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Abstract—An application of the integral dispersion equation method to the solution of two
nonlinear eigenvalue problems is considered. One of these problems arises when studying the
propagation of TE-waves in a dielectric shielded nonlinear layer with Kerr nonlinearity, while
the other, a more complex one, generalizes the first and contains, in particular, a nonlinearity
multiplying the highest derivative in the differential operator. The existence of an infinite set
of eigenvalues of the problems is proved, and their asymptotics is found.
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INTRODUCTION

Nonlinear eigenvalue problems are encountered, for example, when studying the propagation
of polarized electromagnetic waves in nonlinear media [1–3]. In these problems, the differential
operator depends nonlinearly on the solution function. In most cases of practical importance, it
is not possible to obtain an explicit solution to the corresponding differential equation. However,
there are a number of approaches that allow one to establish some properties of the eigenvalues of
the problem, such as existence, asymptotic behavior, etc.

The integral dispersion equation method is one efficient technique for studying nonlinear eigen-
value problems. This method was proposed in [4–6] and then applied in [7, 8] to the solution of
a number of specific physical problems. Its main idea is to produce some equation not containing
the unknown function for the spectral parameter and then study this equation and establish the
properties of its eigenvalues. Once the eigenvalues are known, it becomes easy to determine the
eigenfunctions of the operator.

In the present paper, the integral dispersion equation method is presented in its simplest form,
which differs from the one used in the aforementioned papers. We consider both the well-known
eigenvalue problem that arises when studying the propagation of TE-waves in a dielectric shielded
nonlinear layer with Kerr nonlinearity and a more complicated problem in which the nonlinearity
multiplies the highest derivative in the differential operator.

1. INTEGRAL DISPERSION EQUATION METHOD

Consider the following nonlinear boundary eigenvalue problem for a second-order differential
operator:

u′′ − λu+ αu3 = 0, x ∈ (0, h), (1)

with the homogeneous boundary conditions

u(0) = u(h) = 0 (2)

and the additional condition
u′(0) = A, A > 0. (3)

Here λ ∈ R is the spectral parameter and α > 0 is the nonlinearity coefficient. We seek smooth
real-valued solutions u = u(x), u ∈ C2(0, h) ∩ C1[0, h].

The eigenvalue problem (1)–(3) is to find a λ ∈ R such that the problem has a nontrivial solution
in the above-indicated class of functions.
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Having multiplied Eq. (1) by u′(x), we obtain u′u′′ − λuu′ + αu′u3 = 0, and hence we have
((u′)2)′ − λ(u2)′ + (u4)′/2 = 0, which implies the identity (u′)2 − λu2 + αu4/2 = C0, where C0 is
a constant. In view of the continuous differentiability of the function u(x), by virtue of conditions (2)
and (3) we obtain (u′(0))2 = A2 > 0, A2 = C0. Then we have

(u′)2 − λu2 + αu4/2 = A2. (4)

From this equation, we find
u′ = ±

√
A2 + λu2 − αu4/2. (5)

Since the function u′(x) can change sign on the interval [0, h], we see that the choice of the sign of
the radical in (5) remains as yet undefined.

Let D := λ2 + 2αA2(> 0). Denote

z1 :=
λ+
√
D

α
(> 0), z2 :=

λ−
√
D

α
(< 0).

Then
A2 + λu2 − αu4/2 = −α(u2 − z1)(u2 − z2)/2. (6)

It follows from identity (4) that the left-hand side of this relation is nonnegative; therefore, consid-
ering the inequality z2 < 0, we have u2 − z1 ≤ 0, and hence |u| ≤ z1.

Let xi ∈ (0, h), i = 1, . . . , N, be the points of extremum of the function u(x). By virtue of
the differentiability of u(x), it is necessary that u′(xi) = 0. It is obvious from identity (4) and
condition (2) that the points 0 and h are not points of extremum. It follows from (4) and (6) that
the relation |u(xi)| = z1 holds at the points xi of extremum of the function u(x). Moreover, in
view of condition (3), the points x2j+1 are the maxima and the points x2j are the minima of the
function u(x); i.e., u(x2j+1) =

√
z1 and u(x2j) = −

√
z1. Relation (4) also implies that if u(x) = 0,

then u′(x) 6= 0.
Thus, the intervals of increase for the function u(x) are (0, x1), (x2, x3), and so on, while the

intervals of decrease are, accordingly, (x1, x2), (x3, x4), and so on. The overall number of intervals
of increase and decrease for the function u(x) equals N + 1. Knowing the intervals of increase and
decrease for the function u(x) makes it possible to determine the sign in Eq. (5) on these intervals.

Let us integrate Eq. (5) over the interval (0, x1) taking into account the choice of the “+” sign
in front of the radical. Set

w :=
1√

A2 + λu2 − αu4/2
(> 0).

We have
u(x)∫
0

w du = x+ C1, x ∈ (0, x1),

with some constant C1. Substituting x = 0 into this formula (calculating the limit), we conclude
that C1 = 0. Therefore, we have

u(x)∫
0

w du = x, x ∈ (0, x1). (7)

Further, substituting x = x1 into identity (7), we obtain the relation
√
z1∫

0

w du = x1. (8)

Further, we repeat the same actions on all intervals (xi, xi+1), choosing the sign of the derivative
of the function u(x) depending on whether this interval is an interval of increase or an interval of
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decrease for the function u(x). Repeating the procedure for the intervals (x2j−1, x2j) (j ≥ 1), we
have

−
u(x)∫
√
z1

w du = x+ C2j, x ∈ (x2j−1, x2j),

with some constants C2j. Substituting x = x2j−1 into this formula, we conclude that C2j = −x2j−1.
Therefore,

−
u(x)∫
√
z1

w du = x− x2j−1, x ∈ (x2j−1, x2j). (9)

Then, substituting x = x2j into identity (9), we arrive at the relation
√
z1∫

−√z1

w du = x2j − x2j−1. (10)

Repeating the above procedure for the intervals (x2j, x2j+1) (j ≥ 1), we have

u(x)∫
−√z1

w du = x+ C2j+1, x ∈ (x2j, x2j+1),

with some constants C2j+1. Substituting x = x2j into this formula, we conclude that C2j+1 = −x2j.
Then we have

u(x)∫
−√z1

w du = x− x2j, x ∈ (x2j, x2j+1). (11)

Further, substituting x = x2j+1 into identity (11), we arrive at the relation
√
z1∫

−√z1

w du = x2j+1 − x2j. (12)

In the case of even N , on the last interval (xN , h) we have

u(x)∫
−√z1

w du = x+ CN+1, x ∈ (xN , h),

with some constant CN+1. Substituting x = xN into this formula, we conclude that CN+1 = − xN .
Therefore,

u(x)∫
−√z1

w du = x− xN , x ∈ (xN , h). (13)

Further, substituting x = h into identity (13), for the case of even N we obtain the relation

0∫
−√z1

w du = h− xN . (14)
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In the case of odd N , on the last interval (xN , h) we have

−
u(x)∫
√
z1

w du = x+ CN+1, x ∈ (xN , h),

with some constant CN+1. Substituting x = xN into this formula, we conclude that CN+1 = − xN .
Then

−
u(x)∫
√
z1

w du = x− xN , x ∈ (xN , h). (15)

Further, substituting x = h into identity (15), in the case of odd N we obtain the relation

√
z1∫

0

w du = h− xN . (16)

Now, summing relations (8), (10), (12), and (14) (or (16)), we arrive at the integral dispersion
equation

NT (λ) = h (N ≥ 1), (17)

where

T = T (λ) :=

√
z1∫

−√z1

w du. (18)

Note that the improper integral (18) (similar to all the improper integrals above) is absolutely
convergent by virtue of (6).

It is obvious from the boundary conditions (2) that there exists at least one point of extremum,
and therefore, N ≥ 1. The dispersion equations (17) must be solved for all N ≥ 1; i.e., we have
a set of dispersion equations, each determining nonlinear eigenvalues of problem (1)–(3).

Let us prove the converse. If a solution λ0 to Eq. (17) has been found for some N ≥ 1, then one
can readily determine all the values xi and accordingly Ci from the above relations. Further, the
above integral relations for the function u(x) can be used to determine the function u(x) on each
interval (xi, xi+1). By differentiating these relations, we conclude that relations (5) and further (4)
hold. It follows that Eq. (1) is satisfied.

Since the function w is positive, we find from the equation
u(x)∫
0

w du = x, x ∈ (0, x1), at x = 0

that u(0) = 0. In a similar way, from the equations on the last interval we obtain (for both even

and odd N) |
u(x)∫
0

w du| = h− x, x ∈ (xN , h), and hence u(h) = 0; i.e., the boundary conditions (2)

are satisfied. Now condition (3) follows from Eq. (4) and from the fact that the function u(x) is
increasing on the interval (0, x1). The smoothness of the function u(x) is verified using the formulas
that explicitly define it on the intervals (xi, xi+1). We have thus proved the following assertion.

Theorem 1. If a number λ = λ0 is an eigenvalue of problem (1)–(3), then it is a solution of
the dispersion equation (17) for some N ≥ 1. Conversely, if λ0 is a solution of the dispersion
equation (17) for some N ≥ 1, then it is an eigenvalue of problem (1)–(3).

Theorem 1 reduces solving the nonlinear eigenvalue problem (1)–(3) to solving the dispersion
equation (17). It is this fact that constitutes the main idea of the integral dispersion equation
method.
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2. ANALYSIS OF THE INTEGRAL DISPERSION EQUATION

Since z1z2=−2A2/α, we can use a change of variables in the integral (18) to obtain

T =

√
z1∫

−√z1

w du = 2
√
2

π/2∫
0

dt√
αz1 sin

2 t+ 2A2/z1
.

The last integral can be estimated as

π/2∫
0

dt√
αz1 sin

2 t+ 2A2/z1
≤

π/2∫
0

dt√
2A
√
2α sin t

=M,

where M is a constant independent of z1. It follows that there exist limits

lim
z1→0

T (z1) = 0, lim
z1→+∞

T (z1) = 0.

Since

z1 = z1(λ) =
λ+
√
λ2 + 2αA2

α
=

2A2

−λ+
√
λ2 + 2αA2

,

we have z1(λ)→ +∞ as λ→ +∞ and z1(λ)→ 0 as λ→ −∞. Therefore, there exist limits

lim
λ→+∞

T (λ) = 0, lim
λ→−∞

T (λ) = 0. (19)

It is obvious that the function T (λ) is positive and continuous for λ ∈ (−∞,+∞). By virtue of (19),
there exists

H = max
λ∈(−∞,+∞)

T (λ).

Thus, if h/N < H, then there exist at least two solutions of Eq. (17). Consequently, the following
assertion holds.

Theorem 2. There exists a number N∗ (≥1) such that for each N ≥ N∗ Eq. (17) has at least two
solutions, with the solutions being distinct for distinct N . There exist infinitely many solutions λ(+)

N

of Eq. (17) such that λ(+)
N > 0 and λ(+)

N → +∞ as N → ∞. Further, there exist infinitely many
solutions λ(−)

N of Eq. (17) such that λ(−)
N < 0 and λ(−)

N → −∞ as N →∞.
Proof. For sufficiently large N we have the inequality h/N < H; therefore, it suffices to

take N∗ > h/H. The assumption about coinciding solutions for distinct N1 and N2 leads immedi-
ately to a contradiction, because then we have T (λ) = h/N1 = h/N2.

Further, by virtue of (19), λ(+)
N for large N is positive and tends to +∞. Accordingly, λ(−)

N for
large N is negative and tends to −∞. The proof of the theorem is complete.

By means of a more detailed analysis of the function T (λ), we can obtain a more accurate
eigenvalue asymptotics, but we omit results on asymptotics from this paper.

3. NONLINEAR BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL OPERATOR

Consider the following nonlinear boundary eigenvalue problem for a more sophisticated differen-
tial operator of the second order:

(u′)mu′′ − λu+ αu3 = 0, x ∈ (0, h) (m ≥ 0), (20)

with the homogeneous boundary conditions

u(0) = u(h) = 0 (21)
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and the additional condition
u′(0) = A, A > 0. (22)

We will seek smooth real-valued solutions u = u(x), u ∈ C2(0, h) ∩ C1[0, h]. The nonlinearity
coefficient is α > 0.

The eigenvalue problem (20)–(22) is to find λ ∈ R such that the problem has a nontrivial solution
in the above-indicated function class.

Having multiplied Eq. (20) by u′(x), we obtain (u′)m+1u′′ − λuu′ + αu′u3 = 0, and hence
we have 2((u′)m+2)′/(m + 2) − λ(u2)′ + (u4)′/2 = 0. The latter relation implies the identity
2(u′)m+2/(m+ 2)− λu2 + αu4/2 = C0, where C0 is some constant. In view of the continuous
differentiability of the function u(x), by virtue of conditions (21) and (22) we conclude that
(u′(0))m+2/(m+ 2) = C0 and Am+2/(m+ 2) = C0 > 0. Then

2

m+ 2
(u′)m+2 − λu2 + α

u4

2
=
Am+2

m+ 2
. (23)

Set

A0 :=
m+2

√
m+ 2

2
, A2

m :=
2

m+ 2
Am+2.

For even m, from (23) we obtain the equation

u′ = ±A0

(
A2
m + λu2 − α

2
u4

)1/(m+2)

, (24)

and for odd m, the equation

u′ = A0

(
A2
m + λu2 − α

2
u4

)1/(m+2)

. (25)

Let

Dm := λ2 + 2αA2
m (>0), z1,m :=

λ+
√
Dm

α
(>0), z2,m :=

λ−
√
Dm

α
(<0).

Then
A2
m + λu2 − αu4/2 = −α(u2 − z1,m)(u2 − z2,m)/2. (26)

Let us separately consider the cases of even and odd m. For an odd m, it follows from (25)
and (26) that u′(x) > 0 for |u(x)| < √z1,m and u′(x) < 0 for |u(x)| > √z1,m. An extremum
can be reached only for |u(x)| = √z1,m. Since u′(0) > 0 and u(0) = 0, we assume that the
function u(x) has a positive maximum at a point x0 ∈ (0, h), i.e., u(x0) =

√
z1,m. Then, in some

right half-neighborhood of the point x0, for x > x0, either the function decreases and u(x) < √z1,m,
which contradicts the fact that u′(x) > 0, or the function takes constant values u(x) = √z1,m > 0
for all x > x0, x ∈ (0, h), which is also impossible, because the function u(x) is continuous and
satisfies u(h) = 0. Thus, problem (20)–(22) has no solutions for odd m.

The case (24) of even m is similar to the case of m = 0, treated in Sec. 2. Denote

wm := A0
−1
(
A2
m + λu2 − α

2
u4

)−1/(m+2)

.

Applying the above-described method leads to the integral dispersion equations
NTm(λ) = h (N ≥ 1), (27)

where

Tm = Tm(λ) :=

√
z1,m∫

−√z1,m

wm du. (28)

Note that by virtue of (26), the improper integral (28) (similar to all the improper integrals above)
is absolutely convergent. The following assertion holds.
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Theorem 3. If a number λ = λ0 is an eigenvalue of problem (20)–(22), then it is a solution
of the dispersion equation (27) for some N ≥ 1. Conversely, if λ0 is a solution of the dispersion
equation (27) for some N ≥ 1, then it is an eigenvalue of problem (20)–(22).

The proof reproduces that of Theorem 1 conducted above for the case of m = 0.
Since z1,mz2,m = −2A2

m/α, we can make a change of variables in the integral (28) to obtain

Tm =

√
z1,m∫

−√z1,m

wm du = 2(m+3)/(m+2)z
m/(2m+4)
1,m A−10

π/2∫
0

cosm/(m+2) t dt

(αz1,m sin2 t+ 2A2
m/z1,m)

1/(m+2)
.

The last integral can be estimated as

π/2∫
0

cosm/(m+2) t dt

(αz1,m sin2 t+ 2A2
m/z1,m)

1/(m+2)
≤

π/2∫
0

dt

(2Am
√
2α sin t)1/(m+2)

=Mm,

where Mm is a constant independent of z1,m.
It follows that there exist limits

lim
z1→0

Tm(z1) = 0, lim
z1→+∞

Tm(z1) = p0 > 0, m = 2; lim
z1→+∞

Tm(z1) = +∞, m > 2,

where

p0 := 25/4A−10

π/2∫
0

cos1/2 t dt

(α sin2 t)1/4
.

The case of m = 0 has been considered above.
Since

z1 = z1(λ) =
λ+
√
λ2 + 2αA2

α
=

2A2

−λ+
√
λ2 + 2αA2

,

we have z1(λ)→ +∞ as λ→ +∞ and z1(λ)→ 0 as λ→ −∞. Therefore, there exist limits

lim
λ→+∞

Tm(λ) = p0 > 0, m = 2; lim
λ→+∞

Tm(λ) = +∞, m > 2; lim
λ→−∞

Tm(λ) = 0. (29)

It is obvious that the function Tm(λ) is positive and continuous for λ∈(−∞,+∞). The following
assertion holds by virtue of relations (29).

Theorem 4. Let m ≥ 2 be even. For m = 2, under the condition p0 > h/N , Eq. (27) has at
least one solution, the solutions being distinct for distinct N . For m > 2 Eq. (27) has at least one
solution, the solutions being distinct for distinct N . Moreover, for m ≥ 2 there exist infinitely many
solutions λ(−)

N of Eq. (27) such that λ(−)
N < 0 and λ(−)

N → −∞ as N →∞.
Proof. The condition p0 > h/N ensures at least one intersection of the graphs of the func-

tions y = Tm(λ) and y = h/N . To prove the remaining assertions, it suffices to reproduce reasoning
similar to the proof of Theorem 2. The proof of the theorem is complete.

By means of a more detailed analysis of the function Tm(λ), one can produce a more accurate
eigenvalue asymptotics, but we omit results on asymptotics from this paper.

CONCLUSIONS

We have considered the integral dispersion equation method for solving two nonlinear eigenvalue
problems arising when studying the propagation of TE-waves in a dielectric shielded nonlinear
layer with a Kerr nonlinearity and a more complicated problem with a nonlinearity multiplying the
highest derivative in the differential operator. The existence of an infinite set of eigenvalues of the
problems is proved; their asymptotics are derived.
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