:

∇σ,n(A) = lim
k→∞

1

k
ξk(σ), ξk(σ) = max

i<k
{ln |XA(k, i)|+ ξi(σ)− σi}, k ∈ N, ξ0(σ) ≡ 0, (5)

where XA(·, ·) is the Cauchy operator of the system A. It follows from the proof of this formula that
the least upper bound is attained in relation (2) whenever A ∈Mn and i = n. It turns out that this
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LEBESGUE SETS OF IZOBOV EXPONENTS OF LINEAR DIFFERENTIAL SYSTEMS. I 41

is also true without the assumption about the boundedness of the coefficients of system (1), and
moreover, the least upper bounds are attained in relation (2) simultaneously for all i = 1, . . . , n;
namely, the following assertion holds.

Theorem 2. For any system A ∈ M̃n and number σ > 0, there exists a matrix-valued function
Q ∈ Êσ such that

λi(A+Q) = ∇σ,i(A), i = 1, . . . , n.

Remark 1. A similar assertion was established in [17] for the upper mobility boundaries of
Lyapunov exponents under uniformly small perturbations.
The set of functions {σ �→ ∇σ,n(A) : A ∈Mn} was completely described in [14]: it consists of all

bounded concave functions that are constant for all σ starting from some (function-specific) value. In
particular, all these functions are continuous. At the same time, for any i = 1, . . . , n− 1 and σ0 > 0
there exists a system A ∈ Mn such that the function σ �→ ∇σ,i(A) is not lower semicontinuous at
the point σ0 [15]. The natural question arises as to whether this function is upper semicontinuous
for each system A ∈ M̃n.

Theorem 3. For any i = 1, . . . , n and A ∈ M̃n, the function (0,+∞) → R defined by the rule
σ �→ ∇σ,i(A) is upper semicontinuous.

Remark 2. The present author does not know whether the function σ �→ ∇σ,n(A) is lower
semicontinuous at each point A ∈ M̃n \ Mn. (For A ∈ Mn, the continuity of this function was
established in [11].)
Let M be a metric space. Consider a family

ẋ = A(t, μ)x, x ∈ R
n, t ∈ R+, (6)

of linear differential systems depending on a parameter μ ∈M such that for each μ system (6) has
piecewise continuous coefficients. Every functional Λ : M̃n → R defines a function Λ(· ;A) :M → R

of the parameter μ; this function takes each μ ∈ M to the value of this functional on system (6).
Below we describe the Lebesgue sets of such functions defined by the upper Izobov σ-exponents.
We denote the set of all continuous mappings A : R+ ×M → R

n×n by Cn(M) and the set of
bounded mappings A ∈ Cn(M) by Bn(M). Note that each mapping A ∈ Cn(M) corresponds to a
family of systems (6) with continuous coefficients that continuously depend on the parameter μ in
the sense of the compact-open topology on the space M̃n. In what follows, Un(M) stands for the
set of mappings A ∈ Cn(M) continuous in μ uniformly with respect to t ∈ R+, i.e., satisfying the
condition

lim
ν→μ

‖A(·, ν)−A(·, μ)‖ ≡ lim
ν→μ

sup
t∈R+

|A(t, ν)−A(t, μ)| = 0, μ ∈M.

In other words, each mapping A ∈ Un(M) corresponds to a family of systems (6) with continuous
coefficients that continuously depend on the parameter μ in the sense of the uniform topology on
the space M̃n. Finally, we write BUn(M) = Bn(M) ∩ Un(M).
Let X be a metric space. Recall the definition [18, Sec. 41.1] of Lebesgue sets of a function

f : X → R. For each number r ∈ R, the Lebesgue sets [f > r], [f ≥ r], and [f = r] of the
function f are the preimages of the intervals (r,+∞] and [r,+∞] and the point {r}, respectively.
By Gδ(X), Gδσ(X), and Fσδ(X) we denote the sets of subsets of X of the types Gδ, Gδσ, and Fσδ,
respectively [18, Sec. 32].
The Lebesgue sets of the upper Izobov σ-exponents of families (6) continuously depending on the

parameter in the sense of the compact-open or uniform topology on the space M̃n are completely
described by the following assertion.

Theorem 4. The following relations hold for any metric space M and numbers i = 1, . . . , n,
σ > 0, and r ∈ R:
1. {[∇σ,i(· ;A) ≥ r] : A ∈ Cn(M)} = {[∇σ,i(· ;A) ≥ r] : A ∈ BUn(M)} = Gδ(M).
2. {[∇σ,i(· ;A) > r] : A ∈ Cn(M)} = {[∇i,σ(· ;A) > r] : A ∈ BUn(M)} = Gδσ(M).
3. {[∇σ,i(· ;A) = r] : A ∈ Cn(M)} = {[∇σ,i(· ;A) = r] : A ∈ BUn(M)} = Fσδ(M).
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42 BYKOV

Remark 3. A similar description of Lebesgue sets for the Lyapunov exponents was obtained
in [19].

Let us denote the sets of points of upper and lower semicontinuity [19] of a function f :M → R

by US(f) and LS(f), respectively. Further, let F(M) be the set of Fσδ-subsets of M containing all
isolated points of M , and let G(M) be the set of all Gδ-subsets dense in M .
Vetokhin [16] used formula (5) to prove that, for any σ > 0 and any family A ∈ Cn(M) such

that A(·, μ) ∈ Mn for each μ ∈ M , the function ∇σ,n(· ;A) belongs to Baire class 2 and, assuming
that M is complete, the set US(∇σ,n(· ;A)) contains a Gδ-set dense in M . The following assertion
is a strengthening of this result.

Corollary. For any metric space M , any numbers i = 1, . . . , n and σ > 0, and any A ∈ Cn(M),
the function ∇σ,i(· ;A) belongs to Baire class 2. Moreover,

{LS(∇σ,i(· ;A)) : A ∈ Cn(M)} = {LS(∇σ,i(· ;A)) : A ∈ BUn(M)} = F(M)

and

Gδ(M) ⊃ {US(∇σ,i(· ;A)) : A ∈ Cn(M)} ⊃ {US(∇σ,i(· ;A)) : A ∈ BUn(M)} ⊃ G(M),

the last two inclusions being equalities if M is complete.

3. PROOFS OF THE ASSERTIONS

Proof of Theorem 1. Without loss of generality, we can assume that the domain U is a ball of
radius ρ ∈ (0, 1) centered at the origin and the number α > ∇σ,n(A) is such that (m− 1)α+σ < 0.
The substitution x(t) = eαty(t) reduces the original system to the system

ẏ = Ã(t)y + g(t, y), Ã(t) = A(t)− αEn, g(t, y) = e−αtf(t, eαty), (t, y) ∈ V, (7)

where V = {(t, y) : t ∈ R+, e
αty ∈ U} and En is the identity n × n matrix. In what follows, we

consider the restriction of system (7) to the set Ṽ ≡ R+ × U ⊂ V . For each point (t, y) ∈ Ṽ , we
have the chain of inequalities

|g(t, y)| ≤ eα(m−1)tΨ(t)|y|m ≤ e((m−1)α+σ)tΨ(t)e−σt|y| ≤ Ke−σt|y|,
where K = sup

t∈R+

e((m−1)α+σ)tΨ(t) <∞, because λ[Ψ] ≤ 0.

Let Q be the set of continuous matrix-valued functions Q ∈Mn satisfying the condition

|Q(t)| ≤ Ke−σt (8)

for all t ∈ R+. Note that if ∇σ,n(A) = −∞, then ∇σ,n(Ã) = ∇σ,n(A) = −∞; otherwise, ∇σ,n(Ã) =

∇σ,n(A)− α. Since Q ⊂ Êσ, we have the inequality

sup
Q∈Q

λn(Ã+Q) ≤ ∇σ,n(Ã) < 0.

Applying [17, Lemma 3] to the function f(t) = Ke−σt, t ∈ R+, we obtain

inf
k∈N

sup
Q∈Q

sup
t≥k

1

t
ln |XÃ+Q(t, 0)| < 0.

Therefore, there exists a k ∈ N such that the inequality t−1 ln |XÃ+Q(t, 0)| < 0, or, equivalently,
|XÃ+Q(t, 0)| < 1, is satisfied for all Q ∈ Q and t ≥ k. For t ∈ [0, k], by virtue of the well-known
estimate [3, Eq. (3.3)], we have

|XÃ+Q(t, 0)| ≤ exp(( sup
0≤τ≤k

|Ã(τ)|+K)k) ≡ C.
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Then |XÃ+Q(t, 0)| ≤ C for all t ∈ R+. Thus, each solution y of any linear system Ã + Q, where
Q ∈ Q, satisfies the estimate

|y(t)| ≤ C|y(0)| (9)

for all t ≥ 0.
Set δ = ρ(2C)−1. Let y : [0, T ) → U , T ∈ (0,+∞], be a nonextendable nontrivial solution of

system (7) such that |y(0)| < δ. Then, by the linear inclusion principle [20, Sec. 12.3], the function y
is also a solution of the linear system Ã +Q, where the matrix-valued function Q : [0, T ) → R

n×n

is defined by the equations

qij(t) =
yj(t)

|y(t)|2 gi(t, y(t)), i, j = 1, . . . , n, t ∈ [0, T ),

is continuous, and satisfies condition (8) for all t ∈ [0, T ). Assume that T <∞. Since the function g
is bounded on the set Ṽ , it follows that the function y satisfies the Lipschitz condition. Therefore,
there exists a limit lim

t→T−0
y(t), and it is nonzero by the extendability theorem [21, Theorem 23].

Hence there also exists a limit lim
t→T−0

Q(t). Let us continuously extend the matrix-valued function Q

to the entire half-line R+ so that condition (8) be satisfied for all t ∈ R+ and retain the old name for
the extended function. Then Q ∈ Q and (9) is satisfied for all t ∈ [0, T ); it follows that the graph
of the function y does not leave the compact set [0, T ] × {ξ ∈ R

n : |ξ| ≤ ρ/2}. This contradicts
the above-mentioned extendability theorem for system (7). Hence T = ∞, and inequality (9) is
satisfied for all t ∈ R+.
Returning to the original system (3), we conclude that each of its solutions x with the initial

condition |x(0)| < δ can be extended to the entire half-line R+ and satisfies the estimate (4).
The proof of the theorem is complete.
For any i = 1, . . . , n and m, q ∈ N, let us define a function ϕmq

i : M̃n → R by the formula

ϕmq
i (A) = inf

L∈Gi(Rn)
max

t∈[m,m+q]

1

t
ln |XA(t, 0)|L|, A ∈ M̃n, (10)

where XA(·, ·)|L is the restriction of the Cauchy operator of system (1) to the subspace L ⊂ R
n.

Millionshchikov [22] established the following assertion, which we will substantially use in the
sequel.

Lemma 1. The functions ϕmq
i : M̃n

C → R, m, q ∈ N, i = 1, . . . , n, are continuous, and the
relations

λi(A) = inf
m∈N

sup
q∈N

ϕmq
i (A), i = 1, . . . , n, (11)

hold for each system A ∈ M̃n.
We introduce the following notation (σ,C ∈ R

∗
+ ≡ R+ \ {0}):

Eσ,C = {Q ∈Mn : |Q(t)| ≤ Ce−σt, t ∈ R+}, Eσ =
⋃
C>0

Eσ,C .

Lemma 2. For any system A ∈ M̃n and number σ > 0, there exists a system B ∈ Êσ such that

λi(A+B) ≥ inf
ε∈(0,σ)

sup
Q∈Eσ−ε,1

λi(A+Q) ≡ ∇̃σ,i(A), i = 1, . . . , n.

Proof. Without loss of generality, we assume that all quantities occurring in the proof take
finite values. The general case can be reduced to this one by applying the bounding order-preserving
homeomorphism Φ: R→ [−1, 1] defined by the formula

Φ(x) =

⎧⎨
⎩x/(|x|+ 1) if x ∈ R,

sgnx if x = ±∞.
DIFFERENTIAL EQUATIONS Vol. 56 No. 1 2020
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Let τ be some bijection of N onto {1, . . . , n} × N × N, and let pi : {1, . . . , n} × N× N→ N,
i = 1, 2, 3, be the projection of the product onto the ith factor. For each k ∈ N, set ik = p1(τ(k))
and mk = p2(τ(k)).
Take an arbitrary sequence (εk)∞k=0 of numbers in the interval (0, σ), monotone decreasing to zero.

We use induction to construct a strictly increasing sequence (tk)∞k=0 of points on the half-line R+,
a sequence (qk)

∞
k=0 of positive integers, and a sequence (Bk)

∞
k=0 of systems in Mn satisfying the

conditions
tj ≥ tj−1 + 1, Bj(t) = Bj−1(t), t ∈ [0, tj−1], (12)

|Bj(t)| ≤ exp(−(σ− εj)t), t ≥ tj−1 +1, |Bj(t)| ≤ exp(−(σ− εj−1)t), t ∈ [tj−1, tj−1 +1], (13)

λij (A+Bj) > ∇̃σ,ij (A)− εj, (14)

ϕ
mjqj
ij

(A+Bj) > λij (A+Bj)− εj (15)

for each j ∈ N, where the ϕmq
i , m, q ∈ N, i = 1, . . . , n, are the functions defined in (10).

Set t0 = 0, q0 = 1, and B0 = 0. Assume that for some k ∈ N we have already defined
numbers tj and qj and systems Bj ∈Mn, j = 0, . . . , k − 1, satisfying conditions (12)–(15) for each
j = 1, . . . , k − 1.
By the definition of ∇̃σ,ik(A), there exists a system Ck ∈ Eσ−εk,1 such that λik(A+ Ck) >

∇̃σ,ik(A)− εk. Set

Bk(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Bk−1(t) if t ∈ [0, tk−1],

(1− t+ tk−1)Bk−1(t) + (t− tk−1)Ck(t) if t ∈ [tk−1, tk−1 + 1],

Ck(t) if t ≥ tk−1 + 1.

Using the induction assumption (or the base case for k = 1), we conclude that the system Bk has
piecewise continuous coefficients and satisfies conditions (13) for j = k. Since the systems Bk and Ck

coincide for all t ≥ tk−1 + 1, by virtue of the well-known residual property [23] of the Lyapunov
exponents we have λik(A + Bk) = λik(A + Ck), which implies inequality (14) for j = k. By (11),
there exists a qk ∈ N such that inequality (15) holds for j = k. Set tk = max{tk−1 + 1,mk + qk}.
This completes the induction step and hence the construction of the sequences (tk), (qk), and (Bk).
Now set B(t0) = 0 and B(t) = Bk(t) for t ∈ (tk−1, tk], k ∈ N. By the first condition in (12), we

have R+ = {t0} ∪
⋃∞

k=1(tk−1, tk], and hence the system B is defined on the entire half-line R+. Let
us show that it has the desired properties.
By construction, for each k ∈ N the system B coincides with the system Bk on the interval [0, tk],

and hence B has piecewise continuous coefficients and satisfies the inequality

|B(t)| ≤ exp(−(σ − εk−1)t), t ≥ tk−1;

it follows that λ[B] ≤ −σ+ εk−1. Passing to the limit as k →∞ in the last inequality, we arrive at
the inclusion B ∈ Êσ.
Fix arbitrary i = 1, . . . , n and δ > 0. Choose a k0 ∈ N such that 2εk0

< δ. Since τ(N) =
{1, . . . , n} × N × N, it follows that for each m ∈ N there exists a k ≥ k0 such that ik = i and
mk = m. Since the value of the function ϕmkqk

ik
on a system depends only on its restriction to the

interval [0,mk + qk], on which the systems B and Bk coincide, we have the chain of relations

ϕmqk
i (A+B) = ϕmkqk

ik
(A+B) = ϕmkqk

ik
(A+Bk) > λik(A+Bk)−εk > ∇̃σ,ik(A)−2εk > ∇̃σ,ik(A)− δ,

which implies that
λi(A+B) = inf

m∈N
sup
q∈N

ϕmq
i (A+B) ≥ ∇̃σ,i(A)− δ.

Since the number δ is arbitrarily small, we see that the last inequality implies the desired result.
The proof of the lemma is complete.
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Lemma 3. For each system A ∈ M̃n and each number σ > 0, one has

∇σ,i(A) = ∇̃σ,i(A) = ∇̂σ,i(A) ≡ inf
ε∈(0,σ)

sup
Q∈Eσ−ε

λi(A+Q), i = 1, . . . , n.

Proof. Fix an i = 1, . . . , n. Let us show that for each ε ∈ (0, σ/2) we have the chain of inclusions

{λi(A+Q) : Q ∈ Êσ} ⊂ {λi(A+Q) : Q ∈ Eσ−ε} ⊂ {λi(A+Q) : Q ∈ Eσ−2ε,1}. (16)

Indeed, for each Q ∈ Êσ we have lim
t→∞

t−1 ln |Q(t)| < −σ + ε. By the definition of the upper limit,

there exists a T > 0 such that the inequality |Q(t)| ≤ e(−σ+ε)t holds for all t ≥ T . Then for each
t ∈ R+ we have |Q(t)| ≤ Ce−(σ−ε)t, where C = sup

t∈[0,T ]

|Q(t)|e(σ−ε)t + 1. Thus, Êσ ⊂ Eσ−ε, and the

first inclusion in (16) has been established.
Let us establish the second inclusion. Let Q ∈ Eσ−ε. Then for some C > 0 we have |Q(t)| ≤

Ce−(σ−ε)t, t ∈ R+. Let us choose a T > 0 such that Ce−εT ≤ 1. Set

Q̃(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if t ∈ [0, T ],

(t− T )Q(t) if t ∈ [T, T + 1],

Q(t) if t ≥ T + 1.

Then λi(A+Q) = λi(A+ Q̃), and we have Q̃ ∈ Eσ−2ε,1 by virtue of the chain of inequalities

|Q̃(t)| ≤ |Q(t)| ≤ Ce−(σ−ε)t = Ce−εte−(σ−2ε)t ≤ e−(σ−2ε)t, t ≥ T.

By passing to the least upper bound in (16), we obtain

sup{λi(A+Q) : Q ∈ Êσ} ≤ sup{λi(A+Q) : Q ∈ Eσ−ε} ≤ sup{λi(A+Q) : Q ∈ Eσ−2ε,1}.
Passing to the greatest lower bound with respect to ε ∈ (0, σ) in the first inequality and with respect
to ε ∈ (0, σ/2) in the second, we obtain ∇σ,i(A) ≤ ∇̂σ,i(A) ≤ ∇̃σ,i(A). However, by Lemma 2 we
have the inequality ∇σ,i(A) ≥ ∇̃σ,i(A), and thus we arrive at the desired result. The proof of the
lemma is complete.

Proof of Theorem 2. By Lemma 2, there exists a systemQ ∈ Êσ such that λi(A+Q) ≥ ∇̃σ,i(A),
i = 1, . . . , n. The assertion of the theorem now follows from the chain

λi(A+Q) ≤ ∇σ,i(A) = ∇̃σ,i(A), i = 1, . . . , n,

where the first relation results from the definition of ∇σ,i(A) and the second has been established
in Lemma 3. The proof of the theorem is complete.

Proof of Theorem 3. Let us use Lemma 3 to establish the assertion for the function ∇̂σ,i.
Suppose that the inequality ∇̂σ,i(A) < μ holds for some σ > 0 and μ ∈ R. Then there exists a
δ ∈ (0, σ) such that sup

Q∈Eσ−δ

λi(A+Q) < μ. Now if σ′ > σ − δ, then there exists an η > 0 such that

σ′ − η > σ − δ. Then Eσ′−η ⊂ Eσ−δ, and the chain of inequalities

∇̂σ′,i(A) ≤ sup
Q∈Eσ′−η

λi(A+Q) ≤ sup
Q∈Eσ−δ

λi(A+Q) < μ

holds. Thus, the preimage of each half-line [−∞, μ), μ ∈ R, under the mapping σ �→ ∇̂σ,i(A) is an
open set, because this preimage contains some neighborhood (σ− δ,+∞) of every point σ of itself.
The proof of the theorem is complete.
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The next assertion was established in [19], where for each i = 1, . . . , n the authors derived a
description of the set of functions {λi(· ;A) : A ∈ BUn(M)} and their Lebesgue sets. Assertion 3
in Lemma 4 below has not been stated explicitly in [19], but it readily follows from the proof of
assertion 2 provided therein (i.e., in that paper).
First, recall the following definition [18, Sec. 41.1]. Let M be some family of subsets of a metric

spaceX. We say that a function f : X → R belongs to the class (M,∗ ) (respectively, the class (∗,M))
if the inclusion [f > r] ∈M (respectively, the inclusion [f ≥ r] ∈M) holds for each r ∈ R.

Lemma 4. For any metric space M and numbers n ≥ 2 and i = 1, . . . , n, the set of functions
{λi(· ;A) : A ∈ BUn(M)} coincides with the set of bounded functions in the class (∗, Gδ) and the
following relations hold for each r ∈ R:
1. {[λi(· ;A) ≥ r] : A ∈ BUn(M)} = Gδ(M).
2. {[λi(· ;A) > r] : A ∈ BUn(M)} = Gδσ(M).
3. {[λi(· ;A) = r] : A ∈ BUn(M)} = Fσδ(M).
The next lemma, to some extent, reduces the problem of realizing a given function by an Izobov

σ-exponent to a similar problem for a Lyapunov exponent.

Lemma 5. For any metric space M , any numbers n ≥ 2, i = 1, . . . , n, and σ > 0, and any
bounded function f : M → R of the class (∗, Gδ), there exists a family A ∈ BUn(M) and a num-
ber α > 0 such that

inf
Q∈Êσ

λi(A(·, μ) +Q) = sup
Q∈Êσ

λi(A(·, μ) +Q) = λi(A(·, μ)) = αf(μ), μ ∈M.

Proof. By Lemma 4, there exists a family B ∈ BUn(M) satisfying the condition λi(· ;B) = f .
Set L = sup

μ∈M
‖B(·, μ)‖+ 1. Define a family A ∈ BUn(M) by the formula

A(t, μ) = αB(αt, μ), t ∈ R+, μ ∈M,

where α = σ(3L)−1. Now if a vector function x(·) is a solution of the system B(·, μ) for some μ ∈M ,
then the vector function y(t) ≡ x(αt), t ∈ R+, is a solution of the system A(·, μ) with x(0) = y(0).
Consequently, λi(μ;A) = αλi(μ;B) = αf(μ), μ ∈M .
The Grobman irregularity coefficient [3, § 1.3] of systems in the family thus constructed obeys

the estimate (following from [3, Eq. (3.3)])

σg(A(·, μ)) ≤ 2‖A(·, μ)‖ < σ, μ ∈M.

Now the desired result follows from the Grobman theorem [3, Sec. 8.1]. The proof of the lemma is
complete.

Proof of Theorem 4. 1. Let us show that the function M̃n
C × R

∗
+ → R defined by the rule

(A, σ) �→ ∇σ,i(A) belongs to the class (∗, Gδ).
(a) Fix k, l ∈ N. For each q ∈ N, set

ψq(B, σ) = sup
t∈[0,q]

|B(t)|eσt, B ∈ M̃n, σ ∈ R
∗
+.

Let us prove that the function F kl
i : M̃n

C × R
∗
+ → R defined by the relation

F kl
i (A, σ) = sup{ϕkl

i (A+B) : ψk+l(B, σ) < 1}, A ∈ M̃n, σ ∈ R
∗
+,

where the function ϕkl
i is defined in relation (10), belongs to the class (G,∗ ); i.e., it is lower semi-

continuous. Indeed, given an r ∈ R, the set A = {(A,B) ∈ M̃n × M̃n : ϕkl
i (A+B) > r} is open in

the space M̃n
C × M̃n

C as the preimage of the open set (r,+∞) under the continuous (by Lemma 1)
mapping (A,B) �→ ϕkl

i (A + B), and the set B = {(B, σ) ∈ M̃n
C × R

∗
+ : ψk+l(B, σ) < 1} is open in
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the space M̃n
C × R

∗
+ as the preimage of the open set (−∞, 1) under the continuous mapping ψk+l.

Then the set {(A, σ) : F kl
i (A, σ) > r} is open as the projection [24, Sec. 15.II, Theorem 1] of the

open subset (A× R
∗
+) ∩ (M̃n × B) of the space M̃n

C × M̃n
C × R

∗
+ onto the product of the first and

third factors.
(b) Take arbitrary A ∈ M̃n and σ > 0. Let us establish the relation

ξ ≡ sup
B∈Eσ,1

ϕkl
i (A+B) = sup{ϕkl

i (A+B) : ψk+l(B, σ) ≤ 1} ≡ μ. (17)

By virtue of the inclusion Eσ,1 ⊂ {B ∈ M̃n : ψk+l(B, σ) ≤ 1}, we have ξ ≤ μ. On the other hand,
for each B ∈ M̃n satisfying the condition ψk+l(B, σ) ≤ 1 we set

B̃(t) =

⎧⎨
⎩B(t) if t ∈ [0, k + l],

B(k + l)e−σ(t−(k+l)) if t ≥ k + l.

Then B̃ ∈ Eσ,1 and ϕkl
i (A + B̃) = ϕkl

i (A + B), because the value of the function ϕkl
i on a system

is determined by its restriction to the interval [0, k + l], on which the systems B and B̃ coincide.
Thus, ξ ≥ μ, and relation (17) has been established.
Now let us prove the relation

sup{ϕkl
i (A+B) : ψk+l(B, σ) ≤ 1} = sup{ϕkl

i (A+B) : ψk+l(B, σ) < 1}. (18)

The set {B ∈ M̃n : ψk+l(B, σ) ≤ 1} is the closure of the set {B ∈ M̃n : ψk+l(B, σ) < 1} in the
space M̃n

C . In view of the continuity of the mapping B �→ ϕkl
i (A+B) on the space M̃n

C , we conclude
that the first of the sets occurring in (18) under the least upper bound sign is the closure of the
second. Hence their least upper bounds coincide.
(c) Now let us show that the function ηi : M̃n

C × R
∗
+ → R defined by the formula

ηi(A, σ) = sup
B∈Eσ,1

λi(A+B), A ∈ M̃n, σ ∈ R
∗
+,

belongs to the class (∗, Gδ). Using [17, Lemma 3], we obtain

ηi(A, σ) = inf
k∈N

sup
B∈Eσ,1

inf
L∈Gi(Rn)

sup
t≥k

1

t
ln |XA+B(t, 0)|L|, A ∈ M̃n, σ ∈ R

∗
+.

For any D ∈ M̃n, t > 0, and L ∈ Gi(R
n), set χ(D, t, L) = t−1 ln |XD(t, 0)|L|. By [22, Lemma 2],

for any D ∈ M̃n and t > 0 the function L �→ χ(D, t, L) is continuous. (The set Gi(R
n) is equipped

with the standard topology, in which it is a compact space.) Applying [17, Lemma 2], for each
D ∈ M̃n we obtain the chain of relations

inf
L∈Gi(Rn)

sup
t≥k

χ(D, t, L) = inf
L∈Gi(Rn)

sup
l∈N

max
t∈[k,k+l]

χ(D, t, L)

= sup
l∈N

inf
L∈Gi(Rn)

max
t∈[k,k+l]

χ(D, t, L) = sup
l∈N

ϕkl
i (D);

it follows that
ηi(A, σ) = inf

k∈N
sup
l∈N

sup
B∈Eσ,1

ϕkl
i (A+B), A ∈ M̃n, σ ∈ R

∗
+.

Finally, using relations (17) and (18), we obtain

ηi(A, σ) = inf
k∈N

sup
l∈N

F kl
i (A, σ), A ∈ M̃n, σ ∈ R

∗
+.
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In part 1(a) of the proof, it was established that the functions F kl
i : M̃n

C × R
∗
+ → R, k, l ∈ N,

belong to the class (G,∗ ). Then, according to [18, Sec. 41.1.I], the functions (A, σ) �→ sup
l∈N

F kl
i (A, σ),

k ∈ N, belong to this class as well and hence also belong to the class (∗, Gδ) in view of the relation
[r,+∞] =

⋂
k∈N(r − k−1,+∞], r ∈ R, and the properties of the preimage of a set. Therefore,

according to [18, Sec. 41.1.II], the function ηi belongs to the class (∗, Gδ).
Let σ′′ > σ′ > 0. Then Eσ′′,1 ⊂ Eσ′,1, which implies the inequality ηi(A, σ′′) ≤ ηi(A, σ

′) for
each A ∈ M̃n. Hence we have the chain of relations

∇̃σ,i(A) = inf
ε∈(0,σ)

ηi(A, σ − ε) = lim
ε→0+

ηi(A, σ − ε) = inf
m∈N

ηi(A, σ(1− 2−m)), A ∈ M̃n, σ ∈ R
∗
+.

Noting that ∇̃σ,i(A) = ∇σ,i(A) (by Lemma 3) and applying the assertion in [18, Sec. 41.1.II] to the
right-hand side of the last relation, we conclude that the function (A, σ) �→ ∇σ,i(A) belongs to the
class (∗, Gδ).
2. (a) Now let us fix arbitrary σ > 0 and r ∈ R. By virtue of item 1, the set

{(A, ς) ∈ M̃n × R
∗
+ : ∇ς,i(A) ≥ r} ∩ (M̃n × {σ})

is a Gδ-set in the product M̃n
C ×{σ}. Consequently, the projection {A ∈ M̃n : ∇σ,i(A) ≥ r} of this

set onto the first factor is a Gδ-set in the space M̃n
C , because the restriction of the projection of the

product M̃n
C × R

∗
+ onto the first factor to the subspace M̃n

C × {σ} is a homeomorphsim.
Now, given a family A ∈ Cn(M), the set [∇σ,i(· ;A) ≥ r] is the preimage of the set {A ∈ M̃n :

∇σ,i(A) ≥ r} under the continuous (see, e.g., [17, Lemma 4]) mapping M → M̃n
C defined by the

rule μ �→ A(·, μ) and hence is a Gδ-set in the space M . We have thus established the inclusion

{[∇σ,i(· ;A) ≥ r] : A ∈ Cn(M)} ⊂ Gδ(M). (19)

(b) The inclusion (19) and the relation

[∇σ,i(· ;A) > r] =
⋃
k∈N

[∇σ,i(· ;A) ≥ r + k−1]

imply the inclusion
{[∇σ,i(· ;A) > r] : A ∈ Cn(M)} ⊂ Gδσ(M). (20)

Finally, from inclusions (19) and (20), the inclusion Gδ(M) ⊂ Fσδ(M), and the relation

[∇σ,i(· ;A) = r] = [∇σ,i(· ;A) ≥ r] ∩ (M \ [∇σ,i(· ;A) > r])

we obtain the inclusion
{[∇σ,i(· ;A) = r] : A ∈ Cn(M)} ⊂ Fσδ(M). (21)

3. Take an arbitrary r ∈ R and prove the inclusion

{[∇σ,i(· ;A) ≥ r] : A ∈ BUn(M)} ⊃ Gδ(M). (22)

Given a set S ∈ Gδ(M), it follows from Lemma 4 that S = [f ≥ r] for some bounded function
f : M → R of the class (∗, Gδ). According to Lemma 5, there exists a family A ∈ BUn(M) and a
number α > 0 that satisfy the condition

∇σ,i(μ;A) = αf(μ), μ ∈M.

Set B(t, μ) = A(t, μ)+(1−α)rEn, t ∈ R+, μ ∈M . Now if a vector function x(·) is a solution of the
system A(·, μ)+Q for some μ ∈M and Q ∈ Êσ, then the vector function y(t) ≡ x(t) exp((1−α)rt),
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t ∈ R+, is a solution of the system B(·, μ)+Q, with x(0) = y(0). Consequently, the following chain
of relations holds:

∇σ,i(μ;B) = ∇σ,i(μ;A) + (1− α)r = αf(μ) + (1− α)r, μ ∈M.

It remains to note that [∇σ,i(· ;B) ≥ r] = [f ≥ r] = S. The inclusion (22) has been established.
The inclusions

{[∇σ,i(· ;A) > r] : A ∈ BUn(M)} ⊃ Gδσ(M) and {[∇σ,i(· ;A) = r] : A ∈ BUn(M)} ⊃ Fσδ(M) (23)

can be proved in a similar way. The assertion of the theorem follows from inclusions (19)–(23) and
the inclusion BUn(M) ⊂ Cn(M). The proof of the theorem is complete.

Proof of the Corollary. 1. Given a family A ∈ Cn(M), the set [∇σ,i(· ;A) ≥ r] is a set of
the type Gδ for each r ∈ R by Theorem 4. It follows from the assertions in [18, Sec. 43.1.I] that
the function ∇σ,i(· ;A) : M → R is the limit of a decreasing sequence of functions of Baire class 1.
Thus, the function ∇σ,i(· ;A) belongs to Baire class 2.
2. Since, as shown above, the function ∇σ,i(· ;A) belongs to the class (∗, Gδ), from [25, Lemma 2]

we obtain the inclusions LS(∇σ,i(· ;A)) ∈ F(M) and US(∇σ,i(· ;A)) ∈ Gδ(M). If M is complete,
then it follows from [26, p. 106] that the set US(∇σ,i(· ;A)) is dense in M .
3. Given an arbitrary set S ∈ G(M), by the result in [27], there exists a family B ∈ BUn(M) such

that US(λi(· ;B)) = S. By Lemma 4, the function λi(· ;B) is a bounded function of the class (∗, Gδ).
Using Lemma 5, we construct a family A ∈ BUn(M) such that∇σ,i(· ;A) = αλi(· ;B) for some α > 0.
Then it is obvious that US(∇σ,i(· ;A)) = US(λi(· ;B)) = S. Thus, we have established the inclusion
{US(∇σ,i(· ;A)) : A ∈ BUn(M)} ⊃ G(M). The inclusion {LS(∇σ,i(· ;A)) : A ∈ BUn(M)} ⊃ F(M)
can be established in a similar way. Taking into account the results in item 2 and the inclusion
BUn(M) ⊂ Cn(M), we arrive at the desired assertion.The proof of the corollary is complete.

Remark 4. Using the same argument and the result in [28], one can readily show that we have
the relations

{(LS(∇σ,1(· ;A)), . . . , LS(∇σ,n(· ;A))) : A ∈ BUn(M)} = (F(M))n,

{(US(∇σ,1(· ;A)), . . . , US(∇σ,n(· ;A))) : A ∈ BUn(M)} ⊃ (G(M))n

describing the possible tuples of sets of points of lower (upper) semicontinuity of the upper Izobov
σ-exponents of systems (6).
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